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Abstract
Investigations of planetary processes using phosphate minerals often focus on igneous, recrystal-

lized, or potentially metasomatized minerals, likely as a result of the minerals commonly available for 
study within meteorites and lunar samples. However, Mars is a relatively phosphorus-rich planet and 
possesses abundant evidence of past aqueous surface interactions. Therefore, secondary phosphate 
phases may be important on the martian surface. Giniite [Fe2+Fe4

3+(PO4)4(OH)2·2H2O] is a secondary 
phosphate mineral that has been suggested as a potentially significant phase at locations in Gusev Crater 
and Meridiani Planum on Mars. Although relatively rare as a natural mineral on Earth, giniite has gained 
attention as an important mineral in industry and technology, especially the lithium battery industry, 
and the ferrian version of the mineral is often synthesized. This suggests giniite may be important as 
an in situ resource utilization (ISRU) target for future extended human missions to Mars. Despite this, 
there are few data available on the natural mineral and the last characterization of the structure was 
over 40 years ago. There has also been confusion in the literature as to whether giniite is orthorhombic 
or monoclinic. In this work we revisit and document the chemistry and crystal structure of natural 
giniite from the type locality at the Sandamab pegmatite in Namibia using updated techniques. Our 
results refine and update what was previously known regarding the structure and chemistry of giniite 
and support the potential of the mineral as a possible martian scientific and resource target for further 
study to aid future missions.

Keywords: Giniite, Fe-phosphate, ferrous giniite, ferric giniite, ferrian, phosphate, hydroxyphos-
phate, martian habitability, Mars, ISRU, XRD; Earth Analogs for martian Geological Materials and 
Processes

Introduction
The study of phosphorus minerals yields insight into planetary 

interior and surface processes. For instance, primary or igneous 
phosphate minerals have been used to investigate volatile abun-
dances in the interiors of Earth, Mars, the Moon, and asteroidal 
bodies (e.g., McCubbin et al. 2011, 2014; Patiño Douce et al. 
2011; Filiberto et al. 2016; Jones et al. 2014), as potential indica-
tors of oxygen fugacity during late stage magma crystallization 
(Shearer et al. 2015), and even as recorders of past aqueous 
surface environments on Mars (Mojzsis and Arrhenius 1998; 
Hurowitz et al. 2006; Ming et al. 2006; Adcock and Hausrath 
2015). Phosphorus, as phosphate or a more reduced species, 
is also an essential nutrient for all known life, and considered 
important in prebiotic reactions that led to life on Earth (Wald 
1964; Westheimer 1987; Powner et al. 2009; Pasek and Kee 
2011; Benner and Kim 2015; Burcar et al. 2016). Consequently, 
P-bearing minerals have important implications for past and 
present habitability and the potential for life on other planetary 
bodies (Weckwerth and Schidlowski 1995; Mojzsis et al. 1996; 

Yang et al. 2011; Adcock et al. 2013; Adcock and Hausrath 2015).
Investigations of planetary processes using phosphate 

minerals often focus on igneous, recrystallized, or potentially 
metasomatized minerals (e.g., Brearley and Jones 1998; Jones 
et al. 2014; McCubbin and Jones 2015; Adcock et al. 2017). 
For extraterrestrial studies, this focus is likely the result of the 
minerals commonly available for study within meteorites and 
lunar samples. Though various secondary phosphate minerals are 
present in some meteorites (Dyar et al. 2014), the most common 
phosphate minerals in most meteorites and lunar samples are 
merrillite [Ca9NaMg(PO4)7] and apatite [Ca5(PO4)3(F,Cl,OH)], 
often of igneous origin (Shearer et al. 2006; McCubbin et al. 
2014; Adcock and Hausrath 2015). This is especially the case 
for martian meteorites (McSween and Treiman 1998).

However, Mars is a relatively phosphorus-rich planet (Wänke 
and Dreibus 1988; Taylor 2013) and analyses from the surface 
of Mars indicate relatively high P-concentrations in soils, rocks, 
and dust compared to Earth (Goetz et al. 2005; Gellert et al. 
2006; Yang and Post 2011; Rampe et al. 2017, 2020; Yen et al. 
2017). Mars also possesses abundant evidence of past aqueous 
surface interactions (Carr and Head 2003; Hurowitz et al. 2006; 
Grotzinger et al. 2014; Adcock and Hausrath 2015; Rampe et 
al. 2016; McCollom et al. 2018). Reactive transport modeling 
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of measured rock profiles at Gusev Crater indicate dissolution 
of primary phosphate minerals, the product of which would be 
secondary phosphates (Adcock and Hausrath 2015). Thermody-
namic modeling by Berger et al. (2016) indicates the formation 
of the secondary phosphate mineral strengite (FePO4·2H2O) at 
Gale Crater, Mars. Recent data from the Alpha Particle X-ray 
Spectrometer (APXS) on board Curiosity at Gale Crater indicate 
enrichments of P and Mn in nodules, veins, and other surface 
features there (Berger et al. 2021). ChemMin diffraction data 
from Gale Crater also show the potential presence of secondary 
fluorapatite (Rampe et al. 2017) and a secondary manganese-
bearing phosphate of the jahnsite-whiteite group (Treiman et 
al. 2021). These models and observations suggest aqueously 
altered or precipitated secondary phosphate minerals may not 
be uncommon phases on the martian surface and thus warrant 
more in-depth consideration.

