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Abstract

Glaserite, KsNa[SO.): and its high temperature isotype “silico-glaserite,” a-Cas[SiQ.]; mer-
winite, CasMg[SiO.}.; larnite, 8-Ca:[SiO.]; room temperature 8-Ko[SO.]; bredigite, ca. Ca;Mg
[SiOd}s; K[LiSO.]; and palmierite, K.-Pb[SOx]. are the bases of the atomic arrangements for over
100 compounds. Some of these compounds are of considerable interest to the cement, blast
furnace, brick and fertilizer industries.

The glaserite structure type consists of one large alkali cation which is ideally 12-coordinated
by oxygen atoms, six of which define the vertices of an elongate trigonal antiprism and six of
which reside in an hexagonal ring in the plane of the large alkali. The tetrahedral grouping
around the antiprism defines a “pinwheel” where the apical oxygens point either up (u) or
down (d).

The bracelet is a mathematical object, a loop with n nodes involving m symbols, where m <
n. For the pinwheel, » = 6 (an hexagonal ring) and m = 2 (u or d). Combinatorially, the
total number of distinct bracelets is 13. For any bracelet there is a pinwheel which, idealized,
defines the maximum coordination number of the central large alkali. The maximum coordina-
tion number is 12-p where 0 = p =< 6 and where p are the number of tetrahedral apical oxy-
gens coordinating to the alkali. The bracelets can be used to construct, by condensation, ideals
of real and hypothetical atomic arrangements found in the Ca.[SiO,] polymorphs and many of
the alkali sulfates.

The coordination polyhedra of interest include T (tetrahedron); M (octahedron, = p = 6); X122}
(which, for p = 0, has ideal symmetry 32/m); Y1 (point symmetry 3m) and F12] (cuboctahedron).
Condensation of the bracelets and their associated pinwheels defines the maximum coordination
numbers for all the polyhedra in the ideal model. These models can be used to classify known struc-

tures and to retrieve hypothetical ones, one of which may correspond to bredigite.

Introduction

In a recent detailed atomic arrangement analysis
of merwinite, CasMg[SiO,]o (Moore and Araki,
1972), it became abundantly clear that a review of
the calcium orthosilicate structures was necessary in
order to advance our knowledge of these related
structures. As this review progressed, it became evi-
dent that extensive confusion and uncertainty
abounds in the literature. This is not surprising in
light of the fact that the literature on the subject of
calcium orthosilicates is voluminous, largely on ac-
count of their crucial importance in the cement,
clinker, slag, fertilizer and brick industries.

This paper is not intended to be an exhaustive
treatise on the subject, but shall draw from pertinent
literature only where that knowledge is imperative
in advancing some general geometrical models of
these structures. Despite the fact that no less than
100 compounds have been characterized as isotypes
of the structure types which have bearing on this
discussion, only a handful of papers treat the gen-
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eral problem of the structural aspects of calcium
orthosilicate polymorphism in detail. The attempts to
show structural interrelationships among key com-
pounds have been meager indeed, augmented by the
fact that only a few reasonably precise structure re-
finements of the calcium orthosilicates have been
reported. But few papers have attempted to afford
the general relationships among these structures and
none to my knowledge utilizes the polyhedral ap-
proach which shall be the theme of this contribution.

The structure types included in this discussion are
merwinite, Ca;Mg[SiO,).; glaserite, K3Na[SO,]s, and
its high temperature isotype “silico-glaserite”, a-Cas
[SiO.]; larnite, 8-Ca,[SiO4]; room temperature 8-Ks
[SO,] and its myriad isotypes; bredigite, «,"-(Ca,
Mg).[SiO.]; K[LiSO4]; and palmierite, KsPb[SO4]s.

The Glaserite Meodel: Its Geometry

All compounds discussed evince a profound hexa-
gonal substructure which, in many instances, has
led to obfuscation in the literature regarding identi-
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fication by powder diffractometry. Glaserite is the
simplest arrangement, the one whose geometry de-
fines the substructure observed in the other com-
pounds. Glaserite, KsNa[SO,]. and the structurally
similar aphthitalite, KoNaNa[SO,],, have been investi-
gated by several workers but highly accurate struc-
ture refinements appear to be wanting.

