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abstRact

A new mineral species, segerstromite, ideally Ca3(As5+O4)2[As3+(OH)3]2, has been discovered at 
the Cobriza mine in the Sacramento district in the Copiapó Province, Chile. Crystals of segerstromite 
occur as tetrahedra, dodecahedra (up to 0.50 × 0.50 × 0.50 mm), or in blocky aggregates. Associated 
minerals include talmessite, vladimirite, and Sr-bearing hydroxylapatite. Similar to the associated 
minerals, segerstromite is a secondary mineral. The new mineral is colorless in transmitted light, 
transparent with a white streak and vitreous luster. It is brittle and has a Mohs hardness of ~4.5. No 
cleavage, parting, or twinning was observed. The measured and calculated densities are 3.44(3) and 
3.46 g/cm3, respectively. Optically, segerstromite is isotropic, with n = 1.731(5). It is insoluble in water 
or hydrochloric acid. An electron microprobe analysis yielded an empirical formula (based on 14 O 
apfu) Ca2.98(AsO4)2.00[As(OH)3]2.00. 

Segerstromite is cubic, with space group I213 and unit-cell parameters a = 10.7627(2) Å, V = 
1246.71(4) Å3, and Z = 4. Its crystal structure is constructed from three different polyhedral units: 
distorted CaO8 cubes, rigid As5+O4 arsenate tetrahedra, and neutral As3+(OH)3 arsenite triangular pyra-
mids. The Ca-groups form layers of corrugated crankshaft chains that lie parallel to the cubic axes. 
These chains are linked by the isolated As5+O4 and As3+(OH)3 groups. Segerstromite is the first known 
crystalline compound that contains the As3+(OH)3 arsenite molecule, pointing to a new potential ap-
proach to remove highly toxic and mobile As3+(OH)3 from drinking water.

Keywords: New mineral, segerstromite, arsenate/arsenite, crystal structure, X-ray diffraction, 
Raman spectrum

intRoDuction

A new mineral species, segerstromite, ideally Ca3(As5+O4)2 

[As3+(OH)3]2, has been found at the Cobriza mine in the Sacra-
mento district in the Copiapó Province, Atacama Region, Chile. It 
is named in honor of the late Kenneth Segerstrom (1909–1992), 
who was a professional geologist and worked more than 40 yr 
for the U.S. Geological Survey in the U.S., Mexico, and Chile, 
principally conducting field-based regional geologic studies. In 
particular, Ken Segerstrom worked in Chile in conjunction with 
the “Instituto de Investigaciones Geologicas” (now Sernageo-
min), from 1957–1963, mainly in the Atacama Region, where 
the new mineral was found. Among his numerous publications, 
Ken Segerstrom authored 18 maps and articles on the Atacama 
Region, including the Sacramento district and the Cobriza mine. 
The new mineral and its name have been approved by the Com-
mission on New Minerals, Nomenclature and Classification 
(CNMNC) of the International Mineralogical Association (IMA 
2014-001). Part of the co-type sample has been deposited at the 
University of Arizona Mineral Museum (catalog no. 19800) and 
the RRUFF Project (deposition no. R130753).

Arsenic contamination can be a major ecological hazard 
because of its well-known toxicity and carcinogenicity, even at 
very low concentrations in drinking water (10 μg/L) (Hughes 
2002; Vaughan 2011). In natural water, arsenic primarily exists in 

