НОВЫЕ МИНЕРАЛЫ

УДК 549.6:470.1

© Д. чл. Н. В. ЧУКАНОВ,* д. чл. И. В. ПЕКОВ,** Р. К. РАСЦВЕТАЕВА,*** Г. В. ШИЛОВ,* А. Е. ЗАДОВ ****

КЛИНОБАРИЛИТ ВаВе₂Si₂O₇¹ — НОВЫЙ МИНЕРАЛ ИЗ ХИБИНСКОГО МАССИВА, КОЛЬСКИЙ ПОЛУОСТРОВ

N. V. CHUKANOV, I. V. PEKOV, R. K. RASTSVETAEVA, G. V. CHILOV, A. E. ZADOV. CLINOBARYLITE, BaBe₂Si₂O₇, A NEW MINERAL FROM KHIBINY MASSIF, KOLA PENINSULA

 * Институт проблем химической физики ИПХФ РАН, 142432, Московская обл., г. Черноголовка E-mail: chukanov@icp.ac.ru
 ** Московский университет, 119899, Москва, Воробьевы горы
 *** Институт кристаллографии РАН, 117333, Москва, Ленинский пр., 59
 **** НПО «Регенератор», 127018, Москва, ул. Складочная, 6

Clinobarylite, a dimorph of barylite BaBe₂Si₂O₇, was found in four alkaline pegmatite veins at the Yukspor Mt., in south part of Khibiny massif. The mineral occurs together with natrolite, aegirine, microcline, catapleiite, fluorapatite, titanite, fluorite, galenite, sphalerite, strontianite, annite, astrophyllite, lorenzenite, labuntsovite-Mn, kuzmenkoite-Mn, cerite-(Ce), edingtonite, ilmenite and calcite. The mineral forms split platy to prismatic crystals, up to $20 \times 4 \times 1$ mm in size, and their radiated aggregates. Observed crystal forms: [100], [010], [201], [-201]; less common [610], [101] and [-101]. Clinobarylite is colourless, transparent with strong glassy luster, brittle; Mohs' hardness 6.5, cleavage perfect on [100] and less perfect on [001] and [101]. Clinobarylite is optically biaxial, positive; $\alpha = 1.698$ (3), $\beta = 1.700$ (3), $\gamma = 1.705$ (5) $2V_{meas} = 70$ (10°; $2V_{calc} = 65°$ (Z = b; $X \land a = 6°$, $Y \land c = 5.5°$; $D_{calc} = 4.05$ g/cm³, $D_{meas} = 3.97$ (7) g/cm³ (microvolumetrical method). The crystal structure is studied, R = 0.052. Clinobarylite and barylite have topologically different (Si,Be)-O-frameworks. Clinobarylite is monoclinic, space group Pm, a = 11.618 (3), b = 4.904 (1), c = 4.655 (1) Å, $\beta = 89.94$ (2)°, V = 265.2 (1) Å³; Z = 2. Chemical composition (microprobe; BeO determined by atomic emission spectrometry, mass %): BaO 47.66, SiO₂ 36.38, BeO 14.90; total 98.94. Empirical formula: Ba_{1.03}Be_{1.97}Si_{2.00}O_{7.00}. Strong lines of X-ray powder diffraction pattern, d Å (*I*) (*hkl*) are: 3.389 (84) (011); 3.249 (45) (111, 11–1); 3.043 (40) (310); 2.926 (55) (211, 21–1). 2.458 (100) (020); 2.335 (48) (002). 1 – $K_p/K_c = 0.008$ (for D_{calc}). Structural difference barylite and clinobarylite gives rise in serious differences in their crystal morphology, IR spectra and X-ray powder patterns. Type material is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, (reg. N 2819/1).