Among the potential secondary minerals that may occur on 
Mars is giniite [Fe2+Fe4

3+(PO4)4(OH)2·2H2O]. Although rare on 
Earth, giniite has gained attention in industry, including as a 
potential component in Li-ion battery production (Hong et al. 
2003; Whittingham 2004; Lv et al. 2017), wastewater process-
ing (Duan et al. 2013; Han et al. 2017; Priambodo et al. 2017), 
biomedical materials, and as a deprotonation catalyst (Chen et 
al. 2014; Nedkov et al. 2016).

In comparison to Earth, Mars has notably higher Fe and P 
content, and Hausrath et al. (2013) first suggested that giniite 
may be a significant secondary phase on that planet based on 
terrestrial hydrothermal experiments that produced giniite, 
and Mössbauer data acquired from Gusev Crater on Mars. In 
later work, alteration experiments using P-enriched basalts as 
analogs of rocks at Meridiani Planum also produced giniite, 
suggesting the mineral may likewise be of importance at that 
location on Mars (McCollom et al. 2018). The confirmation of 
giniite on Mars would be scientifically important. Like primary 
minerals, secondary minerals are products of their formation 
environments, and are therefore potentially useful indicators 
of past martian environmental conditions (e.g., Klingelhöfer et 
al. 2004; Wiseman et al. 2008). Minerals like giniite also have 
implications for the availability of bio-essential phosphate in 
these past environments, and thus are astrobiologically relevant. 
Giniite may further represent a potential resource for extended 
human missions to Mars. For instance, as a hydrated mineral, 
giniite contains ~48 L of H2O per metric ton (not including the 
OH– component) that can be driven off between 175 and 300 °C 
(Jambor and Dutrizac 1988; Rouzies et al. 1994; Gonçalves et al. 
2017; Liu et al. 2017). McCollom et al. (2018) suggest as much 
as 8% of the Fe in the Burns Formation at Meridiani Planum 
on Mars may be held in giniite, with another 29% in jarosite (a 
hydrated Fe-sulfate holding ~10% H2O) (Morris et al. 2006). 
Therefore, giniite, along with other hydroxides in martian soils or 
rocks, could be a useful source of water. The mineral could also 
be processed into fertilizer, and oxidation of the Fe2+ component 
in minerals has been shown to produce H2 or CH4, potential fuel 
components (e.g., Miller et al. 2017; Adcock et al. 2021). In situ 
resource utilization (ISRU) is the practice of using materials or 
energy sources derived at space destinations (such as Mars) to 
replace or supplement resources that would otherwise have to be 
transported from Earth (Sanders and Larson 2011; Sridhar et al. 

2000; Starr and Muscatello 2020). The above qualities, including 
the potential availability, suggest that giniite may be a good sub-
ject for further investigation as a possible martian ISRU target.

Despite the potential importance of giniite both terrestrially 
and on Mars, most of the research and data currently avail-
able focus upon the synthetic, generally ferrian, analog of the 
mineral, rather than the natural, typically more reduced form. 
To our knowledge, there are few data on the natural mineral 
and the only characterization was over 40 years ago by Keller 
(1980a, 1980b), who originally documented the mineral with 
X-ray diffraction, electron microprobe and thermogravimetric 
analysis (TGA). The original structure was reported as ortho-
rhombic (Fleischer et al. 1980; Keller 1980a), but following 
work suggested this assessment was the result of twinning and 
the structure was revised to monoclinic (Keller 1980b). Despite 
this, giniite is still sometimes reported as orthorhombic (e.g., 
Liu et al. 2017; Zhang et al. 2013). In this work we use modern 
single-crystal X-ray diffraction with an area detector on natural 
giniite from the type locality, to reassess the structure in the 
correct monoclinic system. Additionally, Raman spectroscopy 
and electron microprobe techniques are employed to revisit and 
document the chemistry.

Background
Minerals exhibit characteristics of their formation envi-

ronments. In the case of secondary phosphate minerals, these 
characteristics may include temperature, pH, chemistry, and 
oxidation state of any interacting fluids (Moore 1973; Haw-
thorne 1998; Dill et al. 2008). Vivianite [Fe3

2+(PO4)2·8H2O] for 
instance, indicates a near neutral pH, anoxic, reducing, low 
temperature, high water:rock ratio aqueous formation environ-
ment (Hawthorne 1998; McGowan and Prangnell 2006). Brushite 
[Ca(HPO4)·2H2O] and monetite [Ca(HPO4)] are indicators of 
acidic, and potentially biogenic formation environments on 
Earth (Dumitraş et al. 2004; Dosen and Giese 2011; Frost and 
Palmer 2011; Frost et al. 2013b). Although not confirmed on 
Mars, brushite has been suggested as a possible acidic weathering 
product on that planet (Hurowitz et al. 2006; Ming et al. 2006). 
Secondary Al- and Fe-phosphates are also probable components 
in the P-enriched amorphous fraction of soils documented at 
Gale Crater by the Mars Science Laboratory Curiosity, again 
with implications for past aqueous martian weathering environ-
ments (Morris et al. 2013; Tu et al. 2014; Vaniman et al. 2014; 
Rampe et al. 2016). All of these secondary phosphate minerals 
have the potential to inform us about past and present formation 
environments, including those on Mars.

