NEW MINERAL NAMES

Preobrazhenskite

YA. YA. YARZHEMSKII. Preobrazhenskite, a new borate of the saliferous strata of the Inder uplift. *Doklady Akad. Nauk S.S.S.R.*, 111, 1087–1090 (1956) (in Russian).

The mineral is wide-spread in small amounts in several parts of the area. It occurs in colorless, lemon-yellow, and dark gray nodules in fine-grained halite-polyhalite rock and encloses kaliborite and boracite. In places it has been partially replaced by inyoite.

Chemical analysis by E. M. Petrov and V. P. Erekhovich gave B_2O_3 60.91, MgO 20.82, CaO 0.01, K 0.25, Na 0.38, Cl 0.82, Br 0.008, SO₃ not found, R_2O_3 0.11, SiO₂ 0.13, insol. 0.06, H_2O^- 0.20, H_2O^+ 14.30, sum 98.00%. This corresponds to 3 MgO \cdot 5B₂O₃ \cdot 4.5H₂O.

Hardness $4\frac{1}{2}$ -5. G. not given. Optically nearly uniaxial, positive, with $ns \gamma$ 1.594-1.596, $\beta \simeq \alpha$ 1.573-1.576. X-ray study by V. I. Appolonov indicated low symmetry; the powder data (not given M.F.) differ from those of other borates. A D.T.A. curve by V. P. Ivanov shows a large endothermic break at 540-600°, a sharp exothermic break at 730-750, and a moderate endothermic break at 900-950°.

The name is for Pavla Ivanovich Preobrazhensk (1874–1944), "tireless investigator of salt deposits of the U.S.S.R."

MICHAEL FLEISCHER

Mauritzite

L. TOKODY, T. MÁNDY, AND S. NEMES-VARGA. Mauritzit, ein neues Mineral von Erdobenye (Ungarn). Neues Jahrb. Mineral., 1957, No. 2, 33-39.

The mineral occurs in a quarry in hydrothermally altered pyroxene-andesite at Mulatóhegy near Erdöbénye, Hungary, with quartz, tridymite, opal, barite, halotrichite, calcite, siderite, and ilmenite. It is in mammillary forms, intimately mixed with chalcedony ("quartzin"). It is bluish-black, dull, streak and powder yellowish-brown with a greenish tinge. Sp. gr. and hardness not determined. Under the microscope straw-yellow, transparent, apparently isotropic with mean n 1.6035.

Analysis gave SiO₂ 38.62, TiO tr., Al₂O₃ 6.29, Fe₂O₃ 19.90, FeO 6.29, MnO 0.12, MgO 9.83, CaO 1.42, K₂O, Na₂O, and P₂O₅ tr., H₂O⁻ 12.90, H₂O⁺ 4.99, CO₂ 0.18, sum 100.54%. This corresponds, after deducting all SiO₂ as quartz and CO₂ as CaCO₃ to 2 (Mg,Fe) O · (Fe, Al)₂O₅·5H₂O. The water is all lost at 150° and the dehydration is reversible for material heated up to 200°. The D.T.A. curve shows a single large endothermic break at 150°. The mineral dissolves in cold (1+1) HCl, leaving a residue of chalcedony.

The x-ray pattern shows lines of following spacings (Å) and intensities: 14.5 5, 4.54 4, 2.619 4 (broad), 1.735 2, 1.531 5, 1.318 3 (broad). This is shown to correspond closely to the pattern of a member of the montmorillonite group with a_0 5.31, b_0 9.19A.

The mineral is interpreted as being a silica-free montmorillonite of formula

$(Al_{1.52}Fe_{1.48}^{+3}H_{20})(Fe_{1.58}^{+3}Fe_{1.07}^{+2}Mg_{3.03}Ca_{0.31})O_{20}(OH)_4.$

The name is for Bela Mauritz, 1881-, Hungarian mineralogist.

DISCUSSION.—I find it very difficult to accept the authors' interpretation. The mineral corresponds very well with a montmorillonite intermediate between nontronite and griffithite (compare Faust, J., Wash. Acad. Sci. 45, 66–70 (1955)), if most of the SiO₂ found belongs to the mineral. The powder pattern shows no quartz lines and the authors' interpretation means that 38.6% quartz, even though present as chalcedony, gave no pattern. It is also hard to believe that a hydrous oxide with the formula calculated could be dehydrated and rehydrated reversibly when heated to temperatures up to 200°. Further work is obviously necessary.

M. F.