The structure of aphthitalite appears as a polyhedral
diagram in Figure 1. It derives from the study of
Bellanca (1943). The large cation polyhedra, when
idealized, consist of three kinds, and illustration of the
first two in Figure 2 shall be the key theme in this
subject. The glaserite structure was investigated by
Gossner (1928) and re-examined by Fischmeister
(1962) from the standpoint of cation disorder. One
large cation coordination polyhedron (Fig. 2a) consists
of a 12—coordinated trigonal antiprism with six
additional meridional anions in hexagonal outline,
with ideal point symmetry 32/m. It is identical to the
idealized polyhedron discussed by Moore and Araki
(1972) about the Ca(1) cation in merwinite. The second
large cation coordination polyhedron involves, when
idealized, 10 nearest anions which possess 3m trigonal
symmetry (Fig. 2b). Again, six anions are situated on
the vertices of a meridional hexagon, three above share
the tetrahedral base and one below the tetrahedral
apex. This polyhedron corresponds to the ideals found
for the Ca(2) and Ca(3) coordination polyhedra in
merwinite. The remaining polyhedron, of point
symmetry 32/m, is a trigonal antiprism, whose ideal is
the octahedron. This corresponds to the Mg co-
ordination polyhedron in merwinite. In glaserite,
Gossner (1928) ascribes K to this polyhedron, which
has been documented by Wyckoff (1965), but it is more
likely that Na belongs to this site with the K cations in
the 12—coordinated site.

Several geometrical games can be played with the
glaserite structure type. If the trigonal antiprism of the
12—coordinated polyhedron is idealized to an octa-
hedron and defined with an edge equal to the tetra-
hedral edge, the hexagonal close—packed network in
Figure 3a results. Geometrically, the apices of the
tetrahedra are at the same heights as those of the
octahedra, so become second nearest neighbors, and
the true coordination number of the central large
cation is reduced to 6. In actuality, the ionic radii of
the K* and S** cations are propitiously related to
assure a close approximation to 12-coordination by
oxygens. This is demonstrated by construction in
Figure 4. From the ionic radii tables of Shannon and
Prewitt (1969), an ideal KO, octahedron is constructed

Fic. 1. Polyhedral diagram of the glaserite atomic ar-
rangement. The central trigonal antiprism and six circum-
jacent tetrahedra are stippled. The KOi arrangement is
shown as a spoke diagram.

using rg+ = 1.38 A and rg.— = 1.40 A. This results in
an ideal octahedral edge distance, / = 3.93 A. For a
regular octahedron, the altitude, s, normal to opposing
faces would be (I/2) tan 60° sin 70° 32" = 0.825 I
Thus, & = 3.24 A. Now, define the tetrahedral edge =
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Fic. 2. Three large cation coordination polyhedra. a.
XU consisting of trigonal antiprism (triangles) and six
meridional anions. b. Y™, which occurs above and below
tetrahedra. c. F®4, the cuboctahedron.
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Fig. 3a. Condensation of trigonal antiprisms and circum-
jacent tetrahedra to form the sheet of X3 polyhedra.

F1e. 3b. Condensation of trigonal antiprisms (=—octa-
hedra) and tetrahedra to form the sheet of MgQs octahedra
and SiO, tetrahedra in merwinite. The merwinite cell is
outlined.

1/2; this results in the six circumjacent tetrahedral
apices around the central octahedron situated in the
plane of the large cation at the octahedral center.
Define the distance from the octahedral center to its
vertex = L. The distance from the octahedral center
to the tetrahedral apex in the plane would be L' =
(V2/V3IL + (V2/V6L = 1.063L. 1t is clear

that this ideal model closely approximates the 12—
coordinated polyhedron, where the meridional dis-
tances are only slightly longer than the apical octa-

hedral distances.
In the actual glaserite structure, the KO,, poly-

hedron is significantly distorted, such that the “octa-
hedral” component is elongated to a trigonal anti-
prism. Such an arrangement can be appreciated in
Figure 1, where the approximate O(2) coordinates
would lead to an estimated altitude 2 ~ 0.600 X
7.3 A = 4.4 A, a very significant dilation from the
3.2 A altitude computed on the basis of ionic radii
and the ideal octahedron, This accommodates the
geometrical problem encountered in Figure 4. A
tetrahedron whose edge is only half that of the ideal
octahedron would be too small for the O—O’
tetrahedral interatomic distance which would be 3.93
/2 = 196 A. The actual tetrahedral edge is ap-
proximately 20 percent larger than the geometrical
construction and contributes to further dilation of
the ideal “octahedron” into an elongate trigonal anti-
prism.

The pinwheel. The key to the relationship of
glaserite with the other structures discussed herein is
the disposition of the tetrahedra about the octahedral
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Fic. 4. Construction of MOs trigonal anti-
prism (=octahedron) and one of the circum-
jacent tetrahedra where the tetrahedral edge is
half the octahedral edge. ¢ are the octahedral
vertices, P the tetrahedral apex. The dashed line
approximates the [SO.] tetrahedron when M =
K*.
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component of the KO,, polyhedron. This grouping,
featured in Figure 5a, defines a cluster with point
symmetry 32/m and I shall refer to it as the “pin-
wheel”. Condensation of such pinwheels leads to the
diagram in Figure 3a. We have encountered the
complement of this pinwheel in the close-packed slab
of the merwinite structure, where six SiO, tetrahedra
are grouped around the MgO, octahedron as depicted
in Figure 5b. Condensation of this pinwheel leads to
the hexagonal close-packed sheet in Figure 3b. Such
an arrangement is complementary to the glaserite
arrangement since the six tetrahedral vertices are as far
removed as possible from the octahedral core and
cannot be associated in the inner coordination sphere.
To derive and describe the other structures in this
paper, we shall engage in a topological exercise
utilizing bracelet theory.