Giniite is no exception and its presence and paragenesis can 
provide detailed insights regarding its formation environment. 
On Earth, the mineral typically occurs within pegmatites or iron-
bearing ore bodies (Keller 1980a; Jambor and Dutrizac 1988; 
Nunes et al. 2009). In pegmatite settings, the mineral is a product 
of hydrothermal alteration of primary triphylite (LiFePO4). Keller 
(1980a) identified it as part of a paragenetic or age sequence of 
triphylite → hureaulite → (an unidentified dark green mineral + 
giniite) → tavorite → leukophosphite. Keller (1980a) speculated 
that giniite took the place of barbosalite [Fe2+Fe3

2+(PO4)2(OH)2] in a 
similar sequence at other pegmatites in the region (e.g., Keller and 
Knorring 1989), suggesting that giniite is the product of mid- to 
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late-stage hydrothermal alteration (<250 °C) (Hawthorne 1998).
In metal ore bodies the genetic history of giniite is less 

clear. Phosphorus is a common impurity in iron-bearing metal 
ore bodies (Cheng et al. 1999; Delvasto et al. 2008; Ofoegbu 
2019), and at the Silver Coin mine in Nevada, U.S.A., phosphate 
minerals, including giniite, are products of acidic hydrothermal 
precipitation associated with the ore body (Adams et al. 2015). 
However, at mines near Saalfeld, Germany, giniite appears to 
occur as a low temperature weathering product of the ore body 
associated with a hydrous mineral gel formed in open natural 
caves (Ullrich 2018).

Recent industrial, technologic, and scientific interests in 
the mineral (noted above) have led to several synthesis meth-
ods and studies. Most of these synthesis methods produce a 
fully ferric form of the mineral we refer to as ferrian giniite 
[Fe5 

3+(PO4)4(OH)3·H2O] (e.g., Jambor and Dutrizac 1988; Rouz-
ies et al. 1994; Frost et al. 2007; Duan et al. 2013; Zhang et al. 
2013; Nedkov et al. 2016; Han et al. 2017; Liu et al. 2017). 
However, mixed Fe valence giniite, which is more similar to 
natural giniite, has also been synthesized with ferrous/ferric 
content up to Fe2+

1.7/Fe3+
3.3 (Rouzies et al. 1994). To account for dif-

ferent Fe2+/Fe3+ ratios, charge balance is maintained by changes 
in the OH–/ H2O ratio through hydrating/dehydrating OH- sites 
(Keller 1980a; Rouzies et al. 1994) and can be expressed as  
[Fex

2+Fe3+
(5-x)(PO4)4(OH)(3-x)·(1+x)H2O].It is of note, however, 

that in the absence of measured data, giniite is often reported 
with 2 H2O units regardless of Fe valence or OH- content (e.g., 
Roncal-Herrero et al. 2009; Zhang et al. 2013; Priambodo et al. 
2017). In addition, x = 1.7 is the highest Fe2+ content currently 
observed. Corbin et al. (1986) synthesized a fully ferrous phase 
[Fe5

2+P4O20H10, or Fe5
2+H2(PO4)4·4H2O] (i.e., x = 5) referred to as 

giniite (e.g., Dyar et al. 2014; Gonçalves et al. 2017). However, a 
fully ferrous giniite structure is not stable, and instead this chem-
istry adopts the hureaulite structure [Mn5(PO3OH)2(PO4)2·4H2O] 
(Corbin et al. 1986).

Although the rare natural occurrence of giniite on Earth 
somewhat limits paragenetic and minerogenetic data, the con-
ditions of giniite synthesis can yield further insight into the 
environments where the mineral may form. Based on synthesis 
methods, giniite forms under relatively high water:rock ratios 
(>10:1) and formation temperatures from 25 to 250 °C (>150 °C 
appearing optimum for highest yields) (Rouzies et al. 1994; 
Roncal-Herrero et al. 2009; Hausrath et al. 2013; Nedkov et al. 
2016; Gonçalves et al. 2017). Highly acidic conditions appear to 
be optimum (pH 0.6 to 2) (Jambor and Dutrizac 1988; Hausrath et 
al. 2013). However, in the presence of other monovalent cations 
like Na and K, giniite can form at as high as pH 6 (Gonçalves et 
al. 2017). While these conditions represent a range of potential 
settings for giniite formation, the mineral can exhibit variable 
chemistry and morphology while maintaining the giniite struc-
ture (Jambor and Dutrizac 1988; Zhang et al. 2013) and these 
aspects may reflect specific details of formation conditions. For 
instance, Roncal-Herrero et al. (2009) found that crystal mor-
phology of giniite synthesized at 150 °C was spheroidal while 
giniite synthesized at 200 °C had a bi-pyramidal morphology. 
Other studies have noted morphology dependencies based on 
solution Fe and P concentrations (dendritic, spherical, and oc-
tahedral) (Liu et al. 2017), and the presence of different organic 

compounds in synthesis solutions (spheres and star-like) (Duan 
et al. 2013; Han et al. 2017). Tubular morphologies have been 
reported as products of biogenic formation at 25 °C (Nedkov 
et al. 2016). The pH and presence of Li, Na, or K in solution 
also appear to act on morphology (asterisk- or flower-like, and 
dendritic morphologies) (Gonçalves et al. 2017). It is not clear 
if the Li, Na, or K substitute into giniite in that study, however 
SO4

2– substitution for PO4
3– has been noted (Jambor and Dutrizac 

1988) and divalent cations including Mn and Mg are known to 
incorporate into the mineral (Keller 1980a). These conditions, 
though potentially broader, are not inconsistent with what is 
known about natural giniite formation environments.

