Пеков И. В., Чуканов Н. В., Хомяков А. П., Расцветаева Р. К., Кучериненко Я. В., Неделько В. В. Коробицынит Na_{3 - x} (Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3—4H₂O — новый минерал из Ловозерского массива, Кольский полуостров // ЗВМО. **1999**. № 3. С. 72—79.

Расцветаева Р. К., Аракчеева А. В., Хомяков А. П. Кристаллическая структура и микродвойникование нового моноклинного аналога ненадкевичита. // Докл. РАН. **1996**. Т. 351. № 2. С. 207-211.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. Кристаллическая структура нового минерала — аналога лабунцовита с высокой упорядоченностью калия и бария. // Докл. РАН. 1997а. Т. 357. № 1. С. 64—67.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. Кристаллическая структура нового минерала — титанового аналога ромбического ненадкевичита // Докл. РАН. 19776. Т. 357. № 3. С. 364—367.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. и др. Структуры двух высококалневых лабунцовитов в светс кристаллохимии минералов семейства лабунцовита—пенадкевичита # Кристаллография. 1998. Т. 43. № 5. С. 874—881.

Расцветаева Р. К., Органова Н. И., Рождественская И. В. и др. Кристаллическая структура оксониевого минерала группы ненадкевичита—лабунцовита из Хибинского массива // Докл. РАН. 2000. Т. 371. № 3. С. 336---340.

Хомяков А. П., Нечелюстов Г. Н., Расцветаева Р. К., Дорохова Г. И. Леммлейнит NaK₂(Ti,Nb)₂Si₄ O₁₂(O,OH)₂ · 2H₂O — новый минерал семейства лабупцовита—ненадкевичита // ЗВМО. **1999**. № 5. С. 54—63.

Чуканов Н. В., Пеков И. В., Головина Н. И. Задов А. Е., Неделько В. В. Кузьменкоит К₂(Mn,Fe)(Ti,Nb)₄ [Si₄O₁₂]₂(OH)₄ · 5H₂O — новый минерал // ЗВМО. 1999. № 4. С. 42—50.

Chukanov N. V., Pekov I. V., Rastsvetaeva R. K., Nekrasov A. N. Labuntsovite: solid solutions and features of the crystal structure # Canad. Miner. 1999. Vol. 37. N 4. P. 901-910.

Rastsvetaeva R. K., Tamazyan R. A., Pushcharovsky D. Yu., Nadezhina T. N. Crystal structure and microtwinning of K-rich nenadkevichite. # Eur. J. Miner. 1994. Vol. 6. P. 503-509.

Поступила в редакцию 14 ноября 2000 г.

УДК 549.657

ЗВМО, № 3, 2001 г. Proc. RMS, N 3, 2001

© Д. чл. З. В. ШЛЮКОВА, * Н. В. ЧУКАНОВ, ** д. чл. И. В. ПЕКОВ, *** Р. К. РАСЦВЕТАЕВА, **** д. чл. Н. И. ОРГАНОВА, * А. Е. ЗАДОВ*****

ЦЕПИНИТ-Na (Na,H₃O,K,Sr,Ba)₂(Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3H₂O — НОВЫЙ МИНЕРАЛ ГРУППЫ ЛАБУНЦОВИТА¹

Z. V. SHLYUKOVA, N. V. CHUKANOV, I. V. PEKOV, R. K. RASTSVETAEVA, N. I. ORGANOVA, A. E. ZADOV. TSEPINITE-Na (Na,H₃O.K,Sr,Ba)₂(Ti.Nb)₂[Si₄O₁₂](OH.O)₂ · 3H₂O, A NEW MINERAL OF THE LABUNTSOVITE GROUP

^{*}Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН, 109017, Москва, Старомонетный пер., д. 35

