© А. А. АГАХАНОВ, * Л. А. ПАУТОВ, * Е. В. СОКОЛОВА, ** Ф. ХАВТОРН, ** В. Ю. КАРПЕНКО *

МОСКВИНИТ-(Y), Na₂K(Y,REE)[Si₆O₁₅] — НОВЫЙ МИНЕРАЛ¹

A. A. AGAKHANOV, L. A. PAUTOV, E. V. SOKOLOVA, F. C. HAWTHORNE, V. Y. KARPENKO. MOSKVINITE-(Y), Na₂K(Y,REE)[Si₆O₁₅], A NEW MINERAL

* Минералогический музей имени А. Е. Ферсмана РАН, 117071, Москва, Ленинский пр., 18/2
** Departmen of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2

Moskvinite-(Y) is a newly discovered mineral from the Darai-Pioz glacial moraine, the Alaisky mountain ridge, Tadjikistan. It forms isometric grains (up to 2 mm in size) within the coarse-grained reedmergnerite pegmatite. Associated minerals: shibkovite, nordite-(Ce), leucophanite, microcline, hyalotekite, telyushenkoite, kentbrooksite, polylithionite, albite. The mineral is transparent, colourless. Cleavage absent; brittle, with uneven fracture. Mohs' hardness 5, microhardness VHN = 523 kgs/mm². Optically negative, biaxial, $\alpha = 1.555(2)$, $\beta = 1.558(2)$, $\gamma =$ = 1.556(2); $2V_{meas} = -64(2)^{\circ}$, $2V_{calc} = -63.8^{\circ}$, r > v. The measured density 2.91(1) g/cm³, calculated — 2.92 g/cm³. Orthorhombic, space group *Ibmm*, unit-cell parameters (Å): a = 10.623(2); b = 14.970(2); c = 8.552(2), V == 1338.3 Å³, Z = 4. The strongest powder-diffraction lines [(d in Å, (*III*₀)(*hkI*)]; 5.32(35)(200); 4.98(100)(121); 3.45(50)(310); 3.26(85)(141); 3.05(75)(240); 2.753(42)(103); 2.490(45)(251). The structure was solved by direct methods and refined to R = 1.7 % on the base of 936 observed [$F_0 > 4\sigma(F_0)$] unique reflections. In the crystal structure of moskvinite Si tetrahedra form a double three-member ring (Si₆O₁₅)⁶⁻. (Y,REE) and Na form octahedra sharing common edges within (010) sheets, two of them per the b cell parameter. Moskvinite-(Y) cam garded as an ordered derivative of synthetic Na₃Y[Si₆O₁₅] compound, taking into account the next substitution scheme: $3Na^{+} + 1.0Y \rightarrow$ $2Na^{+}K^{+} + 0.77Y^{*} + 0.23REE³⁺. Microprobe analysis yield (wt %): SiO₂ 60.34, Na₂O 10.66, K₂O 7.50, Y₂O₃ 14.63,$ Nd₂O₃ 0.29, Sm₂O₃ 0.54, Gd₂O₃ 1.13, Tb₂O₃ 0.43, Dy₂O₃ 2.76, Ho₂O₃ 0.66, Er₂O₃ 1.17, total 100.11. Empiricalformula: Na_{2.06}K_{0.95}(Y_{0.77}Dy_{0.09}Gd_{0.04}Er_{0.04}Ho_{0.02}Sm_{0.02}Nd_{0.01}Tb_{0.01}1.00Si₀I₅, on the base of 6 Si. IR spectrum:413, 486, 504, 563, 629, 682, 765, 817, 937, 976, 1015, 1041, 1055, 1070, 1109 cm⁻¹. The mine

Москвинит-(Y) — новый представитель натрий-калий-иттровых природных силикатов с формулой Na₂K(Y,REE)[Si₆O₁₅] [ромбической сингонии, пр. группа: *lbmm, a* = 10.623(2), *b* = 14.970(2); *c* = 8.552(2) Å. *Z* = 4] найден в ридмерджнеритовом пегматите в ассоциации с микроклином, эгирином, пектолитом, гиалотекитом, телюшенкоитом, кентбрукситом, полилитионитом, шибковитом, нордитом-(Ce), лейкофаном, альбитом и др. на морене ледника Дараи-Пиёз (Таджикистан). Минерал назван москвинитом-(Y) [moskvinite-(Y)] в честь Александра Всниаминовича Москвина (1897—1974), известного геолога, участника Памиро-Таджикской экспедиции, автора многочисленных работ по геологии Средней Азии, в том числе составившего литологическую карту Каратегина и первым выделившего щелочной массив Дараи-Пиёз.