Бериллий является редким литофильным элементом, наиболее характерным для кислых и щелочных пород. В Хибинском массиве роль бериллия относительно невелика: его содержание в целом по массиву составляет 5.5 · 10⁻⁴ % (Кухаренко и др., 1984), что близко к кларку — 3.8 · 10⁻⁴ %. Несколько бо́льшим, но также низким содержанием Ве (8.7 · 10⁻⁴ %) характеризуется соседний с Хибинским Ловозерский шелочной массив. Тем не менее благодаря способности бериллия накапливаться в поздних дериватах щелочных пород — пегматитах и гидротермалитах — количество собственных минералов этого элемента в Хибино-Ловозерском комплексе довольно велико. К настоящему времени здесь найдено 16 минералов бериллия: бромеллит, хризоберилл, гадолинит-(Се), бериллит, сферобертрандит, бертрандит («гельбертрандит»), барилит, эпидимит, эвдидимит, лейкофан, чкаловит, тугтупит, гентгельвин, ловдарит, лейфит и мораэсит (Хомяков, 1990; Меньшиков и др., 1999; Пеков, 2001).

¹ Рассмотрено КНМНМ ВМО 3 марта 2002 г. Утверждено КНМНМ ММА 5 июня 2002 г.

Новый силикат бериллия и бария установлен нами в Хибинском массиве. Он является моноклинным полиморфом ромбического барилита BaBe₂Si₂O₇ и получил название клинобарилит.

Барилит распространен в основном в объектах двух генетических типов: скарново-полиметаллических месторождениях, связанных с гранитоидами, и постмагматических образованиях, сопряженных с щелочными массивами, особенно с их экзои эндоконтактовыми зонами. Примерами первых являются скарны Лонгбана (где барилит впервые был описан — см. Blomstrand, 1876; Weibull, 1900; Aminoff, 1923), Якобсберга и Гарстигена (Wilke, 1997), в Швеции, а также Франклина в Нью-Джерси, США (Palache, Bauer, 1930).

Находки барилита в дифференциатах щелочных комплексов весьма многочисленны. Он обнаружен на Урале — в прожилках среди фенитов Вишневых гор (Жабин, Казакова, 1960) и в эгирино-полевошпатовых метасоматитах Сибири (Ефимов и др., 1971); в Канаде — в экзоконтактовых метасоматитах Сил Лейка, Лабрадор (Heinrich, Deane, 1962; Nickel, Charette, 1962), и высокощелочных гидротермалитах Сент-Илера, Квебек (Horvath, Gault, 1990); в Гренландии — в пегматитах Нарсарсука (Petersen, Johnsen, 1980), пегматитах и фенитах Илимаусака (Petersen e. a., 1991); в Норвегии — в пегматитах Логена (Saebo, 1966), Тведалена и Бьоркедалена (Neumann, 1985) и др. В пределах Карело-Кольской щелочной провинции барилит известен в Хибинах (Меньшиков и др., 1999) и Вуориярви (персональное сообщение А. В. Волошина); нами он недавно обнаружен и в Ловозерском массиве — эта находка кратко охарактеризована ниже.

Клинобарилит найден в четырех пегматитовых жилах на горе Юкспор. Эти жилы входят в состав единого пегматитового поля, локализованного среди гнейсовидных нефелиновых сиенитов в периферической зоне фойяитового ядра Хибинского массива. Все четыре пегматита имеют сходное строение и отличаются друг от друга лишь некоторыми минералогическими особенностями. Протяженность жил достигает 10 м, мощность составляет 5—20 см, в раздувах — до 50—60 см. Краевые части жил сложены агрегатами темно-зеленого до черного игольчатого эгирина и микроклина, содержат множество мелких полостей. Центральная зона состоит из белого, желтоватого или сероватого крупноблокового микролина, в интерстициях между индивидами которого находятся гнезда белого шестоватого натролита. В раздувах жил наблюдаются линзовидные натролитовые ядра мощностью до 20 см, массивные или же кавернозные. В этих пегматитах зафиксировано более 25 второстепенных минералов, которые в основном находятся среди натролита или нарастают на стенки полостей. В натролитовую стадию или чуть раньше натролита кристаллизуются катаплеит, фторапатит, титанит, клинобарилит, флюорит, галенит, сфалерит и стронцианит; в отдельных жилах встречаются аннит, астрофиллит, лоренценит, лабунцовит-Мп, кузьменкоит-Мп, церит-(Се), ильменит, эдингтонит, кальцит и др. В полостях развит комплекс наиболее поздних бесщелочных минералов: анатаз (он также замещает титанит), шамозит, анкилит-(Се), анкилит-(La) и шабазит-Sr.