Although giniite has not been definitively identified on Mars, 
several lines of evidence suggest that it may be present. Experi-
ments that mimic martian conditions of acidic solutions placed 
in contact with a mixture of fluorapatite, olivine, and basaltic 
glass at 150 °C by Hausrath et al. (2013) produced ferrian giniite 
[Fe5(PO4)4(OH)3·2H2O]. Follow-up Mössbauer measurements 
of the ferrian giniite alteration products were consistent with 
analyses performed by the Mars Exploration Rover Spirit on 
Paso Robles soil at Gusev Crater. Hausrath et al. (2013) could 
not confirm the phase on Mars based on Mössbauer alone, as 
measurements were also consistent with ferric sulfate phases 
(Hausrath et al. 2013; Dyar et al. 2014). However, Fe2O3 + FeO 
concentrations in PasoRobles and PasoLight1 soils on Mars are 
too high to be accounted for solely by sulfate phases and indicate 
acid fluid transport in high fluid:rock ratios to the location of the 
Paso Robles soils, general conditions shown to precipitate giniite. 
McCollom et al. (2018) also suggested giniite may help explain 
phosphate immobility in the Burns formation at Endurance 
Crater, as well as the potentially high P measured in alteration 
halos around fractures previously documented in the Stimson 
and Murray formations at Gale Crater suggesting the presence of 
phosphate-rich fluids (Yen et al. 2017). The P-containing fluids 
that formed these alteration haloes have also been quantitatively 
modeled (Hausrath et al. 2018). Rampe et al. (2017), suggest 
acidic phosphate-rich fluids in the lower Murray at Gale Crater. 
This indicates conditions suitable for the natural formation of 
giniite, especially considering giniite genesis at the Silver Coin 
Mine, Nevada. Therefore, formation of giniite or other ferric 
phosphate phases may have occurred at multiple locations on 
Mars. Updating and refining our fundamental knowledge of these 
minerals, and investigating them more deeply, will help us to 
detect and identify them on the martian surface.

Experimental methods
Materials

A natural sample of giniite was acquired from the Sandamab pegmatite, 
Namibia, by the RRUFF project (Lafuente et al. 2016). Sandamab (sometimes 
spelt Sandamap) pegmatite is the type locality for the mineral as originally identi-
fied by Keller (1980a, 1980b). The sample was a black fragment within a more 
massive sample of associated triphylite, hureaulite, yellow-greenish tavorite, and 
black heterosite and was preliminarily identified as giniite based on color and 
rough habit. RRUFF reference number is R060765 (Online Materials1 Fig. S1).

Analytical Methods
The broad scan Raman spectrum of giniite was collected from a randomly 

oriented crystal with a Thermo Almega microRaman system using a solid-state laser 
with a frequency of 532 nm at 150 mW and a thermoelectrically cooled CCD detec-
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tor. The laser is partially polarized with 4 cm–1 resolution and a spot size of 1 µm.
Chemical analyses were carried out on a Cameca SX-100 electron microprobe 

(EMP). The giniite sample was mounted in epoxy, polished, and carbon coated. 
Samples were analyzed using wavelength-dispersive spectroscopy (WDS) X‑ray 
analysis. Analysis conditions were 15 keV and 10 nA using a 2 μm beam. Standards 
and configuration package are detailed in Online Materials1 Table S1. Multiple 
analyses (n = 15, Fig. 1) of the giniite crystal were taken and averaged. EMP does 
not detect OH–, H2O, or Fe valence. To estimate OH– and H2O, ideal stoichiom-
etry as determined by Keller (1980a) of Fe2+Fe4

3+(PO4)4(OH)2·2H2O was used. To 
estimate the Fe valence ratio, the EMP data were fit to the ideal formula with Fe3+ 
= 4 formula units. Synthetic giniite is known to have variable Fe valence and this 
may be possible for natural giniite as well. Therefore, the EMP data were further fit 
to a range of stoichiometries based on Fex

2+Fe3+
(5-x)(PO4)4(OH)(3-x)·(1+x)H2O (Keller 

1980a; Rouzies et al. 1994) by varying x to determine the Fe3+ formula units and 
calculating the resulting Fe2+ formula units and the estimated OH– and H2O. A “best 
fit” was determined based on total Fe and PO4 formula units being closest to the 
ideal of 5 and 4, respectively, in the same fit.