inorganic forms with two predominant species: H3As3+O3 arsenite 
[or commonly written as As3+(OH)3] and H3As5+O4 arsenate. 
The toxicity of arsenic depends strongly on its oxidation state, 
with As3+ 25–60 times more toxic than As5+ (Fazal et al. 2001). 
Although some sophisticated methods have been developed 
to remove As5+ from drinking water, such as by ion-exchange, 
adsorption, or as a precipitate of AlAsO4 or FeAsO4, there is no 
efficient or economic approach to eliminate As3+ as yet, due partly 
to its greater solubility and mobility than As5+ (e.g., Zhang et al. 
2007; Mohan and Pittman 2007; Itakura et al. 2008; Kreidie et 
al. 2011; Roy et al. 2016; Dickson et al. 2017; Yadav et al. 2017). 
Extensive efforts, both experimental and theoretical, have been 
devoted to seeking ligands that can form stable complexes with 
As3+(OH)3 and some successes have been achieved with certain 
organic compounds (e.g., Porquet and Filella 2007; Kolozsi et 
al. 2008). Nonetheless, there has been no report for the presence 
of the As3+(OH)3 group in any inorganic crystalline material, 
synthetic or natural, until now. Therefore, segerstromite repre-
sents the first inorganic compound that sequesters the As3+(OH)3 
group in its structure.

sample DescRiption anD expeRimental metHoDs

Occurrence, physical and chemical properties, and Raman 
spectra

Segerstromite was found on several specimens collected by R.A.J. from the 
Cobriza mine (27°49′45″S, 70°14′03″W) in the Sacramento district in the Copiapó 
Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-
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As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks.
Crystals of segerstromite occur as tetrahedra, dodecahedra, granular 

or blocky aggregates, with single crystals up to 0.50 × 0.50 × 0.50 mm 
(Fig. 1). Associated minerals include talmessite Ca2Mg(AsO4)2·2H2O, vladimirite 
Ca4(AsO4)2(AsO3OH)·4H2O, and Sr-bearing hydroxylapatite Ca5(PO4)3(OH). 
Similar to the other associated minerals (talmessite and vladimirite), segerstromite 
is considered to be a secondary mineral. Vladimirite from the Cobriza mine has 
been previously investigated by Yang et al. (2011).

Segerstromite is colorless in transmitted light, transparent with a white streak 
and vitreous luster. It is brittle and has a Mohs hardness of ~4.5; no cleavage, 
parting, or twinning was observed. The measured (by flotation) and calculated 
densities are 3.44(3) and 3.46 g/cm3, respectively. Optically, segerstromite is 
isotropic, with n = 1.731(5), measured in white light. It is insoluble in water or 
hydrochloric acid.

The chemical composition of segerstromite was determined using a CAMECA 
SX-100 electron microprobe (WDS mode, 10 kV, 6 nA, and 10 μm beam diam-
eter). The standards included As2O3 for As, and wollastonite (CaSiO3) for Ca, 
yielding an average composition (wt%) (16 points) of As2O3 60.75(16) [con-
verted to As2O3 30.38 + As2O5 35.20 with As3+/As5+ = 1 according to the X-ray 
structure determination, see below], CaO 25.57(12), H2O 8.29 (added according 
to the structure determination), and total = 99.53(26). The resultant chemical for-
mula, calculated on the basis of 14 O apfu (from the structure determination), is 
Ca2.98(AsO4)2.00[As(OH)3]2.00, which can be simplified to Ca3(As5+O4)2[As3+(OH)3]2.

The Raman spectrum of segerstromite was collected on a randomly oriented 
crystal on a Thermo-Almega microRaman system, using a solid-state laser with 

a frequency of 532 nm and a thermoelectric cooled CCD detector. The laser is 
partially polarized with 4 cm–1 resolution and a spot size of 1 μm.

X‑ray crystallography
Both the powder and single-crystal X-ray diffraction data for segerstromite 

were collected on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with 
graphite-monochromatized MoKα radiation. Table 1 lists the measured powder 
X-ray diffraction data, along with those calculated from the determined structure 
using the program XPOW (Downs et al. 1993).