Клинобарилит образует вросшие в натролит или наросшие на стенки полостей уплощенно-призматические дисковидные кристаллы размерами до $20 \times 4 \times 1$ мм. Они вытянуты по (001) и обычно уплощены по (100); реже встречаются индивиды, уплощенные по (010). В большинстве своем кристаллы клинобарилита расщеплены по (100) и образуют «китайские веера», а иногда и дискосферолиты с осью [010]. Встречаются также пучки незакономерно сросшихся кристаллов и врастающие в натролит полнообъемные сферолиты диаметром до 3 см (а чаще — полусферолиты: их рост всегда начинается на поверхности микроклина или эгирина).

Нередко кристаллы клинобарилита хорошо образованы. В большинстве случаев главной габитусной формой кристаллов клинобарилита является пинакоид $\{100\}$, а их боковые грани, представлены пинакоидом $\{010\}$. Головки образованы гранями пинакоидов $\{201\}$ и $\{-201\}$, нередко развитыми в разной степени (рис. 1, *a*). На головках некоторых кристаллов присутствует только грань $\{201\}$ (рис. 1, *b*), что

Fig. 1. Crystals of clinobarylite from Khibiny (a-r) and barylife from Lovozero (∂) .

ярко иллюстрирует моноклинную симметрию минерала. В полостях изредка встречаются мелкие кристаллы, на которых выражены грани ромбической призмы {610} (рис. 1, e). В одном из пегматитов обнаружены кристаллы, уплощенные по (010): их главные габитусные формы — {010} и {100}, а головки образованы гранями пина-коидов {101} и {-101} (рис. 1, e). Сферические координаты граней, полученные по данным измерений на двукружном гониометре ГД-1, составляют (в скобках даны

Fig. 2. Crystal structures of clinobarylite (1) and barylite (2).

Результаты расчета порошковых рентгенограмм клинобарилита с горы Юкспор (Хибины) и барилита из Лонгбана (Швеция)

Клинобарилит			Барилит				
	duam, Å	d _{Bbl} y, E	hkl	/ _{ИЗМ}	• <i>d_{изм}, Å</i>	<i>d</i> _{выч} , Å	hkl
-H3M	13.8						
13	5.83	5.819	200		4.00	1 200	020
5	4.914	4.918	010	60	4.88	4.099	020
3*	4.671*	4.668*	001*	20	1.50	4 515	120
24	4.529	4.530	110	30	4.50	4.515	120
19	4.332	4.338	101	1	}		
		4.327	101	10	2.74	3 746	220
3	3.746	3.756	210	10**	2.74	3 400**	211**
			011	10	2 27	3 368	021
84	3.389	3.386	011	100	3.37	3 235	121
45	3.249	3.253		50	5.24	5.255	121
		3.249		80	3.04	3.040	320
40	3.043	3.046	310	80	3.04	5.040	520
36	2.983	2.989	301		ļ	2 974	301
		2.978	301	40	2.04	2.974	221
55	2.926	2.930	211	40	2.74	2.911	
	1	2.923		20**	2 68**	2 670**	031**
	1		}	25**	2.00	2 603**	131**
_		2.504	410	10	2.51	2.005	420
5	2.501	2.504	410	10	2.51	2 450	040
100	2.458	2.459	120	10	2.72	2.150	
14	2.404	2.406	120	50	2 33	2 319	002
48	2.335	2.334	220	40	2.55	2.258	240
15	2.265	2.203	411	40	2.23		
21	2.206	2.209	411				
20	2169	2.204	202		}		
20	2.108	2.109	$202 \\ 20\overline{2}$		}		1
	2.127	2.104	121	1	1		1
11	2.137	2.139	121			1	1
4	2.106	2.138	510	Į.			
4	2.100	2.104	501	40	2.09	2.079	501
38	2.070	2.000	501				
o	2.036	2.030	112	25	2.00	2.030	241
0	2.050	2.037	112		i i	1.972	222
		2.007		30	1.91	1.914	521
24	1 897	1 899	321	20	1.88	1.891	341
24	1.097	1.896	321		l		
34	1 854	1.855	312	15	1.85	1.843	322
54	1.05 /	1.850	312]			
4	1.822	1.824	402				
•	1	1.817	402]		1	1
12	1.745	1.741	421	70	1.74	1.737	441
18	1.694	1.693	022	60	1.69	1.700	422
17	1.675	1.676	611	5	1.66	1.667	142
		1.675	611				
14	1.625	1.627	222	10	1.62	1.619	512
		1.624	222				