Single-crystal X-ray diffraction (SC-XRD) of giniite was carried out using 
MoΚα radiation on a Rigaku XtaLAB Synergy diffractometer and radiation at 
50 kV and 1mA. All reflections were indexed on the basis of a monoclinic unit 
cell (Table 1; Online Materials1 Table S2). The systematic absence of reflections 
suggested the possible space group Pn or P2/n. The crystal structure was solved and 
refined using SHELX2018 (Sheldrick 2015a, 2015b) based on space group P2/n 
because it yielded better refinement statistics in terms of bond lengths and angles, 
atomic displacement parameters, and R factors. All H atoms were located from the 
difference Fourier maps. The ideal chemistry was assumed during the refinements. 
The positions of all atoms were refined with anisotropic displacement parameters, 
except those for the H atoms, which were refined only with isotropic parameters.

Results
Structure

X-ray diffraction data collected in this study allowed the 
calculation of a powder X-ray diffraction pattern that is a very 
close match to published patterns of both a synthetic ferric giniite 
(Frost et al. 2007) and Keller’s (1980a) natural giniite sample 

(Fig. 2). The close match suggests the study sample is indeed 
giniite. Final coordinates and displacement parameters of atoms 
in giniite are listed in Online Materials1 Table S3, and selected 
bond distances in Table 2. Calculated bond-valence sums using 
the parameters of Brese and O’Keeffe (1991) are given in Table 3. 
Crystallographic results of the single-crystal data indicate 
giniite is monoclinic P2/n, a = 10.3472(6), b = 5.1497(2), c = 
14.2338(7) Å, β = 111.175(6)°, and V = 707.24(7) Å3 (Table 1; 
Online Materials1 Table S2). Atomic positions in Online Materi-
als1 Table S3 show three unique Fe sites (here labeled Fe1, Fe2, 
and Fe3) and two unique PO4 sites (P1 and P2), as well as O and 
H positions. Determined Fe-O and P-O bond length values fall 
within expected ranges (Gagné and Hawthorne 2018; Kanowitz 
and Palenik 1998) with average (Fe1-O) bond lengths (2.14 Å) 
longer than the other two (2.01 Å) indicating that Fe1 contains 
Fe2+ while Fe2 and Fe3 contain Fe3+ (Table 2). Bond-valence 
calculations are consistent with this assignment and are generally 
as expected (Table 3) with the potential exception of the O7 site 
which is ~0.45 deficient.

Chemistry
Results of 15 EMP analyses (Fig. 1; Online Materials1 Table 

S4) were averaged into a single analysis which appears in Table 4 
along with Keller’s (1980a) original EMP analysis. Low analysis 
totals are the result of the unaccounted for OH– and molecular 
water, which the technique cannot directly detect. EMP can 
also not detect Fe valence state. To estimate wt% OH–, H2O, 
and Fe2+/Fe3+ for comparison to Keller (1980a), the analyses 
from this study and Keller (1980a) were fit to the ideal giniite 
formula of Fe2+Fe4

3+(PO4)4(OH)2·2H2O with Fe3+ = 4.00. This fit-
ting produced an average stoichiometry of (Fe2+

0.80Mn0.11Mg0.02)Σ0.93 

Fe4.
3+

00(PO4)4.03(OH)2.00·2H2O for this study and (Fe0
2+
.67Mn0.07 

Mg0.13)Σ0.87Fe4.
3+

00(PO4)4.05(OH)2.00·2H2O for Keller (1980a) data. 
Incorporating the estimates as wt% into the EMP data improved 
the analysis totals for this study and Keller (1980a) to ~97.15 
and 91.83 wt%, respectively (Table 4).

EMP data fit to a range of Fe valence ratios based on [Fex
2+ 

Fe3+
(5–x)(PO4)4(OH)(3–x)·(1+x)H2O] (Keller 1980a; Rouzies et 

al. 1994), with x used to determine the Fe3+ valence (i.e., 
Fe2+ was calculated), produced a “best fit” stoichiometry of 
(Fe2+

0.90Mn0.11Mg0.02)Σ1.03Fe3+
3.92(PO4)4.05(OH)1.92·2.08H2O (Online 

Figure 1. BSE image at 15 kV of giniite. Dots are locations of EMP 
analysis on the crystal. (Color online.)

Table 1. Summary of crystallographic data for giniite
Empirical chemical formula	 (Fe2+

0.80Mn0.11Mg0.02)Σ0.93Fe4 
3+(PO4)4.03(OH)2·2H2O

Ideal chemical formula	 Fe2+Fe4 
3+(PO4)4(OH)2·2H2O

Crystal symmetry	 Monoclinic
Space group	 P2/n
a (Å)	 10.3472(6)
b (Å)	 5.1497(2)
c (Å)	 14.2338(7)
β (°)	 111.175(6)
V (Å3)	 707.24(7)

Figure 2. Calculated comparison of XRD patterns of natural (top and 
bottom patterns) and synthetic ferrian (middle pattern) giniite. Patterns 
are calculated for CuKα radiation.
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Materials1 Tables S5 and S6). This fit is based on x = 1.08 to 
determine Fe3+, however, the calculated Fe2+ is 1.03 formula units.