The Pinwheel Bracelets

There does not appear to be a strict mathematical
definition for the term “bracelet,” but Gardner
(1969) applies the term to a cyclic chain involving
symbols which shall be manipulated in a combina-
torial way. Thus, a bracelet is defined as a cyclic col-
lection of n-beads or nodes involving m symbols
where m < n. It is also to be noted that the bracelets
may possess the property of complementarity, that
is, where the interchange of symbols for some m
leads to further solutions.”

The pinwheel grouping is reduced to a bracelet
problem in the following manner. In any pinwheel,
tetrahedral apices point either up (u) or down (d).
Thus, the symbols are distributed at the nodal points
of an octahedron and the possible combinations,
including complements, are derived. We set n = 6
and m = 2. The complements in this case are de-
rived by a 60° rotation of the symbols in their proper
order. The solutions are 6u = 1; Su + 1d = 2;
4u + 2d = 4; 3u + 3d = 6, with 13 possible
arrangements in all. These arrangements are depicted
in Figure 6. They are symbolized by the combination
(u + d),, where (4 + d),- indicates its complement.

1Some definitions are in order. Depending on their
utility, nodes may represent vertices of a polyhedron, the
center of a polyhedron, efc. Connections between nodes
are branches (for example, edges of a polyhedron). If
nodes and branches are connected such that tracing a path
without retracing one’s steps leads to the starting point then
the chain of nodes and branches is cyclic and constitutes
a loop. In this study, each node has a symbol ascribed
to it (in this case, either “u” or “d”).

F16. 5. a. Pinwheel for the X"? cation in glaserite. b. Pin-
wheel for the Mg™ octahedron in merwinite.

Now, the geometrical restriction is imposed on the
pinwheels thus derived. We consider only those
tetrahedral altitudes which conform to the glaserite
model, that is, the height of the tetrahedron from
base to oposing vertex is exactly half the height of
the trigonal antiprism. Thus, associated with each
bracelet configuration in Figure 6 are tetrahedral
apical positions which may potentially be coordinated
to the central large cation. For convenience of vis-
ualization, potentially coordinating apical positions
are drawn as bold disks.

It is necessary to discuss complementarity of the
bracelets in terms of the glaserite structure. As
Figure 1 reveals, the repeat distance normal to the
hexagonal outline is the repeat of the pinwheel and
its complement above. In the ideal construction, the
central large cation at level z = 0 possesses a brace-
let whose complement corresponds to the ideal coor-
dination of the central large cation at z = 1/2.
Thus, for any specified bracelet and its associated
pinwheel, the complementary pinwheel occurs above
and specification of any one leads to the other.
It is also worthy to note that (4 + 2), and (4 + 2)»
each possesses a self-complement, where the central
large cations at both levels would possess the same
ideal configuration. The remaining large cations
situated above and below the tetrahedron are auto-
matically defined: in the ideal arrangement, they
coordinate to six oxygens associated with the trigonal
antiprism, to the three oxygens of the tetrahedral
base, and to the tetrahedral vertex, resulting in an
ideal coordination number of 10.

Discussion of the Structures

The pinwheels derived from the bracelets can now
be used as modules for constructing hypothetical
structures. Such an approach is reminiscent of the
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d d d d

u u u
d d u u d d Fia. 7. Condensation of the (4 + 2)a = (4 + 2)a
bracelets to form a periodic array.
d d d d B U initially used when the first pinwheel is constructed,
d

u which limit to some extent the symbols permissible
(4+2)a=(4+2)c’ (3+3)a (3+3)c for the adjacent bracelets. Some modules, such as
(3 + 3),and (4 + 2),, lead to simple arrangements

u u d
d ” d " " " with small cells, others do not. For example, (3 +
3). must always be used in combination with some
other bracelet at the same level to generate a repeat-
d d d u d d ing pattern.
It is only necessary to specify the connection of

(4+2)b(=j(4+2)b' (3+3)a’ (3+%)C/ bracelets corresponding to one level along the pin-
wheel repeat axis. This is clear since the comple-

. mentary solution at z + 1/2 is automatically de-

u u fined and that the remaining large cation sites above
a u o : ; : G S .,

S

u
(6+0)a

FiG. 6. The thirteen distinct bracelets involving six nodes
and two symbols distributed over trigonal antiprismatic
vertices. Solid disks represent tetrahedral apices coordinating
to the central large cation.

study of Smith and Rinaldi (1962) who generated
cells based on parallel 4- and 8-membered tetra-
hedral loops, and used these solutions to clarify the
geometrical ideals of the feldspars, harmotome and
paracelsian structures.