X-ray powder data for clinobarylite from Yukspor Mt., Khibiny, and barylite from Långban, Sweden

Та	бл	ица	a 1 (продолжение)

Клинобарилит				Барилит			
Іизм	<i>d_{изм}, Å</i>	<i>d</i> _{выч} , Е	hkl	I _{ИЗМ}	<i>d_{изм}, Å</i>	<i>d</i> _{выч} , Å	hki
6	1.590	1.591	521 521	20	1.590	1.585	541
7	1 578	1.508	710			1	
4	1.548	1.547	031	15	1 555	1 557	522
35	1.533	1.534	131	10	1.530	1.527	161
5	1.523	1.523	620				
4	1.509	1.510	330	40	1.503	1.505	360
26	1.495	1.495	231	5	1.483	1.484	152
	1	1.494	231				
6	1.446	1.446	303	10	1.451	1.453	800
		1.442	303				
5	1.439	1.439	213				
		1.436	213			*	
27	1.428	1.430	612	40	1.424	1.424	460
		1.428	430				
		1.425	612				
4	1.366	1.366	431	40	1.375	1.378	323
		1.365	431			1.375	740
1.5	1.007	1				1.373	811
15	1.337	1.338	811	30	1.342	1.340	071
-	1.200	1.335	811				
3	1.322	1.323	413				
		1.322	721				
14	1 200	1.320	721, 413	50	1 200	1.007	502
14	1.508	1.308	122	50	1.289	1.287	503
		1.307	123				
		1.300	712				
10	1 248	1.304	001	50	1 245	1 245	523
10	1.240	1.247	323	50	1.245	1.245	901
	ļ	1.240	901]		1.277	
		1 244	323				
30	1.216	1.219	432	30	1.215	1.213	462
20		1.217	432	20	1.210	1.210	102
	1	1.216	603				
		1.212	603				
30	1.216	1.244 1.219 1.217 1.216 1.212	$ \begin{array}{r} 32\overline{3} \\ 432 \\ 43\overline{2} \\ 603 \\ 60\overline{3} \end{array} $	30	1.215	1.213	462

Примечание. Условия съемки: клинобарилит – дифрактометр ДРОН УМ-1, Со-излучение, Fe-фильтр; барилит – камера РКД 57.3; * рефлекс, запрещенный для барилита, имеющего симметрию *P2₁na* или *Pmna*, ** рефлексы, невозможные для клинобарилита, обладающего вдвое меньшим параметром *b*, чем барилит; при выборе индексов *hkl* учтены теоретические интенсивности рефлексов, рассчитанные из структурных данных.

вычисленные значения): {201}: $\varphi = 90^{\circ}$, $\rho = 39 \pm 0.5^{\circ}$ (38.62°); {-201}: $\varphi = 90^{\circ}$, $\rho = -39 \pm 0.5^{\circ}$ (-38.86°); {101}: $\varphi = 90^{\circ}$, $\rho = 22 \pm 0.5^{\circ}$ (21.69°); {-101}: $\varphi = 90^{\circ}$, $\rho = -22 \pm 0.5^{\circ}$ (-22.03°); {610}: $\varphi = 68 \pm 0.5^{\circ}$ (68.48°), $\rho = 90^{\circ}$.

Новый минерал бесцветный, прозрачный, с сильным стеклянным блеском. Хрупкий, имеет три направления спайности — совершенной по (100) и менее совершенной по (001) и (101); твердость по Моосу 6.5. Плотность, измеренная пикнометрическим методом, составляет 3.97 (7), вычисленная плотность — 4.05 г/см³. Минерал оптически двуосный, положительный; $N_p = 1.698$, $N_m = 1.700$, $N_g = 1.705$; $2V_{\text{изм}} =$ $= 70(10)^\circ$; $2V_{\text{выч}} = 65^\circ$. Оптическая ориентировка: Z = b, $X \land a = 6^\circ$, $Y \land c = 5.5^\circ$.