A broad scan Raman spectrum in Figure 3 is consistent with 
previously reported giniite spectra. There is one non-equivalent 
hydroxyl group and one water molecule with two non-equivalent 
O-H pairs in giniite, consistent with the single sharp peak at 
3324 cm–1 that overlaps with the broad peak at ~3250 cm–1, 
typical of overlapping O-H stretching modes for OH and H2O 
(e.g., Frost et al. 2011; Kolesov 2006; Weber et al. 2018). PO4 
symmetric stretching modes are in the 800–1100 cm–1 range 
with asymmetric v3 stretching in the 1100 to 1200 cm–1 range. 
In phosphates, bands in the 400–650 cm–1 range are generally 

representative of O-P-O angle bending (both v2 and v4) (Frost et 
al. 2007; Hausrath and Tschauner 2013). The sharp bands in the 
200–440 cm–1 range are typical of Fe-O stretches (Aatiq et al. 
2016; Frost et al. 2007, 2013a, 2013c). For a plot of raw data, 
see Online Materials1 Figure S2.

Discussion
Minerals like giniite are a challenge to chemically characterize. 

They contain both ferric and ferrous iron as well as OH– and H2O. 
These components are often undetectable or undistinguishable by 
common analytical techniques, including electron microprobe. As 
a result, Keller (1980a) noted low EMP totals for giniite (Table 4) 
in that study. Using EMP and X-ray data, Keller (1980a) was able 
to produce a generalized formula for giniite accounting for the 
OH/H2O, which can be expressed as:

Fex
2+Fe3+

(5–x)(PO)4(OH)(3–x)·(1+x)(H2O).

Thermogravimetric analysis allowed Keller (1980a) to esti-
mate water content and thereby conclude “x” in the expression 
to be 1, which produced an Fe3+:Fe2++Fe3+ formula unit ratio 
of 0.80 (i.e., Fe2+/Fe4

3+). Thus, Fe2+Fe4
3+(PO)4(OH)2·2H2O was 

accepted as the ideal formula for giniite by the International 
Mineralogical Association (IMA).

In the present study, Raman data, which are generally con-
sistent with data from a previously characterized synthetic ferric 
giniite sample (Frost et al. 2007), confirm OH/H2O in the study 
sample. EMP analyses from this study, fit to the ideal formula 
by fixing Fe3+ = 4 formula units, generate an Fe3+:Fe2++Fe3+ 
formula unit ratio of ~0.80, and calculated stoichiometry even 
closer to the ideal formula than Keller’s original work fit in the 
same way (Online Materials1 Table S5). Like Keller (1980a), the 
original EMP analyses here produced low totals. However, ac-
counting for the Fe valence and OH/H2O produces totals of ~97% 
(Table 4). An additional stoichiometric best fit with the EMP data 
using the more generalized formula of giniite [Fex

2+Fe3+
(5–x)(PO)4 

(OH)(3–x)·(1+x)(H2O)] also produces an Fe3+:Fe2++Fe3+ formula 

Table 2. Select bond distances (Å) for giniite
Fe1–O8	 1.986(2)	 P1–O3	 1.518(2)
Fe1–O7	 2.069(2)	 P1–O1	 1.526(2)
Fe1–O2	 2.082(2)	 P1–O4	 1.544(2)
Fe1–O10W	 2.183(2)	 P1–O2	 1.553(2)
Fe1–O4	 2.253(2)	 Avg.	 1.54(2)
Fe1–O9H	 2.279(2)
Avg.	 2.14(12)
		  P2–O6	 1.513(2)
Fe2–O4 ×2	 1.995(2)	 P2–O5	 1.521(2)
Fe2–O2 ×2	 2.013(2)	 P2–O8	 1.537(2)
Fe2–O9H ×2	 2.024(2)	 P2–O7	 1.563(2)
Avg.	 2.01(2)	 Avg.	 1.53(2)
Fe3–O6	 1.938(2)
Fe3–O5	 1.954(2)
Fe3–O3	 1.969(2)
Fe3–O1	 1.985(2)
Fe3–O9H	 2.024(2)
Fe3–O10W	 2.226(2)
Avg.	 2.02(11)

Table 3. Bond-valence calculations for Fe-O and P-O bonds
	 Fe1	 Fe2	 Fe3	 P1	 P2	 Sum
O1			   0.543	 1.323		  1.866
O2	 0.356	 0.503 ×2↓		  1.233		  2.092
O3			   0.567	 1.354		  1.920
O4	 0.224	 0.529 ×2↓		  1.263		  2.016
O5			   0.591		  1.341	 1.932
O6			   0.617		  1.373	 1.990
O7	 0.369				    1.199	 1.568
O8	 0.462				    1.287	 1.749
O9	 0.209	 0.489 ×2↓	 0.489			   1.187
O10	 0.271		  0.283			   0.554
Sum	 1.891	 3.042	 3.090	 5.173	 5.200