Single-crystal X-ray diffraction data of segerstromite were collected from a 
nearly equidimensional crystal (0.05 × 0.04 × 0.04 mm) with frame widths of 0.5° 
in ω and 30 s counting time per frame. All reflections were indexed on the basis 
of a cubic unit cell (Supplemental1 Table 1). The intensity data were corrected for 
X-ray absorption using the Bruker program SADABS. The systematic absences of 
reflections suggest possible space group I23, I213, or Im3. The crystal structure was 
solved and refined using SHELX2014 (Sheldrick 2015a, 2015b) based on space 
group I213, because it produced the better refinement statistics in terms of bond 
lengths and angles, atomic displacement parameters, and R factors. The H atom 
was located from the difference Fourier maps. The ideal chemistry was assumed 
during the refinements. The positions of all atoms were refined with anisotropic 
displacement parameters, except those for the H atom, which was refined with an 
isotropic parameter. Final coordinates and displacement parameters of atoms in 
segerstromite are listed in Table 2, and selected bond distances in Supplemental1 
Table 2. Calculated bond-valence sums using the parameters from Brese and 
O’Keeffe (1991) are given in Table 3.

Discussion

Crystal structure
The crystal structure of segerstromite is unique. It is con-

structed from three different polyhedral units: distorted CaO8 
cubes with six short and two long Ca-O bonds, rigid As5+O4 
arsenate tetrahedra, and neutral As3+(OH)3 arsenite triangular 
pyramids (Table 2 and Fig. 2). The As5+O4 and As3+(OH)3 
groups are isolated from each other, while the Ca-groups 
form corrugated crankshaft chains that layer perpendicular to 
the cubic axes (Fig. 3). The corrugations are stabilized by the 
As3+(OH)3 arsenite groups. The layers are stacked with a shift 

FiguRe 1. (a) Rock samples on which segerstromite crystals are 
found. (b) A microscopic view of segerstromite showing the tetrahedral 
morphology. (Color online.)

Table 1. Powder diffraction data for segerstromite
 Experimental Theoretical
Intensity d-spacing Intensity d-spacing h k l
34 4.351 8.52 4.3939 2 1 1
25 3.775 28.74 3.8052 2 2 0
82 3.389 77.54 3.4035 3 0 1
  22.46 3.4035 3 1 0
33 3.104 39.94 3.1069 2 2 2
100 2.875 16.47 2.8765 3 2 1
  77.46 2.8765 3 1 2
7 2.691 27.58 2.6907 4 0 0
14 2.536 13.93 2.5368 4 1 1
  7.08 2.2946 3 3 2
  27.77 2.1969 4 2 2
  5.24 2.1107 4 3 1
45 2.111 32.87 2.1107 5 1 0
7 1.965 8.86 1.9650 5 2 1
27 1.905 44.44 1.9026 4 4 0
34 1.748 8.16 1.7459 5 3 2
  17.10 1.7459 6 1 1
  4.84 1.7459 5 2 3
11 1.703 10.50 1.7017 6 2 0
  14.73 1.7017 6 0 2
16 1.663 8.67 1.6607 5 4 1
7 1.624 5.00 1.6225 6 2 2
13 1.588 3.39 1.5869 6 3 1
  12.25 1.5869 6 1 3
12 1.524 4.84 1.5221 5 3 4
19 1.465 8.63 1.4646 7 1 2
  9.08 1.4646 7 2 1
  3.05 1.4646 6 3 3

a

b
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of half a unit cell, so that the chains lie above and below the 
gaps between the chains (Fig. 4). The corrugated layers are 
held together by chains of CaO8 groups linked by the isolated 
AsO4 arsenate groups (Fig. 5).

There are several minerals that contain both As5+ and As3+ 
(Table 4), but segerstromite is the first known crystalline 
compound that contains the neutral As3+(OH)3 arsenite group. 
The average As3+-O bond length for the As3+(OH)3 group 
is 1.776 Å, in excellent agreement with the experimental 
value of 1.77–1.78 Å reported for the As3+(OH)3 molecule in 
aqueous solutions (Arai et al. 2001; Pokrovski et al. 2002; 
Ramirez-Solis et al. 2004; Testamale et al. 2004). It also falls 
in the range between 1.77 and 1.82 Å calculated by various 

theoretical methods (see Porquet and Filella 2007; Tossell and 
Zimmermann 2008; Hernández-Cobos et al. 2010). The O-As3+-
O angle is 95.29°, with a trigonal pyramidal lone-pair-As3+-O 
angle of 121.43°.