Место находки и ассоциация. Москвинит-(Y) встречен в глыбе субщелочного пегматита на морене ледника Дараи-Пиёз (Гармский район, Таджикистан). Ледник расположен в верховьях одноименной реки и прорезает верхний Дараи-Пиёзский щелочной массив, широко известный своей уникальной минерализацией. Центральная часть массива сложена щелочными породами алайского комплекса, а внешняя — субщелочными гранитами второй фазы туркестанского комплекса. Геологии и минералогии массива посвящено множество публикаций (Дусматов, 1968, 1971; Belakovskiy, 1991, и др.). Одной из ярких достопримечательностей минералогии массива является широкое распространение в нем кольцевых силикатов, в особенности со сдвоенными кремнекислородными кольцами. Представителями силикатов со сдвоенными шестерными кремнекислородными кольцами являются открытые на массиве согдианит (Дусматов и др., 1968), дусматовит (Паутов и др., 1996), дарапиозит (Семенов и др., 1975), шибковит (Паутов и др., 1998), березанскит (Паутов, Ага-

УДК 549

¹ Рассмотрено КНМНМ ВМО 19 мая 2002 г. Утверждено КНМНМ ММА 2 июля 2002 г.

Рис. 1. Срастание москвинита-(Y) (Mos) с ридмерджнеритом (Reed), телюшенкоитом (Tel) и иттровым силикатом (Y-sil).

Изображение в режиме контраста по среднему атомному номеру (СОМРО) и рентгеновском характеристическом излучении указанных элементов.

Fig. 1. Intergrowth of moskvinite-(Y) (Mos) with reedmergnerite (Reed), telyushenkoite (Tel) and an yttrium silicate (Y-sil).

ханов, 1997) и недавно найденный сугилит (Паутов и др., 2000), известный и в других месторождениях мира. Из минералов со сдвоенными четверными кремнекислородными кольцами на Дараи-Пиёзе относительно распространен открытый на массиве туркестанит (Паутов и др., 1997). С открытием москвинита-(Y) этот список пополнился первым представителем природных силикатов со сдвоенными трехчленными кремнекислородными кольцами.

Пегматит, в котором обнаружен москвинит-(Y), представляет собой лейкократовую гигантозернистую породу, в которой ридмерджнерит составляет не менее 80 % по объему. Ридмерджнерит представлен крупными полупрозрачными зернами насыщенного оранжевого цвета. На светлом фоне породы резко выделяются крупные, но редкие монокристальные зерна высокомарганцевого пектолита и немногочисленные зерна насыщенного фиолетового цвета свинецсодержащего эвдиалита. В подчиненном количестве в породе присутствуют микроклин, полилитионит, эгирин, альбит, телюшенкоит, кентбруксит, шибковит, нордит-(Се), лейкофан, гиалотекит, кальцит и кварц. Москвинит-(Y) обнаружен в виде одиночных изометричных зерен (рис. 1) размером до 2 мм в поперечнике среди ридмерджнерита, шибковита, телюшенкоита и недоизученного иттрового силиката.

Физические свойства. Москвинит-(Y) — бесцветный минерал. Из-за трещиноватости он кажется белым. Минерал прозрачный с сильным стеклянным блеском. В коротковолновом ультрафиолетовом свете люминесцирует ярким фиолетовым цветом, в длинноволновом — фиолетовым цветом, но более слабо. Твердость по шкале Мооса –5. Твердость микровдавливания 523 кгс/мм² (среднее значение по 20 измерениям при разбросе единичных замеров от 473 до 599 кгс/мм²). Микротвердость измерена на приборе ПМТ-3 при нагрузке 50 г, градуированном по NaCl. Ми-

Рис. 2. ИК-спектр москвинита-(Y). Аналитик Н. В. Чуканов. Fig. 2. IR spectrum of moskvinite-(Y). Analyst N. V. Chukanov.

Таблица 1

Анализ Компонент Среднее 1 2 3 6 4 5 SiO₂ 60.19 60.23 60.58 61.03 59.76 60.25 60.34 Na₂O 10.47 10.53 10.86 10.81 10.61 10.71 10.66 K₂O 7.38 7.53 7.54 7.53 7.43 7.59 7.50 Y_2O_3 14.21 14.99 14.50 14.57 14.87 14.67 14.63 Nd_2O_3 0.47 0.30 0.29 0.16 0.25 0.27 0.29 Sm₂O₃ 0.73 0.53 0.65 0.33 0.51 0.48 0.54 0.73 Gd₂O₃ 1.35 1.19 1.15 1.07 1.31 1.13 Tb₂O₃ 0.51 0.39 0.43 0.41 0.40 0.46 0.43 Dy₂O₃ 2.89 2.69 2.70 2.52 2.88 2.89 2.76 0.74 0.68 0.30 0.74 Ho₂O₃ 0.74 0.77 0.66 Er₂O₃ 1.07 1.40 1.11 0.95 1.27 1.25 1.17 100.01 100.52 100.07 99.76 99.82 100.62 100.11 Сумма

Химический состав москвинита-(Y) (мас.%) Chemical composition of moskvinite-(Y) (wt %)

Примечание. Аналитики Л. А. Паутови А. А. Агаханов.