**Институт Проблем химической физики РАН, 142432, Московская обл., п. Черноголовка.

E-mail: chukanov@icp.ac.ru

***Московский государственный университет, 119899, Москва, Воробьевы горы

*Институт Кристаллографии РАН, 117333, Москва. Ленинский пр., 59

*****НПО «Регенератор», 127018, Москва, ул. Складочная, д. б

Tsepinite-Na, a new mineral of the labuntsovite group, has been found in alkaline pegmatites at Khibinpakhchorr Mt., Khibiny massif, and Lepkhe-Nehn Mt., Lovozcro massif (both at Kola Peninsula, Russia). It occurs as colourless, white and light-brown radial aggregates and separate prismatic crystals (up to 1 cm) together with microcline, acgirine, analcime, natrolite, catapleiite, apophyllite, labuntsovite-Mn, epididymite, fluorite, sphalerite, etc. (Khibinpakhchorr) and with microcline, acgirine, magnesio—arfvedsonite, natrolite, eudialyte, lamprophyllite, fluorapatite, neptunite, lorenzenite, titanite, vinogradovite, polylithionite, tainiolite, rancieite, tundrite-(Ce) (Lepkhe-Nelm). Crystal forms: {001}, {100}, { $\overline{201}$ }, {010}, {012}, { $\overline{241}$ }. Transparent to translucent. Lustre vitreous. Brittle, cleavage is not observed, Mohs' hardness 5. $D_{meas} = 2.74(2)$, $D_{calc} = 2.72(1)$ g/cm³. Optically biaxial, positive, α 1.658(1), β 1.668(1), γ 1.770(5), $2V_{meas} = 19-31^{\circ}$, $2V_{calc} = 36^{\circ}$. The crystal structure is studied, R = 0.055. Monoclinic, Cm, a = 14.604(7), b = 14.274(8), c = 7.933(2) Å, $\beta = 117.40(3)$, V = 1468.2 Å³. Tsepinite-Na is a structural analogue of vuoriyarvite-K with Na > K and Ti > Nb. Na⁺ in tsepinite-Na is partly substituted with H₃O⁺. Presence of H₃O⁺ is confirmed by IR spectral data. The average chemical composition for the structurally studied crystal is (electron probe, wt %): Na₂O 5.48, K₂O 1.58, CaO 0.18, SrO 2.32, BaO 2.60, ZnO 0.04, Fe₂O₃ 0.25, TiO₂ 14.17, Nb₂O₅ 20.69, SiO₂ 40.38, total 87.69, H₂O content (by thermogravimetrical procedure in vacuum) is 13.18 %. The empirical formula is (Z = 1): H_{34.83}(Na4.21K0.80Sr0.54Ba0.41Ca0.08Zn0.01) Σ 6.05(Ti4.22Nb3.71Fe \hat{O} .07) Σ 8.00Si₁₆O_{70.78}. Idea-

¹ Рассмотрено и рекомендовано Комиссией по новым минералам и названиям минералов ВМО. Утверждено Комиссией по новым минералам и названиям минералов ММА 5 декабря 2000 г.

lized formula is (Z = 4): (Na,H₃O,K,Sr,Ba)₂(Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3H₂O. The strongest reflexes of the X-ray powder pattern are [d, Å (I, %; hkl)]: 7.01(44; 001), 6.46(100; 200, 201), 3.954(30; 201, 202), 3.236(98; 400, 402), 3.179(33; 041), 3.160(38; 022). The mineral is named after Anatoliy I. Tsepin (b. 1946) who firstly obtained electron microprobe data for labuntsovite group minerals. Type specimen is deposited in Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.

Представители группы лабунцовита, ранее считавшиеся весьма редкими, в последние годы обнаружены в целом ряде щелочных массивов. Они оказались типичпыми редкометальными минералами щелочных гидротермалитов. В группе лабунцовита, согласно принятой недавно номенклатуре (утверждена КНМНМ ММА в 2000 г.), выделяется несколько подгрупп, включающих ромбические (подгруппа ненадкевичита, пр. гр. *Pbam*) и моноклинные (подгруппы лабунцовита, паралабунцовита, леммлейнита, вуориярвита, кузьменкоита и органоваита, пр. гр. *2Clm, Cm* или *12lm*) члены. Кристаллохимические исследования выявили сходство структурных мотивов всех этих минералов: в их основе лежит цеолитоподобный каркас, образованный цепочками (Ti,Nb)О-октаэдров и кольцами [Si₄O₁₂] и содержащий каналы, заполненные крупными катионами и молекулами воды (Головастиков, 1973; Perrault е. а., 1973; Органова и др., 1976, 1981; Расцветаева и др., 1994, 1996, 1997а. б, 1998, 2000; Rastsvetaeva e. a., 1994; Головина и др., 1998; Chukanov e. a., 1999).

Подгруппа вуориярвита до настоящего времени была представлена единственным членом — вуориярвитом-К (K,Na)₂(Nb,Ti)₂[Si₄O₁₂](O,OH)₂ · 4H₂O (Субботин и др., 1998). В настоящей работе охарактеризован новый минерал этой подгруппы — натрий- и титан-доминантный аналог вуориярвита-К, установленный в Хибинском и Ловозерском щелочных массивах на Кольском полуострове. Минерал получил название цепинит-Na в честь Анатолия Ивановича Цепина (р. 1946), специалиста в области рентгеноспектрального анализа, выполнившего первые электронно-зондовые анализы минералов группы лабущовита. Символ-Na в суффиксе-уточнителе указывает на преобладание натрия среди внекаркасных катионов, согласно правилам образования видовых названий в подгруппе вуориярвита. В целом для титан-доминантных членов этой подгруппы предлагается общее корневое название «ценинит».