The As5+O4 tetrahedron is slightly distorted, with the As1-O1 
bond length (1.698 Å) longer than the three As1-O2 distances 
(1.679 Å) (Table 2). The average As5+-O bond length is 1.684 Å, 
in accord with the values found in many other arsenate miner-
als (Hawthorne et al. 2012; Kampf et al. 2015; Ðorđević et al. 
2016 and references therein), as well as the average value of 
1.685 Å derived by Majzlan et al. (2014) through an examina-

Table 2.  Selected bond distances and angles in segerstromite
As1-O1 (Å) 1.698(2)
As1-O2 1.679(1) ×3
Avg. 1.684

As2-O3 (Å) 1.776(1) ×3

Ca-O1 (Å) 2.430(1) ×2
Ca-O2 2.381(1) ×2
Ca-O2 2.932(1) ×2
Ca-O3 2.448(1) ×2
Avg. 2.548

O3-H···O2 (Å) 2.664(2)
O3-H (Å) 0.78(2)
∠O3-H···O2 (°) 177(2)
Note: Coordinates and displacement parameters of atoms in segerstromite.

FiguRe 2. Crystal structure of segerstromite. The green and purple 
polyhedra represent CaO8 and As5+O4 groups, respectively. The large 
yellow and small blue spheres represent As3+ (As2) and H atoms, 
respectively. (Color online.)

FiguRe 3. A slice of the segerstromite structure, showing corrugated 
crankshaft chains formed by the corner-shared, distorted CaO8 cubes. 
The corrugations are stabilized by the As3+(OH)3 arsenite groups. The 
green polyhedra represent the distorted CaO8 cubes. The large yellow, 
medium red, and small blue spheres represent As3+, O, and H atoms, 
respectively. (Color online.)

FiguRe 4. The segerstromite structure showing the layers formed by 
the corrugated chains of the corner-shared CaO8 cubes. (Color online.)

Table 3.  Calculated bond-valence sums for segerstromite
 O1 O2 O3 Sum
Ca 0.286 ×2 0.327 ×2 0.272 ×2→	 1.918
  0.074 ×2  
As1 1.279 1.345 ×3→	  5.161
As2   1.035 ×3→	 3.104
Sum 1.851 2.146 1.307
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tion of numerous arsenate minerals.
The hydrogen-bonding scheme in segerstromite is presented 

in Table 2. The O3-H···O2 distance is 2.664(2) Å, indicating 
a considerably strong hydrogen bond.

Raman spectrum
Numerous Raman spectroscopic studies have been conducted 

on various arsenite and/or arsenate minerals and compounds 
(e.g., Frost et al. 2011; Kharbish 2012; Liu et al. 2014; Đorđević 
2015; Đorđević et al. 2016, and references therein), as well as 
on the As(OH)3 molecule in organic materials and solutions 
(e.g., Loehr and Plane 1968; Pokrovski et al. 1999; Goldberg 
and Johnston 2001; Wood et al. 2002; Müller et al. 2010). The 
Raman spectrum of segerstromite is displayed in Figure 6 and 
the tentative assignments of major Raman bands based on the 
previous studies are given in Table 5. In particular, the bands 
at 699 and 680 cm–1 are ascribed to the symmetric and asym-
metric stretching vibrations of As-OH within the As3+(OH)3 
group, respectively, which should be compared with 701–710 
and 655–669 cm–1 observed for the As(OH)3 group in aqueous 
solutions (Loehr and Plane 1968; Pokrovski et al. 1999; Goldberg 
and Johnston 2001; Müller et al. 2010).