Таблица 2

Результаты расчета рентгенограммы москвинита-(Y) X-ray powder diffraction pattern of moskvinite-(Y)

I	d _{изм}	d _{выч}	hkl	Ι	d _{изм}	d _{выч}	hkl
	0.60	0.((2)	110	45	2 400	2.405	251
4	8.68	8.003	110	45	2.490	2.495	251
6	7.49	7.485	020			2.495	060
3	6.66	6.662	101			2.488	242
35	5.32	5.312	200	8	2.396	2.393	332
100	4.98	4.976	121	16	2.246	2.244	233
10	4.52	4.517	130	6	2.139	2.138	004
15	4.34	4.332	220	10	2.103	2.104	510
7	4.28	4.276	002	3	2.063	2.062	501
12	3.83	3.835	112	6	1.999	1.997	262
6	3.74	3.743	040	8	1.985	1.984	204
50	3.45	3.447	310			1.984	361
10	3.34	3.347	231			1.984	521
		3.331	202	4	1.935	1.935	451
85	3.26	3.263	141			1.933	134
12	3.11	3.105	132			1.933	442
75	3.05	3.059	240	5	1.889	1.888	512
	İ	3.043	222	3	1.857	1.857	044
4	2.88	2.888	330	4	1.819	1.818	460
		2.882	150			1.817	314
42	2.753	1.754	103	6	1.804	1.806	541
8	2.658	1.656	400				1

Примечание. Дифрактометр ДРОН-2, Fe-анод, графитовый монохроматор, скорость счетчика 1 град/мин, внутренний стандарт — кварц. Аналитик А. А. Агаханов.

18

Рис. 3. Фрагменты кристаллической структуры москвинита-(Y): сдвоенное кольцо [Si₆O₁₅]⁶⁻ (a); два октаэдрических слоя, соединенные группами [Si₆O₁₅]: вид вдоль [100] (б) и вдоль [010] (в). Si тетраэдры темно-серые, Na октаэдры светло-серые, (Y, REE) октаэдры серые.

Fig. 3. Fragments of the moskvinite-(Y) crystal structure: a double three-members ring [Si₆O₁₅]⁶⁻ (a); two sheets of octahedra connected by [Si₆O₁₅] groups: views along [100] (6) and [010] (6).

нерал хрупкий. Плотность минерала определялась уравновешиванием зерен в растворе Клеричи. Измеренная плотность минерала 2.91(1) г/см³, вычисленная — 2.92 г/см³. Москвинит-(Y) — оптически отрицательный, двуосный. По результатам измерения на федоровском столике $2V = -64(2)^{\circ}$. Вычисленный угол $2V = -63.8^{\circ}$. Показатели преломления минерала измерены иммерсионным методом (при 589 нм): $n_p = 1.555(2), n_m = 1.558(2), n_g = 1.566(2)$. Дисперсия средняя r > v. Минерал нерастворим в воде и в HCl (1:1). Инфракрасный спектр москвинита-(Y), полученный Н. В. Чукановым на Specord-75IR, характеризуется полосами поглощения: 413, 486, 504, 563, 629, 682, 765, 817, 937, 976, 1015, 1041, 1055, 1070, 1109 см⁻¹. ИК-спектр москвинита-(Y) индивидуален и не сопоставим с ИК-спектрами известных минералов (рис. 2).

Химический состав. Москвинит-(Y) изучался на электронном микрозонде JCXA-50A фирмы JEOL. Анализы проводились при ускоряющем напряжении 20 кВ и токе зонда 3 нА при анализе на энергодисперсионном спектрометре и 20 нА при анализе на волновых спектрометрах. Минерал анализировался на энергодисперсионном спектрометре, дополнительно на волновых спектрометрах перемерялись индивидуальные редкие земли. В качестве стандартов использовались микроклин USNM143966 (Si, K), синтетический жадеит NaAlSi₂O₆(Na), Y₂O₃(Y), NdP₅O₁₄(Nd), SmP₂O₁₄(Sm), GdPO₄(Gd), TbPO₄(Tb), Dy₂O(Dy), Ho₂O₃(Ho), Er₂O₃(Er). Расчет концентрации проводился по программе ZAF-коррекции. Зерна нового минерала гомогенны и свободны от вростков других минералов. Усредненный состав проанализи-

Рис. 4. Кристаллическая структура москвинита-(Y) (a) и синтетического Na₃Y[Si₆O₁₅] (b) в проекции на (001).