2 Записки ВМО, Nº 1, 2003 г.

Fig. 3. Fragments of X-ray powder diffraction patterns of clinobarylite (upper pattern) and barylite (lower one).

По данным локального рентгеноспектрального анализа, клинобарилит содержит (среднее из четырех измерений, мас.%): 47.66% ВаО и 36.38% SiO₂; Na, Mg, Mn, Fe, Zn, K, Ca, Sr, REE, Al, Zr, Ti, Nb, Ta и F не обнаружены. Полосы групп OH⁻, H₂O, CO₃²⁻ в ИК-спектре отсутствуют. Содержание BeO, определенное методом атомно-эмиссионного анализа, составляет 14.90 мас.% (аналитик В. А. Гостева, ВИМС). Сумма анализа 98.94 мас.%. Эмпирическая формула минерала (в расчете на 7 атомов O): Ba_{1.03}Be_{1.97}Si_{2.00}O_{7.00}.

Сходимость состава и физических свойств по Гладстону—Дейлу хорошая: $1 - (K_p/K_c) = -0.024$ для измерений плотности, для рентгеновской плотности, вычисленной из эмпирической формулы: $1 - (K_p/K_c) = 0.008.$

Кристаллическая структура клинобарилита решена на микросдвойникованном (по оси b) монокристалле с использованием 1083 независимых отражений; R = 5.2 %.

Параметры элементарной ячейки: a = 11.618(3), b = 4.904(1), c = = 4.655(1) Å, $\beta = 89.94(2)^\circ, V =$ = 265.2(1) Å³, Z = 2. Основу структуры клинобарилита, как и барилита, формирует смешанный каркас, образованный вытянутыми вдоль направления c цепочками тетраэдров BeO₄, соединенных диортогруппами Si₂O₇. Ионы бария располагаются в крупных полостях каркаса.

Рис. 4. ИК-спектры клинобарилита (1) и барилита (2). Fig. 4. IR spectra of clinobarylite (1) and barylite (2).

Таблица 2

Волновые числа $(см^{-1})$ полос в ИК-спектрах клинобарилита и барилита и их отнесение Wavenumbers (cm^{-1}) of the IR spectral bands of clinobarylite and barylite and their assignment

(Ве,О)-тетраэдров имеют полярное строение. Это выражается в том. что в каждом тетраэдре ВеО₄ одна из четырех связей Ве-О направлена вдоль оси цепи, причем соответствующие вектора $Be \rightarrow O$ в соседних тетраэдрах почти коллинеарны. Однако принципы построения Si, Ве-каркаса у этих минералов разные (рис. 2): в структуре барилита чередуются два типа цепочек, в которых вектора $Be \rightarrow O$ ориентированы противоположно, тогда как в структуре клинобарилита ориентация цепочек одинаковая. То же относится и к ориентации групп Si₂O₇, которая одинакова для всех диортогрупп в клинобарилите и различна в барилите. В результате структура клинобарилита в отличие от центросимметричной структуры барилита имеет ярко выраженный полярный характер. Низкая симметрия клинобарилита проявляется и в том, что, несмотря на малый размер элементарной ячейки (параметр b в два раза меньше, чем для барилита), он характеризуется вдвое большим числом независимых катионных позиций (табл. 3).

В обеих структурах цепочки

Клино- барилит	Барилит	Отнесение
1150sh 1035 s 998 s 959 s 935 sh	1010 1035 s 977 s 948 s	Si-O-валентные колебания
915 s 790 w <u>762</u> s 709 s 620 s	914 s 810 w 751 s 703 s 672 s 633 s 620 sh	Ве-О-валентные колебания
549 517 495 466 s 436 s	551 524 w 509 485 461 427 s 415	Деформационные колебания

Примечание. s — сильная полоса, w — слабая полоса, sh — плечо; подчеркнуты волновые числа диагностических полос.

Важно подчеркнуть, что в пер-

вую очередь разные топологические законы построения каркаса (а не незначительное отклонение угла β от 90°) лежат в основе структурных различий между барилитом и клинобарилитом. Иначе говоря, структура клинобарилита не может быть выведена из структуры барилита путем плавного (без разрыва химических связей) преобразования.