В Хибинском массиве повый минерал найден в гидротермально переработанном эгирино-полевопнатовом пегматите, залегающем в грубозернистых хибинитах горы Хибинпахкчорр. Выходы пегматитового тела, имеющего мощность от 0.5 до 1.2 м, прослежены с запада на восток на протяжении 8 м. Западная его часть сложена микроклином, арфведсопитом, эгирином, нефелином и энигматитом, содержит редкие обособления лопарита. В средней и восточной частях негматитового тела преимущественно развиты минералы гидротермальной стадии: эгирин в виде шарообразных обособлений, анальцим, натролит, катаплеит, анофилиит, флюорит, сфалерит-клейофан, галенит, эпидидимит и др., характерна вкрапленность битумов. Ценинит-Na и лабунцовит-Mn в тесных страстаниях друг с другом образуют радиально-лучистые агрегаты до 3 мм в диаметре, которые располагаются среди кристаллов анальцима и в секущих полевой шпат анальцимовых прожилках. В пустотках выщелачивания в полевом шпате встречаются как сростки ценинита-Na с лабунцовитом-Mn, так и отдельные кристаллы нового минерала. Ранее этот минерал был описан как «Ti-ненадкевичит» (Органова и др., 1976).

Таблица 1

Простые формы кристаллов цепинита-Na Crystal forms of tsepinite-Na crystals

Форма	φ	ρ	Форма	φ	ρ	
c {001}	90°00′	26°37′	r {012}	0°00′	64°14′	
b {010}	0°00′	90°00′	e {201}	-90°00′	26°36′	
a {100}	90°00′	90°00′	o {241}	-14°01′ ·	64°14′	

Примечание. Двутранные углы: r o25°11', r r53°17', o o57°17'.

Рис. 1. Кристаллы цепинита-Na, г. Хибинпахкчорр, Хибины (a, б).

Fig. 1. Crystals of tsepinite-Na, Khibinpakhkchorr Mt., Khibiny.

В Ловозерском массиве ценинит-Na установлен на северном склоне горы Лепхе-Нельм в пегматитовом теле, залегающем в нозеановых сиенитах. Этот пегматит описан Е. И. Семеновым (1972) под № 45. Новый минерал встречается преимущественно в полостях гидротермально переработанной центральной зоны, где ас-

социирует с микроклином, нефелином, эгирином, магнезиоарфведсонитом, натролитом, эвдиалитом, лампрофиллитом, фторапатитом, пептунитом, лоренценитом, Nbтитанитом, виноградовитом, полилитионитом, тайниолитом, тундритом-(Ce) и псевдоморфозами рансьеита по серандиту. Цепинит-Na дает здесь уплощенно-призматические кристаллы длиной до 1 см. Как правило, они грубообразованные, досковидные, расщепленные, грани покрыты продольной штриховкой. Часто эти кристаллы собраны в сноповидные агрегаты. В основном цепинит-Na здесь приурочен к скоплениям лампрофиллита и эвдиалита или же входит в состав кавернозных псевдоморфоз по лоренцениту вместе с другими поздними Тi-силикатами — виноградовитом и Nb-титанитом.

Голотипным образцом цепинита-Na следует считать кристалл с горы Хибинпахкчорр, на котором проведен весь комплекс исследований, включая определение структуры минерала. Гоннометричсское измерение этого же кристалла было выполнено ранее Т. А. Яковлевской (табл. 1; минерал описывался как «Ті-ненадкевичит», — см. Органова и др., 1976; Костылева-Лабунцова и др., 1978; Минералы, 1982). Кристаллы цепинита-Na из Хибин имеют форму укороченных призм, несколько вытянутых вдоль b и уплощенных вдоль a (рис. 1). Главными габитусными гранями их являются $\{001\}, \{100\}, (\overline{2}01\}$ и $\{010\}$, на головках иногда развиты грани $\{012\}$ и $\{\overline{2}41\}$. Грани пинаконда $\{001\}$ исштрихованы параллельно оси b. Нередко наблюдается эпитаксическое нарастание цепинита на лабунцовит: оси b кристаллов обоих минералов параллельны, и оранжевый длиннопризматический кристалл лабунцовита увенчивается белым короткопризматическим кристаллом цепинита, коптактируя гранью $\{010\}$ с аналогичной его гранью. Кристаллы ловозерского цепинита не удалось изучить гониометрически.

Цепинит-Na прозрачный или полупрозрачный, бесцветный до белого, кристаллы с горы Лепхе-Нельм нередко окрашены в светло-коричневый цвет, блеск стеклянный, черта белая. Минерал очень хрупкий, твердость по Моосу около 5, спайность не наблюдается, излом неровный. Плотность, пзмеренная уравновешиванием зерна в тяжелых жидкостях, 2.74(2), вычисленная плотность 2.72(1) г/см³. Оптика изучалась частично на ориентированных шлифах (Органова н др., 1976). Цепинит-Na оптически двуосный, положительный; для минерала из Хибин $n_p = 1.658(1)$, $n_m = 1.668(1)$, $n_g = 1.770(5)$, $2V_{\text{изм}}$ варьирует от 19 до 31°, $2V_{\text{выч}} = 36(6)°$. Для минерала из Ловозера $n_p = 1.655(2)$, $n_p = 1.661(2)$, $n_g = 1.770(5)$. Минерал характеризуется сильным аномальным погасанием, плеохроизм не наблюдается.