Легенда соответствует рис. 3; за исключением атомов, локализованных в каналах вдоль [001]: атомы К показаны темно-серыми кружками, атомы Na светло-серыми.

Fig. 4. Crystal structures of moskvinite-(Y) (a) and the synthetic compound Na₃Y[Si₆O₁₅] (b), on the (001) projection. In the channels along [001] K atoms are shown as dark-gray circles, Na atoms — light-gray ones.

рованных зерен (табл. 1) пересчитывался при Si = 6 на эмпирическую формулу Na_{2.06}K_{0.95}(Y_{0.77}Dy_{0.09}Gd_{0.04}Er_{0.04} Ho_{0.02}Sm_{0.02}Nd_{0.01}Tb_{0.01})_{1.00}Si₆O_{15.00}. Упрощенная формула москвинита-(Y) Na₂K(Y,REE)[Si₆O₁₅]. Индекс сходимости свойств (1— K_p/K_c) = = 0.005, что соответствует его высшей степени.

Рентгеновские данные. Рентгеновская порошкограмма минерала (табл. 2) была получена на приборе ДРОН-2 (табл. 1), она индивидуальна и хорошо индуцируется в предложенных параметрах ромбической ячейки [пр. группа *Ibmm*, a = 10.623(2), b = 14.970(2), c = 8.552(2) Å].

Монокристальное изучение москвинита-(Y) проведено на дифрактометре Siemens P4 (Мок -излучение). Было зафиксировано 936 рефлексов. Структура минерала расшифрована прямым методом и уточнена до R-фактора 1.7 %. В кристаллической структуре москвинита-(Ү) (рис. 3) имеются две тетраэдрические позиции, занятые Si, с межатомными расстояниями <Si-O> = 1.623 Å. Кремнекислородные тетраэдры образуют сдвоенные трехчленные кольца [Si₆O₁₅]⁶⁻. Такая постройка в минералах встречена впервые. В структуре москвинита-(Y) имеются две октаэдрические позиции, одна из которых занята Na с межатомными расстояниями <Na-O> = = 2.438 Å, другая позиция заполнена Y_{0.77} и REE_{0.23} с межатомными расстояниями <(Y,REE)—O> = 2.255 Å. Октаэдры {(Y,REE)O₆} и (NaO₆) имеют общие ребра и образуют слои параллельно (001) — на ячейку приходится два таких слоя. Эти слои соединены между собой сдвоенными трехчленными кольцами [Si₆O₁₅]⁶⁻. Калий в кристаллической структуре москвинита-(Y) имеет десятерную координацию с межатомным расстоянием $\langle K - O \rangle = 3.062$ Å. Атомы К распределены в каналах, вытянутых вдоль оси [010]. Топология структуры москвинита-(Ү) идентична синтетической фазе Na₃Y[Si₆O₁₅] [a = 10.468(2) Å, b = 15.247(1) Å, c = 8.385(1) Å, V == 1338.3 Å³, пространственная группа *Ibmm*, Z = 4] (Haile e. a., 1995). Структуру москвинита-(Y) с идеализированной формулой Na2KY[Si6O15] следует рассматривать как производную от структуры синтетической фазы Na₃Y[Si₆O₁₅], где имеет место следующее замещение: 2Na + K → 2Na + Na (рис. 4).

Образец с москвинитом-(Y) хранится в Минералогическом музее имени А. Е. Ферсмана РАН (г. Москва).

Благодарности. Авторы благодарят за помощь в ИК-спектроскопии минерала Н. В. Чуканова, за ценные замечания и советы И. В. Пекова, В. Д. Дусматова и Д. И. Белаковского.

Список литературы

Дусматов В. Д. К минералогии одного из массивов щелочных пород. Щелочные породы Киргизии и Казахстана. Фрунзе, **1968.** С. 134—135.

Дусматов В. Д. Минералогия щелочного массива Дараи-Пиёз (Южный Тянь-Шань). Автореф. дис. ... канд. геол.-мин. наук. М., 1971. 18 с.