In Figure 6, the O-H stretching vibration is marked by a broad 
band at 2906 cm–1. According to Libowitzky (1999), an O–H···O 
distance of 2.66 Å would correspond to an O–H stretching 
frequency of ~2900 cm–1, consistent with our measured value. 
Similar results were also reported for diaspore, which has an 
O–H···O distance of 2.65 Å with the O–H···O angle of 160.8° 
(Hill 1979) and a Raman band at 2918 cm–1 that is attributable 
to the O-H stretching vibration (Ruan et al. 2001).

implications

In comparison to As5+, besides its greater toxicity, As3+(OH)3 
is also more mobile and soluble in the environment because of 
its neutral character in a wide pH range (<9.2 at 25 °C with As = 
0.1 mol/L) (Müller et al. 2010), resulting in its weaker adsorption 
on soil constituents, such as iron and aluminum oxy-hydroxides 
(Ladeira and Ciminelli 2004; Yokoyama et al. 2012). All previous 
investigations have appeared to focus chiefly on the understand-
ing of how As3+(OH)3 can be immobilized with the formation 
of complexes with Fe3+ and Al3+. In particular, the possibility of 
co-precipitation of As3+ and Fe3+ has been explored extensively, 
because such a phenomenon has been observed to take place in 
natural environments, as well as under laboratory conditions 
(e.g., Ciardelli et al. 2008; Sasaki et al. 2009; Müller et al. 2010). 
Recently, Itakura et al. (2007, 2008) proposed the removal of 
arsenic from water containing both arsenite and arsenate ions 
through the hydrothermal formation of the mineral johnbaumite, 
Ca5(As5+O4)3(OH) (arsenate analog of apatite). The discovery 
of segerstromite, however, points to a new potential approach 
to remove or reduce As3+(OH)3 in water, providing sufficient 
availability of Ca2+. Because calcite, CaCO3, is the most stable 
polymorph of calcium carbonates under the ambient conditions 
and ubiquitously found in various surface environments, a po-
tential chemical reaction for such a process would be:

3CaCO3 (calcite) + 2H3As5+O4(l) + 2H3As3+O3(l) ↔
Ca3(As5+O4)2[As3+(OH)3]2 (segerstromite) ↓ + 3H2O + CO2↑.

FiguRe 5. The segerstromite structure showing chains of CaO8 groups 
linked by the isolated AsO4 arsenate groups. (Color online.)

FiguRe 6. Raman spectra of segerstromite.

Table 4.  Minerals containing both As5+ and As3+ as essential com-
ponents

Mineral name Chemical formula
Segerstromite Ca3(AsO4)2[As(OH)3]2

Arakiite Zn2+Mn2+
12Fe2

3+(As3+O3)(As5+O4)2(OH)23

Carlfrancisite Mn3
2+(Mn2+,Mg,Fe3+,Al)42[As3+O3]2(As5+O4)4

 [(Si,As5+)O4]6[(As5+,Si)O4]2(OH)42

Dixenite Cu1+Mn2+
14Fe3+(As3+O3)5(SiO4)2(As5+O4)(OH)6

Hematolite (Mn2+,Mg,Al)15(As3+O3)(As5+O4)2(OH)23

Mcgovernite Mn2+
19Zn3

2+(As3+O3)(As5+O4)3(SiO4)3(OH)21

Radovanite Cu2
2+Fe3+(As3+O2OH)2(As5+O4)·H2O

Synadelphite Mn9
2+(As3+O3)(As5+O4)2(OH)9·2H2O

Vicanite-(Ce) (Ca,Ce,La,Th)15As5+(As3+,Na)0.5Fe3+
0.7Si6B4(O,F)47

Table 5.  Tentative assignments of major Raman bands for seger-
stromite  

Bands (cm–1) Assignment
2906 O-H stretching vibration
2449 Stretching vibration of the strongly hydrogen-bonded OH 
 in the As(OH)3 unit (Frost et al. 2011)
790–910 As5+-O stretching vibrations within the AsO4 group
610–750 As3+-O stretching vibrations within the As(OH)3 groups
300–500 O-As5+-O and O-As3+-O bending vibrations within 
 AsO4 and As(OH)3 groups
<300 Lattice and Ca-O vibrational modes
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Hence, further investigations on the formation conditions of 
segerstromite, such as pH, Eh, and temperature, will undoubtedly 
generate information on how to remove As3+(OH)3 in water more 
efficiently and economically.
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