Diamond R050206

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 3 of 18  

Name: Diamond
RRUFF ID: R050206
Ideal Chemistry: C
Locality: Unknown
Source: Eric Van Valkenburg
Owner: RRUFF
Description: Single crystal, type IIA
Status: The identification of this mineral has been confirmed by single-crystal X-ray diffraction.
Mineral Group: [ Diamond (18) ]
Quick search: [ All Diamond samples (17) ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Sample is oriented and mounted on a pin
Pin ID: L01807
Orientation: Laser parallel to  a*  (1 0 0).     Fiducial mark perpendicular to laser is parallel to  c   [0 0 1].
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Raman Mode Analysis
Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R050206
Wavelength:
Sample Description: Unoriented sample
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
POWDER DIFFRACTION 
RRUFF ID: R050206.9
Sample Description: Single crystal, powder profile is calculated
Cell Refinement Output: a: 3.568(4)Å    b: 3.568(4)Å    c: 3.568(4)Å
alpha: 90°    beta: 90°    gamma: 90°   Volume: 45.423(1)Å3    Crystal System: cubic
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Diamond

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Hoffmann C A S (1789) Mineralsystem des Herrn Inspektor Werners mit dessen Erlaubnis herausgegeben von C A S Hoffmann, Bergmannisches Journal, 1, 369-398   [view file]

Leyden (1815) Largest diamond, Annals of Philosophy, 6, 391-392   [view file]

Shepard C U (1846) On three new mineral species from Arkansas, and the discovery of the diamond in North Carolina, American Journal of Science and Arts, 52, 249-254   [view file]

Straumanis M E, Aka E Z (1951) Precision determination of lattice parameter, coefficient of thermal expansion and atomic weight of carbon in diamond, Journal of the American Chemical Society, 73, 5643-5646

Riley D P (1956) Lattice constant of diamond and the C-C single bond, Nature, 153, 587-588

Cruft E F, Shaw D M (1962) A diamond drill for coring mineral samples in the laboratory, The Canadian Mineralogist, 7, 329-331   [view file]

Lynch R W, Drickamer H G (1966) Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride, Journal of Chemical Physics, 44, 181-184

Hom T, Kiszenick W, Post B (1975) Accurate lattice constants from multiple reflection mesurements II. lattice constants of germanium, silicon and diamond, Journal of Applied Crystallography, 8, 457-458

Spackman M A (1991) The electron distribution in diamond: A comparison betwen experiment and theory, Acta Crystallographica, A47, 420-427

Wang A, Wang W, Zhang A (1991) Microstructural variations of a pyrope inclusion in diamond, as revealed by a micro-Raman spectroscopic study, The Canadian Mineralogist, 29, 517-524   [view file]

Fayos J (1999) Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition, Journal of Solid State Chemistry, 148, 278-285

Joswig W, Stachel T, Harris J W, Baur W H, Brey G P (1999) New Ca-silicate inclusions in diamonds - tracers from the lower mantle, Earth and Planetary Science Letters, 173, 1-6

Kaminsky F V, Zakharchenko O D, Griffin W L, Channer D M DeR, Khachatryan-Blinova G K (2000) Diamond from the Guaniamo area, Venezuela, The Canadian Mineralogist, 38, 1347-1370   [view file]

Stachel T, Harris J W, Brey G P (2000) Kankan Diamonds (Guinea) - Messengers from an enriched layer at the top of the lower mantle, Journal of Conference Abstracts- Goldschmidt 2000, 5, issue 2 950

Kaminsky F V, Khachatryan G K (2001) Characteristics of nitrogen and other impurities in diamond, as revealed by infrared absorption data, The Canadian Mineralogist, 39, 1733-1745   [view file]

Nimis P (2002) The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions, The Canadian Mineralogist, 40, 871-884   [view file]

Baonza V G, Taravillo M, Arencibia A, Cáceres M, Núñez J (2003) Diamond as pressure sensor in high-pressure Raman spectroscopy using sapphire and other gem anvil cells, Journal of Raman Spectroscopy, 34, 264-270

Nasdala L, Brenker F E, Glinnemann J, Hofmeister W, Gasparik T, Harris J W, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds, European Journal of Mineralogy, 15, issue 6 931-935

Barron L M (2005) A linear model and topology for the host-inclusion mineral system involving diamond, The Canadian Mineralogist, 43, 203-224   [view file]

Nasdala L, Hofmeister W, Harris J W, Glinnemann J (2005) Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps, American Mineralogist, 90, 745-748   [view file]

Shkodzinsky V S (2005) Influence of melts viscosity upon crystal morphology of diamonds, Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 134, issue 5 51-56   [view file]

Kaminsky F V, Zakharchenko O D, Khachatryan G K, Griffin W L, Channer D M D (2006) Diamond from the Los Coquitos area, Bolivar State, Venezuela, The Canadian Mineralogist, 44, 323-340   [view file]

Hutchison M T, Heaman L M (2008) Chemical and physical characteristics of diamond crystals from Garnet Lake, Sarfartoq, West Greenland: an association with carbonatitic magmatism, The Canadian Mineralogist, 46, 1063-1078

Kagi H, Fukura S (2008) Infrared and Raman spectroscopic observations of Central African carbonado and implications for its origin, European Journal of Mineralogy, 20, 387-393

Tretiakova L (2009) Spectroscopic methods for the identification of natural yellow gem-quality diamonds, European Journal of Mineralogy, 21, 43-50

Degtyareva O (2010) Crystal structure of simple metals at high pressures, High Pressure Research, 30, 343-371

Howell D, Fisher D, Piazolo S, Griffin W L, Sibley S J (2015) Pink color in type I diamonds: is deformation twinning the cause, American Mineralogist, 100, 1518-1527

Kaminsky F V, Wirth R, Anikin L P, Schreiber A (2019) "Kamchatite" diamond aggregate from northern Kamchatka, Russia: New find of diamond formed by gas phase condensation or chemical vapor deposition, American Mineralogist, 104, 140-149

Tschauner O (2019) High-pressure minerals, American Mineralogist, 104, 1701-1731

Hazen R M, Morrison S M (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga), American Mineralogist, 105, 627-651   [view file]

Bassoo R, Befus K S, Liang P, Forman S L, Sharman G (2021) Deciphering the enigmatic origin of Guyana’s diamonds, American Mineralogist, 106, 54-68

Litasov K D, Kagi H, Bekker T B, Makino Y, Hirata T, Brazhkin V V (2021) Why Tolbachik diamonds cannot be natural, American Mineralogist, 106, 44-53

Tomkins A G, Wilson N C, MacRae C, Salek A, Field M R, Brand H E A, Langendam A D, Stephen N R, Torpy A, Pintér Z, Jennings L A, McCulloch D G (2022) Sequential lonsdaleite to diamond formation in ureilite meteorites via in situ chemical fluid/vapor deposition, Proceedings of the National Academy of Sciences, 119, e2208814119

Day M C, Pamato M G, Novella D, Nestola F (2023) Imperfections in natural diamond: the key to understanding diamond genesis and the mantle, La Rivista del Nuovo Cimento, 46, issue 7 1-91   [link]