Table 4.	 Comparison of chemical analyses of giniite by EMP in oxide 
wt%

	 Analysis	 Fittedc

(wt%)	 Keller	 This studyb
		  Keller	 This study	 This study	 Ideal

	 (1980a)				    (1980a)	 ideal	 best fit
Fe2O3	 46.07	 51.25	 (0.34)		  39.21	 42.74	 41.73	 43.80
FeO	 –	 –	 –		  6.17	 7.66	 8.57	 9.85
Al2O3	 1.20	 –	 –		  1.20			 
MgO	 0.68	 0.10	 (0.02)		  0.68	 0.10	 0.10	
P2O5	 36.99	 38.34	 (0.25)		  36.99	 38.34	 38.34	 38.94
MnO	 0.63	 1.07	 (0.20)		  0.63	 1.07	 1.07	
H2OTot

a	 –	 –	 –		  6.95	 7.24	 7.31	 7.41
  Total	 85.57	 90.76	 (0.37)		  91.83	 97.15	 97.11	 100.00
Note: This study compared to Keller (1980a). Parenthetical values are 1 standard 
deviation.
a H2OTot is the wt% sum of OH– and molecular H2O.
b Based on 15 analyses.
c Values in table are based on a calculated fit. Fits for Keller and “This study 
ideal” based on ideal formula and fully occupied Fe3+ sites. “This study best fit” 
represent best-fit result from a range of calculated stoichiometries using EMP 
data from this study.

Figure 3. Broad scan Raman spectra of giniite showing band 
consistent with giniite chemistry and structure. Typical PO4, Fe-O, 
and O-H ranges are shown at bottom of figure and are consistent with 
Raman of synthetic giniite and other minerals with structure similarities. 
second-order Savitzky-Golay filter applied (interval of 10). See Online 
Materials1 Figure S2 for plot of raw data. (Color online.)
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unit ratio of ~0.80 (i.e., Fe2+
1.03/Fe3+

3.92, or x ~1) (Online Materials1 
Table S6). Thus, chemical data in this study are consistent with 
Keller (1980a) and the ideal giniite formula.

It is of note, however, that in determining the ideal formula 
for giniite, Keller (1980a) assumed the divalent site stoichiometry 
to be a fixed integer. Several studies have documented synthetic 
giniite with Fe3+:Fe2++Fe3+ ratios ranging from 1 (ferrian giniite) 
to as low as 0.65 (e.g., Rouzies et al. 1994; Roncal-Herrero et 
al. 2009; Duan et al. 2013; Gonçalves et al. 2017; Priambodo 
et al. 2017). Consequently, Fe2+ is observed to range from 0 to 
1.7 formula units while still maintaining the giniite structure. 
In fact, one of the interesting aspects of giniite is the range of 
chemistry, and even morphology, that the mineral can possess 
while still maintaining the giniite structure (e.g., Jambor and 
Dutrizac 1988; Zhang et al. 2013; Gonçalves et al. 2017; Martins 
et al. 2021). Some of this range can be attributed to analytical 
uncertainty. Data in this study, for instance, allow for variation 
in the Fe3+:Fe2++Fe3+ ratio of 0.81 to 0.76 (Fe2+ content of 1.0 
to 1.2) before the summed Fe or PO4 stoichiometry begin to 
deviate too far from giniite. However, the observed range in the 
literature is too large to be explained by this uncertainty alone. 
While these variations occur in synthetic forms of giniite, and this 
study focuses on a natural sample as would be found on Mars, 
the synthesis conditions of at least some of the giniite discussed 
here are similar to the known petrogenetic/minerogenetic condi-
tions of natural giniite in both pegmatite and ore body settings. 
Therefore, though the data in this study are consistent with the 
ideal Fe3+:Fe2++Fe3+ ratio of 0.80 inferred by Keller (1980a), this 
ratio may only be nominally true in natural specimens.

Crystallographically, Keller (1980a) originally reported 
giniite as orthorhombic, and this was how it was initially docu-
mented as a new mineral (Fleischer et al. 1980). Follow-up work 
by Keller (1980b) showed that the orthorhombic determination 
was a probable consequence of unrecognized twinning, and the 
natural mineral was actually monoclinic. However, synthetic 
giniite has still been reported as orthorhombic (e.g., Liu et al. 
2017; Zhang et al. 2013), possibly as a product of confusion from 
the literature. Single-crystal data/refinement results in this study 
of natural giniite indicate our sample to be monoclinic, consistent 
with Keller (1980b).

The giniite structure can be described as short chains (Fe1-
Fe2-Fe1 trimers) of face-sharing irregular FeO6 octahedra 
oriented along [100], corner-linked by both sixfold-coordinated 
evenly spaced FeO6 octahedra associated with Fe3 arranged 
in columns along [010], and alternating (P1)O4 and (P2)O4 
tetrahedra (Fig. 4). In the context of this description the Fe1 
site houses the ferrous iron component. The O atom of the H2O 
molecule is bonded to ferric Fe3 and ferrous Fe1 atoms. The O 
atom in the OH group is bonded to all three Fe atoms and, with 
H, it is tetrahedrally coordinated (Fig. 4). The structure shares 
some similarities with that of barbosalite [Fe2+Fe2

3+(PO4)2(OH)2] 
(Poienar et al. 2020; Redhammer et al. 2000), which also has 
Fe trimers joined to phosphate and an additional Fe octahedral 
site, although in that mineral the trimer valences are ordered 
Fe3+, Fe2+, Fe3+, whereas in giniite the trimers are sequenced 
Fe2+, Fe3+, Fe2+. These similarities are in-line with speculation by 
Keller (1980a) that giniite shares certain structural components 
with other Fe-hydroxy-phosphates and that in more generalized 

pegmatitic settings giniite may take the place of barbosalite in 
the evolution of secondary minerals associated with the decom-
position of triphylite.