Дусматов В. Д., Ефимов А. Ф., Катаева З. Т., Хорошилова Л. А., Янулов К. П. Согдианит — новый минерал // Докл. АН СССР. **1968.** Т. 182. № 5. С. 1176—1177.

Паутов Л. А., Агаханов А. А., Соколова Е. В., Игнатенко К. И. Дусматовит — новый минерал группы миларита // Вестн. МГУ. Серия 4. Геология. 1996. № 2. С. 54—60.

Паутов Л. А., Агаханов А. А., Соколова Е. В., Кабалов Ю. К. Туркестанит Th(Ca,Na)₂(K_{1-x}□_x)Si₈O₂₀ · nH₂O — новый минерал со сдвоенными четверными кремнийкислородными кольцами // ЗВМО. **1997.** № 6. С. 45—55.

Паутов Л. А., Агаханов А. А. Березанскит KLi₃Ti₂Si₁₂O₃₀ — новый минерал ∥ ЗВМО. **1997.** № 4. С. 75—80.

Паутов Л. А., Агаханов А. А., Соколова Е. В. Шибковит К(Ca,Mn,Na)₂(K_{2-x}□_x)₂Zn₃Si₁₂O₃₀ — новый минерал группы миларита // ЗВМО. **1998.** № 4. С. 89—94.

Паутов Л. А., Хворов П. В., Муфтахов В. А., Агаханов А. А. Согдианит и сугилит из пород Дара-и-Пиозского массива (Таджикистан) // ЗВМО. 2000. № 3. С. 66—79.

Семенов Е. И., Дусматов В. Д., Хомяков А. П., Воронков А. А., Казакова М. Е. Дарапиозит — новый минерал группы миларита // ЗВМО. 1975. Вып. 5. С. 583—585.

Belakovskiy D. I. Die seltenet Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans // Lapis. 1991. Jg. 16. Vol. 12. P. 42-48.

Haile S. M., Maier J., Wuensch B. J., Laudise R. A. Structure of $Na_3YSi_6O_{15}$ — a unique silicate based on a discrete Si_6O_{15} units, and a possible fast-ion conductor // Acta Crystallogr. **1995.** Vol. 51. P. 673—680.

Поступила в редакцию 9 июня 2003 г.

УДК 549(047)

3BMO, № 6, 2003 г. Zapiski VMO, N 6, 2003

© Д. члены В. И. КУДРЯШОВА, В. Н. СМОЛЬЯНИНОВА

новые минералы. LVII

V. I. KUDRYASHOVA, V. N. SMOLYANINOVA. NEW MINERALS. LVII

Институт геологии рудных месторождений, петрографии минералогии и геохимии (ИГЕМ РАН), 109017, Москва, Старомонетный пер., 35; e-mail: smnv@igem.ru

САМОРОДНЫЕ ЭЛЕМЕНТЫ

1. Парарсеноламприт (рагатsenolamprite) — Аs, третий полиморф самор. мышьяка. Ромб. с. $Pmn2_1$ или $P2_1nm. a = 3.633, b = 10.196, c = 10.314$ Å. Z = 18. Непрозрачный. Идиоморфные кристаллы (10—20 мкм), удлиненные по [100] и уплощенные по (001). Цв. свинцово-серый. Черта черная. Бл. метал. Хрупкий, но легко режется. Тв. 2—2.5, микротв. 66—91. Плотн. 5.88 (изм), 6.01 (выч.). Сп. совершенная по (001). В отр. св. на воздухе белого цвета с зеленовато-голубым оттенком. Анизотропия сильная, от темно-бурого до темно-зеленовато-серого. Двуотражение резкое, от кремового параллельно удлинению до бурого, серого и зеленого, перпендикулярно удлинению. R_1 и R_2 на воздухе (и в масле), %: 49.0 и 44.0(33.6 и 29.3) при 470 нм, 47.0 и 42.1(31.5 и 28.0) при 546, 44.8 и 39.9(29.7 и 26.9) при 589, 44.9 и 40.3(29.2 и 26.0) при 650 нм. Хим. (м. з., средн. из 8 опр.): As 91.89, Sb 7.25, S 0.48, сумма 99.62. Рентгенограмма (интенс. л.): 5.17(100)(002), 4.60(24)(012), 3.259(58)(013), 2.840(27)(032), 2.580(22)(004), 2.299(23)(024), 1.794(26)(105). В кварцевых жилах с Sb, As, Ag, Au, секущих изменению в отличие от самор. Аs. Назван за связь с арсенолампритом. Утв. КНМ ММА.

Matsubara S., Miyawaki R., Shimizu M., Yamanaka T. Min. Mag., 2001, v. 65, N 6, p. 807 (англ.).