Кристаллическая структура цепинита-Na решена с учетом смешанной заселенности позиций (Расцветаева и др., 2000). R = 0.055. Структурно изученный кристалл цепинита-Na фактически представляет собой сложный полисинтетический двойник по плоскостям (001) и ($\overline{4}01$), что было учтено при расшифровке его структуры. Параметры истинной моноклинной ячейки: a = 14.604(7), b = 14.274(8), c = 7.933(2) Å, $\beta = 117.40(3)^\circ$, V = 1468.2 Å³; пр. гр. *Ст.*. По симметрии, параметрам элементарной ячейки, характеру заполнения внекаркасных позиций, а также по

						· · · · · ·		· · · · · · · ·	
I _{изм}	<i>d</i> _{ИЗМ} , Å	I _{выч}	<i>d</i> _{выч} , Å	hkl	I _{изм}	<i>d</i> _{НЗМ} , Â	I _{выч}	<i>d</i> _{выч} , Å	hkl
10	7.09	47	713	020			6	263	203
10	/.0/	100	7.04	001			10	2.55	441
5	6.48111	66	6.48	200	7	2.54	8	2.53	401
		44	6.48	201			10	2.53	403
6	4.98	62	5.01	021	1	2.372	1	2.40	440
4	4.77	4	4.79	221			1	2.38	350
4	3.93	6	3.95	201	2	2.27	1	2.30	152
		2	3.95	$20\overline{2}$			2	2.25	061
		32	3.25	421	1	2.20	1	2.22	023
9	3.24	23	3.25	400	3	2.15	20	2.16	600
		21	3.24	402				2.16	603
8	3.15	30	3.18	041	1	2.09	2	.2.10	351
		26	3.16	022	6	2.06	4	2.06	441
8	3.11	14	3.12	240			4	2.06	443
		23	3.12	241	5	1.962	4	1.971	062
I	2.98	3	2.99	112			5	1.961	043
3	2.94	7	2.95	402	1	1.905	2	1.902	422
		7	2.95	422			2	1.902	424
6	2.63	5	2.64	242					

Результаты расчета рентгенограммы цепинита-Na X-ray powder pattern of tsepinite-Na

Примечание. Условия съемки: камера РКУ-114.6, Fс-излучение, внутренний эталон — Si. Вычисленные значения интенсивностей получены из структурных данных.

типу микродвойникования цепинит-Na является аналогом вуориярвита-К. В частности, в структуре цепинита-Na присутствуют восемь внекаркасных позиций, содержащих крупные катионы (Na, K, Ba, Sr, Ca, H₃O⁺), однако в шести из этих позиций преобладают вакансии и только две позиции имеют заселенность, близкую к 60 %. Три позиции содержат ионы H₃O⁺; их заселенности равны 0.35, 0.26 и 0.39, координационные числа 8, 11 и 8. Средние расстояния $\langle H_3O \rangle$ — $\langle O \rangle$: 3.12, 3.19 и 2.93 Å, эквивалентные тепловые параметры 7.8, 9.8 и 8.7 Å² соответственно. Концентрирующая Sr позиция находится в месте сълижения (Ti, Nb)O-цепочек и на 78 % вакантна.

Рентгенограмма порошка цепинита-Na приведена в табл. 2. Она позволяет однозначно идентифицировать новый минерал как член группы лабунцовита. Внутри группы цепинит наиболее близок по порошкограмме к вуориярвиту (Субботин и др., 1998) и кузьменкоиту (Чуканов и др., 1999).

Присутствие в минерале ионов H₃O⁺ подтверждается данными ИК-спектроскопии (Расцветаева и др., 2000; см. рис. 2). Волновые числа полос в ИК-спектре цепинита-Na (см⁻¹, подчеркнуты сильные полосы, пл — плечо): 3370, 3250 пл, 2940 пл, 1700 пл, 1630, 1140 пл, <u>1106</u>, <u>933</u>, 754, <u>669</u>, 630 пл, <u>445</u>.

Катионный состав цепинита-Na (табл. 3) изучен методом локального рентгеноспектрального анализа. Содержания многих компонентов подчас сильно варьируют даже в пределах одного образца. Четко выраженной закономерности в пространственном распределении большинства элементов не наблюдается, хотя для хибинских кристаллов имеет место тенденция к обогащению периферических частей титаном и стронцием.