Of further interest in this study is the “O7” site associated with 
the Fe1 and P2 sites. Fe-O and P-O bond lengths and bond-valence 
calculations are generally as expected (Tables 2 and 3). However, 
bond valence sums for the O7 site are deficient (~1.5 e). Non-ideal 
bond valence sums can result for many reasons, including vacan-
cies or undetected substitutions/components in the structure. In 
this study, the configuration of the O7 sites results in them being 
adjacent across an opening in the giniite structure (Fig. 4; Online 
Materials1 Fig. S3). The Fe1-O7-P2 bond angle is 127.33°, and the 
O7-O7 distance is approximately 2.46 Å. It may be possible that 
H+ protons occupy some of these “O7 voids” oscillating between 
O7 sites, and a shared H+ proton would account for the valence 
value. Proton oscillation or “hopping” between sites has previ-
ously been indicated in the Fe-phosphate minerals barbosalite 
[Fe2+Fe2

3+(PO4)2(OH)2] and ludlamite [(Fe,Mn,Mg)3(PO4)2·4H2O] 
where H+ ions have been suggested to oscillate between OH sites 
and PO4 (Frost et al. 2013a, 2013c). Many analytical techniques 
cannot detect H+, and for techniques that can, because there is 
already significant OH– or H2O in giniite, it is unlikely such ad-
ditional H+ would be easily identified. If undetected H+ resides 
in the “O7 void,” this may explain the bond valence deficiency 
and add to the interesting nature of the mineral.

Giniite has gained recent attention in industry and as a poten-
tial mineral occurring on Mars. The characteristic of the mineral 
to maintain the giniite structure and chemistry while exhibiting 
different morphologies based on the formation environment mean 
it could be a powerful indicator of past environments and poten-

Figure 4. Giniite structure viewed down b (top) and a (bottom) axes. 
Four unit cells pictured. Spheres on tetrahedral and octahedral corners 
are oxygen. Smaller spheres are H+. O7 oxygen atoms discussed in the 
text are labeled in lower right cell of the top panel. Online Materials1 
Figure S3 is a close up of this “void” area. (Color online.)

Downloaded from http://pubs.geoscienceworld.org/msa/ammin/article-pdf/108/3/430/5788715/am-2022-8138.pdf
by Univ of Nevada Las Vegas user
on 07 March 2023



ADCOCK ET AL.: STRUCTURE AND CHEMISTRY OF GINIITE AND IMPLICATIONS436

American Mineralogist, vol. 108, 2023

tially of life on Earth or Mars. Overall, the results of this study 
refine and better detail the structure of giniite and confirm that 
giniite is indeed a monoclinic mineral rather than orthorhombic. 
The results here are also consistent with the ideal formula, includ-
ing the Fe valence ratio, for natural giniite. However, based on 
synthetic giniite, variations in the Fe valence ratio cannot be ruled 
out in the natural mineral, and this should be further investigated 
in the future. Along with morphology, the Fe valence ratio may be 
an indicator of formation conditions. In addition, if considering 
giniite as a potential martian resource, valence can influence how 
and how much water and H+ can be evolved from the mineral.

Raman spectrometers, like the spectrometers on the SuperCam 
and Scanning Habitable Environments with Raman and Lumi-
nescence for Organics and Chemicals (SHERLOC) instrument 
suites on Perseverance, X-ray diffractometers, like the CheMin 
instrument on Curiosity, and the Mössbauer instruments car-
ried by Spirit and Opportunity all have the potential to identify 
giniite in situ. This is especially the case if a combination of 
these instruments is deployed. We encourage the deployment of 
these mineralogical instruments on future Mars missions with 
data libraries that include secondary phosphates to help identify 
minerals like giniite that can elucidate habitability and potentially 
be used as a resource.

Implications
Giniite has become a recent mineral of interest as a poten-

tial component in applications, including water purification, 
energy storage, and bio-medical materials on Earth. However, 
secondary phosphate minerals, like giniite, are also likely to 
hold a wealth of information regarding past martian surface 
processes and past environments. If confirmed on Mars, the 
variable morphologies and broad formation conditions of giniite 
may make the mineral especially important as an indicator of 
past environments and habitably. The discovery of giniite with 
tubular morphologies on Mars, or in samples returned from 
Mars, might also be an indicator of past life on the planet. In 
addition, terrestrial investigations of giniite as a resource in 
technology and industry have potential implications for Mars. 
If substantial amounts of giniite are present on Mars, long-term 
human exploration missions to the planet may be able to utilize 
the mineral in applications developed on Earth (e.g., water 
purification, energy storage, bio-medical materials). Beyond 
this, giniite is also potentially a resource for phosphate, water, 
and fuel generation on Mars.

Deepening our knowledge base of secondary minerals that 
are possible or probable on the martian surface, like giniite, will 
enhance our resource flexibility during long-term missions on 
Mars while also yielding insight into the martian past. Second-
ary phosphate minerals in samples potentially collected by the 
Perseverance rover and returned by future missions will further 
our knowledge of ancient aqueous environments on Mars, their 
habitability, and potential resources for future human missions. 
However, if minerals like giniite are to be fully explored as 
scientific and practical resources, up-to-date fundamental data, 
like those provided in this study, are essential.
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