Клинобарилит существенно отличается от барилита рентгенограммой порошка (табл. 1, рис. 3), что является следствием описанных выше структурных различий между этими минералами. Специально для выявления диагностических признаков, позволяющих надежно различать барилит и клинобарилит, нами в одинаковых условиях были сняты порошкограммы обоих минералов. В качестве эталонного использован барилит из Лонгбана, резко отличающийся от хибинского клинобарилита также и по ИК-спектру. Наиболее ярким диагностическим признаком барилита являются две сильные линии в области 2.7—2.6 Å, невозможные для клинобарилита, обладающего вдвое меньшим параметром ячейки b. В рентгенограмме клинобарилита присутствует слабый рефлекс 001 (d = 4.67 Å), запрещенный правилами погасания для пространственных групп $P2_1na$ и *Pmna*, в рамках которых описывается структура барилита (Абрашев и др., 1964; Robinson, Fang, 1977).

Клинобарилит обладает совершенно индивидуальным ИК-спектром, хорошо воспроизводящимся и резко отличающимся от спектра барилита (табл. 2, рис. 4) и всех других бериллиевых силикатов. Именно необычность ИК-спектра побудила нас провести углубленное исследование этого минерала, в результате оказавшегося новым. ИКС является надежным и экспрессным методом безошибочной диагностики клинобарилита.

	Клинобарилит	Барилит		
Характеристика	BaBe ₂ Si ₂ O ₇	BaBe ₂ Si ₂ O ₇		
Симметрия Пространственная группа	Моноклинная Рт	Ромбическая Р21па или Ртпа		
Число независимых позиций в структуре				
Si	2	1		
Be	2	1		
Ba	2	1		
Параметры элементарной ячейки				
<i>a</i> , Å	11.618	11.65		
<i>b</i> , Å	4.904	9.79-9.83		
<i>c</i> , Å	4.655	4.63-4.67		
β, град	89.94	90		
<i>V</i> , Å ³	265.2	528—535		
Ζ	2	4		
Диагностические рефлексы порошкограммы, d, Å (hkl)	4.67 (001)	3.42 (211) 2.68 (031) 2.61 (131)		
<i>D</i> _{ИЗМ} , г/см ³	3.97	4.02-4.07		
Оптические свойства				
N_p	1.698	1.690-1.695		
N_m	1.700	1.696-1.700		
N_g	1.705	1.695—1.708		
Оптический знак	(+)	(+), (-)		
2 <i>V</i> , град	70	+8176		
Ориентировка	$Z = b, X \wedge a = 6^{\circ}, Y \wedge c = 5.5^{\circ}$	Z=b, X=a, Y=c		
Погасание	Косое: угол погасания ~6° относительно удлинения кристалла	Прямое		
Источники	Настоящая работа	(Aminoff e. a., 1923; Palache, Bauer, 1930; Жабин, Казакова, 1960; Абрашев и др., 1964; Robinson, Fang, 1977; Petersen e. a., 1991)		

Сравнительная характеристика клинобарилита и барилита Comparative data for clinobarylite and barylite

П р и м є ч а
н и е. Для барилита принята установка ромбической ячейки, аналогичная клинобарилиту:
 a > b > c.

Сравнительная характеристика клинобарилита и барилита дана в табл. 3. Не исключено, что часть описанных ранее находок барилита, особенно из щелочных комплексов, может относиться к клинобарилиту: далеко не во всех публикациях приведены характеристики, по которым можно уверенно диагностировать минерал.

Достоверный ромбический барилит обнаружен нами в натролитовом ядре небольшого пегматитового тела на горе Куамдеспахк в восточной части Ловозерского массива. По набору минералов этот пегматит несколько необычен для Ловозера, но имеет сходные черты с пегматитами горы Юкспор в Хибинах, где найден клинобарилит. С ловозерским барилитом ассоциируют также микроклин, эгирин, титанит, катаплеит, флогопит, фторапатит, торит, церит-(Се), анкилит-(Се) и кентбрусит. Барилит находится в мелких полостях в виде хорошо ограненных бесцветных полупрозрачных таблитчатых кристаллов размерами до $2 \times 2 \times 0.5$ мм, которые образованы гранями пинакоидов {100} (главная габитусная форма) и {010} и ромбической призмы {101} (индексы граней даны в установке, приведенной в табл. 3), рис. 1, *д*. По ИК-спектру и порошкограмме барилит из Ловозера идентичен эталонному лонгбанскому минералу. Таким образом, в дифференциатах высокощелочных пород достоверно установлены обе модификации BaBe₂Si₂O₇.