Согласно термогравиметрическим данным (термовесы ATB-15, вакуум, скорость нагрева 20 град/мин, до 1000 °С, навеска 13.05 мг), содержание H_2O в минерале из Хибин составляет 13.18 (15) %. Дегидратация начинается при температуре 210 °С, а максимальная скорость потери массы наблюдается при 380 °С, т. е. удаление H_2O и H_3O происходит одновременно (рис. 3).

Рис. 2. ИК-спектры образцов цепинита-Na с высоким (1) и низким (2) содержанием H₃O (полосы H₃O отмечены звездочкой).

Fig. 2. IR spectra of H₃O-rich (1) and H₃O-poor (2) samples of tsepinite-Na (bands of H₃O are marked with*).

Новый минерал характеризуется хорошей сходимостью оптических параметров, химического состава и плотности: индекс Гладстона—Дейла составляет 0.003.

Расчет эмпирической формулы цепинита представляет определенную сложность по причине одновременного присутствия в минерале трех типов трудноразделимых при анализе водородсодержащих групп: Н₂O, OH- и H₃O+. Рекомендуемая для минералов группы лабунцовита в целом схема расчета формул на Si₁₆O₄₈(O,OH)₈ предполагает достижение баланса зарядов только за счет вариаций О/ОН отношения и не учитывает доли положительного заряда, который несет H₃O*. Рассчитанная таким способом из данных микрозондового анализа и термогравиметрии формула голотипа цепинита-Na (табл. 3, ан. 1) имеет вид (Na_{4,21}K_{0.80}Sr_{0.54}Ba_{0.41}Ca_{0.08}Zn_{0.01})_{56.05}(Ti_{4,22}Nb_{3.71} $Fe_{0.07}^{3+}$)_{8.60}Si₁₆O₄₈[(OH)_{5.27}O_{2.73}]₂₈ · 14.81H₂O (Z = 1). В более общем виде (без разделения водородсодержащих групп) она может быть записана так: H_{34,83}(Na_{4,21}K_{0,80}Sr_{0,54}Ba_{0,41} Са_{0.05}Zn_{0.01})_{26.05}(Ti_{4.22}Nb_{3.71}Fe³⁺_{0.07})_{28.00}Si₁₆O_{70.78}. В зависимости от соотношения содержаний водородсодержащих групп их формульные коэффициенты могут лежать в пределах, определяемых формулой Na_{4.21}K_{0.80}Sr_{0.54}Ba_{0.41}Ca_{0.08}Zn_{0.01})_{26.05}(Ti_{4.22}Nb_{3.71}Fe³⁺_{0.07})_{28.00}[Si₄O₁₂]₄ [(OH)_{5.27-0.00}O_{2.73-8.00}]₂₈(H₃O)_{0.00-5.27} · (14.81-9.54)H₂O. Трехвалентное состояние железу приписано исходя из того, что именно нахождение Fe³⁺ кристаллохимически наиболее вероятно в (Ti,Nb)-октаэдрах.

Согласно данным рентгеноструктурного анализа (Расцветаева и др., 2000), количество групп H_3O на элементарную ячейку составляет менее 4. В соответствии с принятой номенклатурой, в минералах подгруппы вуориярвита видообразующим внекаркасным катионом считается тот, который преобладает над каждым из других. В нашем случае это натрий, и, таким образом, иделизированная формула цепинита-Na имеет вид (Z = 4): (Na,H₃O,K,Sr,Ba)₂(Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3H₂O.

Цепинит-Na может рассматриваться как моноклинный диморф ромбического члена лабунцовитовой группы — коробицынита Na_{3-x}(Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3—4H₂O (Пеков и др., 1999). Однако это справедливо только при достаточно формальном рассмотрении идеализированных формул, с учетом лишь видообразующих катионов: Si, Ti и Na. Реальные составы цепинита-Na и коробицынита сильно различаются, что является ярким прямым следствием структурных различий. Так, в структуре коробицынита (пр. гр. *Pbam*) цепочки (Ti,Nb)O-октаэдров прямые, и все полости (Ti,Nb)SiO-каркаса имеют относительно небольшой объем, что не позволяет наиболее крупным катионам (K, Sr, Ba, H₃O) входить в этот минерал в сколь-либо заметных количествах (Расцветаева и др., 1997б). Цепинит-Na (пр. гр. *Cm*), как и

Химический состав	(мас. %)	цепинита-Na
Chemical composition	(wt %)	of tsepinite-Na

Компо-	Анализ							
нент	1	2	3	4	5	6	7	8
NapO	548(37-68)	6.76	8 4 9	4.61	3 33	672	5 78	3.68
K ₂ O	1.58(0.5-2.4)	1 03	2 2 2 3	0.59	0.22	0.44	0.06	0.89
CaO	0.18(0.0-0.6)	0.53	0.10	0.23	0.60	1.01	0.47	0.53
SrO	232(00-47)	0.62	0.00	4 63	6.26	6.07	6.56	3 73
BaO	2.60(0.3-5.8)	0.35	0.66	5.12	5.34	0.65	4.84	1.29
MnO	0.00	0.00	0.00	0.00	0.23	0.40	0.08	0.00
ZnO	0.04(0.0-0.3)	0.00	0.00	0.00	0.09	0.00	0.00	0.00
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.05
$Fe_2O_3^*$	0.25 (0.0-0.5)	0.10	0.18	0.19	0.19	0.13	0.00	0.22
SiO ₂	40.38 (39.0-41.8)	41.80	41.13	39.54	37.82	42.45	41.53	41.71
TiO ₂	14.17 (11.8-17.4)	17.04	14.98	16.73	18.84	20.97	19.77	18.29
Nb ₂ O ₅	20.69 (15.3-23.0)	17.62	20.82	15.35	10.66	12.84	14.05	16.69
H ₂ O	13.18	H. o.	Н. о.	H. o.	Н. о.	Н. о.	Н. о.	Н. о.
Сумма	100.87	84.82	86.25	85.22	83.58	91.68	93.22	87.08
	Формульные коэ	ффициен	ты, расч	ет на 16	атомов S	i (Z = 1)		
Na	4.21	5.01	6.40	3.62	2.73	4.91	4.32	2.74
К	0.80	0.94	1.10	0.30	0.12	0.21	0.03	0.44
Ca	0.08	0.22	0.04	0.10	0.27	0.41	0.19	0.22
Sr	0.54	0.14	_	1.09	1.54	1.45	1.47	0.83
Ba	0.41	0.05	0.10	0.81	0.89	0.10	0.73	0.19
Mn	—				0.08	0.13	0.03	_
Zn	0.01				0.03	_	- 1	-
Al	-		-	_			0.04	0.02
Fe	0.07	0.03	0.05	0.06	0.06	0.04		0.06
Si	16	16	16	16	16	16	16	16
Ti	4.22	4.91	4.38	5.09	5.99	5.94	5.73	5.28
Nb	3.77	3.05	3.66	2.81	2.03	2.19	2.45	2.89
Ti + Nb + Fe	8.00	7.99	8.09	7.96	8.08	8.17	8.18	8.23
Σвн. к.	6.05	6.36	7.64	5.92	5.66	7.21	6.77	4.42

Примсчание. Анализы выполнены рентгеноспектральным методом: ан. 6 — аналитик Н. Н. Кононкова, остальные — аналитик А. Н. Некрасов; во всех анализах Mg, REE, Zr, Ta < 0.01—0.05 %; содержание воды в ан. 1 определено термогравиметрически: п. о. — содержание воды не определялось. Ан. 1—4 — гора Хибинпахкчорр, Хибинский массив (ан. 1 — среднее по 8 точкам для голотипного образца, в скобках — пределы содержаний); ан. 5—8 — гора Лепхе-Нельм, Ловозерский массив. Σ в н. к. — сумма внекаркасных катионов (Na + K + + Ca + Sr + Ba + Mn + Zn), без учета H3O⁺; * — все железо дано как Fe³⁺.

все другие моноклинные члены группы лабунцовита, характеризуется волнообразно изогнутыми цепочками (Ti,Nb)O-октаэдров, что создает в каркасе полости разного размера, в том числе весьма крупные, благоприятствующие вхождению в минерал значительных количеств примесных катионов с большими радиусами, «запрещенных» для коробицынита. Действительно, все электронно-зондовые анализы цепинита-Na (табл. 3) показывают заметные содержания K, Sr, Ba — порознь или вместе, а результаты рентгеноструктурного и ИК-спектроскопического исследования однозначно свидетельствуют о вхождении в минерал существенных количеств H₃O⁺. Эти данные делают справедливой запись формулы цепинита-Na в части внекаркасных катионов именно (Na,H₃O,K,Sr,Ba)₂..., а не Na₂..., а также позволяют предположить существование в природе минеральных видов серии цепинита с другими преобладающими внекаркасными катионами. Широкие вариации Ti/Nb отношения в цепините-Na говорят в пользу возможности реализации непрерывного изоморфизма между

Рис. 3. Термогравиметрическая кривая цепинита-Na. Fig. 3. Thermogravimetrical curve of tsepinite-Na.

цепинитом и изоструктурным с ним вуориярвитом подобно полной изоморфной серии коробицынит—ненадкевичит (Пеков и др., 1999).