Эталонный образец клинобарилита передан в Минералогический музей им. А. Е. Ферсмана РАН в Москве, рег. № 2819/1.

Работа выполнена при поддержке РФФИ, проект № 01-05-64739 и грант Ведущей научной школы № 00-15-96633.

Список литературы

Абрашев К. К., Илюхин В. В., Белов Н. В. Кристаллическая структура барилита BaBe₂Si₂O₇ // Кристаллография. **1964.** Т. 9. № 6. С. 816—827.

Ефимов А. Ф., Еськова Е. М., Лоскутова Л. И., Шумкова Н. Г. О новой находке барилита в СССР // Новые данные о минералах СССР. 1971. Вып. 20. С. 198—201.

Жабин А. Г., Казакова М. Е. Барилит (BaBe₂Si₂O₇) из Вишневых гор — первая находка в СССР // Докл. АН СССР. **1960.** Т. 134. № 2. С. 419—421.

Кухаренко А. А., Ильинский Г. А. Уточненные данные о кларках Хибинского щелочного массива // ЗВМО. 1984. № 4. С. 393—397.

Меньшиков Ю. П., Пахомовский Я. А., Яковенчук В. Н. Бериллиевая минерализация в жильных образованиях Хибинского массива # ЗВМО. 1999. № 1. С. 3—4.

Пеков И. В. Ловозерский щелочной массив. История исследования, пегматиты, минералы. М.: Земля, 2001. 432 с.

Хомяков А. П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.

Aminoff G. Om en association med barylit och gedyfan vid Långban // Geologiska Föreningens i Stockholm Förhandlingar. 1923. Vol. 45. P. 124–143.

Blomstrand C. W. Bidrag till kännedomen af Långbansgrufvans mineralier. Barylith, ett nytt mineral från Långban // Geologiska Föreningens i Stockholm Förhandlingar. 1876. Vol. 3. P. 123-133.

Heinrich E. W., Deane R. W. An occurrence of barylite near Seal Lake, Labrador // Amer. Miner. 1962. Vol. 47. P. 758-763.

Horvath L., Gault R. A. The Mineralogy of Mont Saint-Hilaire, Quebec // Miner. Record. 1990. Vol. 21. N 4. P. 284-359.

Neumann H. Norges Mineraler // Norges Geol. Unders. Skrifter. 1985. Vol. 68. 278 p.

Nickel E. H., Charette D. J. Additional data on barylite from Seal Lake, Labrador // Amer. Miner. 1962. Vol. 47. P. 764-768.

Palache Ch., Bauer L. H. On the occurrence of beryllium in the zinc deposits of Franklin, New Jersey # Amer. Miner. 1930. Vol. 15. P. 30–33.

Petersen O. V., Johnsen O. First occurrence of the rare mineral barylite in Greenland // Tschermaks Miner. Petr. Mitt. **1980.** Vol. 27. P. 35—39.

Petersen O. V., Randlov J., Leonardsen E. S., Ronsbo J. G. Barylite from the Ilimaussaq alkaline complex and associated fenites, South Greenland // N. Jb. Mineral. MH. **1991**, H. 5. S. 212-216.

Robinson P. D., Fang J. H. Barylite BaBe₂Si₂O₇: its space group and crystal structure # Amer. Miner. 1977. Vol. 62. P. 167–169.

Saebo P. C. The first occurrence of the mineral barylite, BaBe₂Si₂O₇, in Norway. Contributions to the mineralogy of Norway. N 36 // Norsk Geologisk Tidsskrift. **1966.** Vol. 46. P. 335-348.

Weibull M. Om barylit och cordierit // Geologiska Föreningens i Stockholm Förhandlingar. 1900. Vol. 22. P. 33-42.

Wilke H. J. Die Mineralien und Fundstellen von Schwedem. München: Christian Weise Verlag, 1997. 200 S.

Поступила в редакцию 3 сентября 2002 г.