В заключение необходимо отметить, что новый минерал, описанный в настоящей работе, не раз попадал в поле зрения исследователей в период 50-х-70-х гг., но полного его изучения, позволяющего четко говорить об основных характеристиках — химическом составе и структуре, — ранее не проводилось. Основное внимание обращалось на Ti/Nb отношение, промежуточное между лабунцовитом и ненадкевичитом — двумя известными в то время членами группы, и поэтому данный минерал упоминался в литературе под условными названиями «Ті-ненадкевичит» и «Nb-лабунцовит». Впервые он обнаружен на рубеже 40-х—50-х гг. Е. И. Семеновым на горе Лепхе-Нельм (Семенов, 1959), а хибинская находка была сделана (Шлюкова и др., 1965) и охарактеризована позже (Органова и др., 1976; Костылева-Лабунцова и др., 1978). В работах Е. И. Семенова (1959, 1972) и Н. И. Органовой с соавторами (1976) приведены первые химические анализы и рентгеновские данные для «Ті-ненадкевичита» — будущего ценинита-Na. В частности, Е. И. Семенов (1972) отмечал четкие отличия ловозерского минерала по рентгенограммам и параметрам элементарной ячейки как от лабунцовита, так и от непадкевичита. Детальное изучение, проведенное авторами настоящей работы, однозначно показало индивидуальность цепинита-Na и позволило выделить его в качестве самостоятельного минерального вида в группе лабунцовита.

Авторы благодарны О. А. Агеевой за помощь в подготовке статьи.

Эталонный образец цепинита-Na передан в Минералогический музей им. А. Е. Ферсмана РАН в Москве (рег. № 2614/1).

Работа выполнена при поддержке РФФИ (проекты № 99-05-65524 и 99-05-64581).

Список литературы

Головастиков Н. И. Кристалличсская структура шелочного титаносиликата — лабунцовита # Кристаллография. **1973**. Т. 18. № 5. 950—955.

Головина Н. И., Шилов Г. В., Чуканов Н. В., Пеков И. В. Кристаллическая структура высокомарганцевого аналога лабунцовита // Докл. РАН. **1998**. Т. 362. № 3. С. 350—352.

Костылева-Лабунцова Е. Е., Боруцкий Б. Е., Соколова М. Н. и др. Минералогия Хибинского массива. М., 1978. Т. 2. 586 с.

Минералы. Справочник / Под ред. Ф. В. Чухрова. Т. III. Вып. 2. М., 1982. 614 с.

Органова Н. И., Шлюкова З. В., Забавникова Н. И. и др. О кристаллохимии лабунцовита и ненадкевичита // Изв. АН СССР. Сер. геол. 1976. № 2. С. 98—116.

Органова Н. И., Архипенко Д. К., Диков Ю. П. и др. Структурные особенности новой калийсодержащей разновидности лабунцовита и ее место в семействе лабунцовит—неналкевичит // Минер. журн. 1981. Т. З. № 2. С. 49—63.

Пеков И. В., Чуканов Н. В., Хомяков А. П., Расцветаева Р. К., Кучериненко Я. В., Неделько В. В. Коробнцынит Na_{3-x}(Ti,Nb)₂[Si₄O₁₂](OH,O)₂ · 3—4H₂O — новый минерал из Ловозерского массива, Кольский полуостров # ЗВМО. **1999**. № 3. С. 72—79.

Расцветаева Р. К., Тамазян Р. А., Пущаровский Д. Ю. и др. К-ненадкевичит — новый представитель в ряду ненадкевичит — лабунцовит // Кристаллография. 1994. Т. 39. № 6. С. 994—1000.

Расцветаева Р. К., Аракчеева А. В., Хомяков А. П. Кристаллическая структура и микродвойникование нового моноклинного аналога ненадкевичита # Докл. РАН. 1996. Т. 351. № 2. С. 207—211.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. Кристаллическая структура нового минерала — аналога лабунцовита с высокой упорядоченностью калия и бария // Докл. РАН. 1997а. Т. 357. № 1. С. 64—67.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. Кристаллическая структура нового минерала — титанового аналога ромбического ненадкевичита // Докл. РАН. 19976. Т. 357. № 3. С. 364—367.

Расцветаева Р. К., Чуканов Н. В., Пеков И. В. и др. Структуры цвух высококалиевых лабунцовитов в свете кристаллохимии минералов семейства лабунновита—ненадкевичита // Кристаллография. 1998. Т. 43. № 5. С. 874—881.

Расцаетаева Р. К., Органова Н. И., Рождественская И. В. и др. Кристаллическая структура оксонневого минерала группы неналкевичита—лабунновита из Хибинского массива И Докл. РАН. 2000. Т. 371. № 3. С. 336—340.

Субботин В. В., Волошин А. В., Пахамовский Я. А. и др. Вуориярвит (K,Na)₂(Nb,Ti)₂Si₄O₁₂(O,OH)₂ · 4H₂O — новый минерал из карбонатитов массива Вуориярви (Кольский полуостров) // Докл. РАН. **1998**. Т. 358. № 4. С. 517—519.

Хомяков А. П., Нечелюстов Г. Н., Расцветаева Р. К., Дорохова Г. И. Леммлейнит NaK₂(Ti,Nb)₂ Si₄O₁₂ · 2H₂O — новый минерал семейства лабунцовита—неналкевичита // ЗВМО. **1999**. № 5. С. 54—63.

Чуканов Н. В., Пеков И. В., Головина Н. Й., Задов А. Е., Недслько В. В. Кузьменкоит К₂(Mn.Fe)(Ti.Nb)₄ [Si₄O₁₂]₂(OH)₄ · 5H₂O — новый минерал # ЗВМО. **1999**. № 4. С. 42—50.

Шлюкова З. В., Соколова М. Н., Яковлевския Т. А. и др. О лабунновите из Хибинских тундр // ЗВМО. 1965. Вып. 4. С. 430—436.

Chukanov N. V., Pekov I. V., Rastsvetaeva R. K., Nekrasov A. N. Labuntsovite: solid solutions and features of the crystal structure // Canad. Miner. 1999. Vol. 37. N 4. P. 901-910.

Perrault G., Boucher C., Vicat J. e. a. Structure cristalline du Nenadkevichite (Na,K)_{2-x}(Nb,Ti)(O,OH)(Si₂O₆) + 2H₂O # Acta cryst. **1973**. Vol. 29, N 7, P. 1432-1438.

Rastsvetaeva R. K., Tamazyan R. A., Pushcharovsky D. Yu., Nadezhina T. N. Crystal structure and microtwinning of K-rich nenadkevichite // Eur. J. Miner, 1994. Vol. 6. P. 503-509.

> Поступила в редакцию 5февраля 2001 г.

УДК 549.6

3BMO, № 3, 2001 г. Proc. RMS, N 3, 2001

© Почетный член А. П. ХОМЯКОВ, * н. чл. Ю. П. МЕНЬШИКОВ, ** д. чл. Г. Н. НЕЧЕЛЮСТОВ, *** ЖУ ХУЮН****

БУССЕНИТ Na2Ba2Fe²⁺TiSi2O7(CO3)(OH)3F — НОВЫЙ СЛЮДОПОДОБНЫЙ ТИТАНОСИЛИКАТ ИЗ ХИБИНСКОГО ЩЕЛОЧНОГО МАССИВА (КОЛЬСКИЙ ПОЛУОСТРОВ)¹

A. P. KHOMYAKOV, YU. P. MEN'SHIKOV, G. N. NECHELYUSTOV, ZHOU HUYUN. BUSSENITE Na₂Ba₂Fe²⁺TiSi₂O₇(CO₃)(OH)₃F, A NEW MICA-LIKE TITANOSILICATE FROM THE KHIBINY ALKALINE MASSIF (KOLA PENINSULA)

* Институт минералогии, гоохимии и кристаллохимии редких элементов, 121357, Москва, ул. Верссаева, 15

** Геологический институт Кольского научного центра РАН, 184200, Апатиты, ул. Ферсмана, 14 *** Всероссийский институт минерального сырья, 109017, Москва. Старомонетный пер., 29 **** Диагностический центр Китайского университета наук о Земле, 430074, Ухань, КНР

Bussenite, a new mica-like titanosilicate, has been found on Mt. Kukisvumchorr, Khibiny alkaline massif, Kola Peninsula, Russia. It occurs in a sodalite-natrolite-calcite veinlet crosscutting urtite. The mineral consists of an aggregate of curved plates 2—5 cm wide and 0.5 mm thick. Visually and under microscope, it resembles lamprophyllite. Colour yellow-brown, transparent or translucent. Streak white, Lustre vitreous, Cleavage (001) perfect, (110) and (110) medium. Brittle, Fracture step-wise. Mohs' hardness 4. $D_{meas} = 3.63(2)$, $D_{calc} = 3.65$ g/cm³. Optically biaxial, positive: $n_p = 1.671(2)$, $n_m = 1.694(2)$, $n_g = 1.734(3)$, $2V = 71(1)^\circ$. Chemical composition (electron probe; H₂O was determined by the Penfield method, CO₂ by calculation), wt %: Na₂O 8.98, K₂O 0.65, CaO 1.56, SrO 6.78, BaO 28.79, FeO 6.77, MnO 4.68, SiO₂ 18.01, TiO₂ 11.57, Nb₂O₅ 1.04, F 2.79, CO₂ 5.76, H₂O 3.90, $-O = F_2 1.17$. Total 100.11. Empirical formula: (Na_{1.94}K_{6.09})_{52.03}(Ba_{1.25}Sr_{0.44}Ca_{0.19})_{51.88}(FeO_{6.63}Mn_{0.44})_{51.07}(Tio.97Nb_{0.05})_{51.02}Si_{2.00}

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по повым минералам и названиям минералов Всероссийского минералогического общества. Утверждено Комиссией по повым минералам и названиям минералов Международной минералогической ассоциации 2 октября 2000 г. В более ранних публикациях (Ferraris a. o., 1997; Khomyakov, 1995; Zhou Huyun, 1997) буссенит условно обозначался как потенциально повый минерал М74.