Despite the fact that 13 distinct pinwheels exist,
the possible combinations in periodic arrays appear Fic. 8. Condensation of pinwheels corresponding to Fig-
to be quite limited. This derives from the symbols ure 7.
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and below the tetrahedra are dictated by the orienta-
tions of those tetrahedra.

Consider the bracelet (4 + 2), which has a self-
complement. Figure 7 reveals that the condensation
of the bracelets of the same kind corresponds to the
nodal points of the hexagonal tessellation. The sym-
bols around any hexagon are identical to any other
hexagon within the repeat unit. This solution appears
in Figure 8. It has formula unit 4M,[TO,] and
possesses the space group Pama for the geometrical
ideal. In the inorganic world, it corresponds to the
atomic arrangement of room temperature K.[SO,].

Glaserite. The glaserite structure is derived from
the bracelet (3 + 3), and possesses ideal 12-coordi-
nation. Its complement above, (3 + 3)., possesses
a coordination polyhedron which is a trigonal anti-
prism. It is evident why the K atom was placed in
the (3 + 3), location and Na in (3 + 3)., re-
versed from the inferred ordering scheme suggested
by Gossner (1928).

The crystal cell criteria for glaserite, KNaKs[SO,],
are a = 5.65 and ¢ = 7.29 A. This is compared
with “silico-glaserite,” o-Cas[SiO,], the high tempera-
ture calcium orthosilicate polymorph: Douglas
(1952) reports @ = 5.46 and ¢ = 6.76 A.

Room temperature K,[SO ,1(3-K,[SO,]) and larnite
(B-Ca,[Si0,]). The structure of room temperature
K,[SO4] (also called B8-K3[SO.]) was determined
by Robinson (1958); in addition, the isotypes
Cso[CrO,] (Miller, 1938) and K5[CrOy4] (Zacharia-
sen and Ziegler (1931)) were investigated from a
structural standpoint. Wyckoff (1965) lists 47 com-
pounds belonging to this structure type.

For 8-K [SQ,), the crystal cell criteria are a = 7.46,
b = 5.78,c = 10.08 A, space group Pnma, Z = 4. The
a—direction is the pinwheel repeat and b = 5.78 ~
¢/V3 = 5.82 A emphasizes the pseudo-hexagonal
character of the x—axis projection. These values are to
be compared with @ = 5.65 and ¢ = 7.29 A reported
by Gossner (1928) for glaserite.

The point symmetry of the (4 + 2), pinwheel is
m and the structure reported by Robinson (1958) is
shown as a polyhedral diagram in Figure 9. The K
atoms at the two levels are split away from the ideal
pinwheel center, with K at z = O oriented in the
direction toward the three oxygen atoms at tetra-
hedral apices. 1 also note that the pseudo-trigonal
antiprism oxygens in that direction are dilated
whereas those at the opposing vertices are com-
pressed. This suggests an approximation of 6 + 3 =
9-coordination.

Fic. 9. Polyhedral diagram of the room temperature
KJSO,] structure. Compare with Figure 8. The KOi
polyhedron (=Y©?) is shown as a spoke diagram.

Unfortunately, Robinson did not present complete
interatomic distance data, but such information can
be found for the structure of the (NHy)2[WS,]
isotype reported by Sasvéari (1963). The (NH4)"
cation grouped in the pinwheel possesses 9 nearest
neighbor S atoms with N-S ranging from 3.10 to
3.58 A. The remaining (NH,)-S polyhedron, which
is situated above the tetrahedral base, possesses, as
expected, 10-coordination with N(1)-S ranging from
3.47 to 3.96 A. The Sasvéri article is also note-
worthy in that it is one of the few in which an at-
tempt has been made to discuss these structures on
a more general basis.

The larnite, 3-Cas[SiO4], structure was reported
by Midgley (1952) as a distorted B-K»[SO4] struc-
ture. The crystal cell parameters are a = 5.48,
b = 676, c = 9.28 A, 8 = 94°33’, P2,/n. The
comparison with B-Ko[SO4] is evidently a; = bg,
by = ag, ¢, = cp. The space group of larnite is the
subgroup of Prnma in the proper orientation. Larnite
is topologically equivalent to 8-Kz[SO4] but is geo-
metrically distorted in such a manner to violate the
mirror plane of the ideal arrangement in Figure 8.
The explanation appears to be a matter of compro-
mise between ideal geometry (see Figure 4) and
actual coordination number. The evidence appears in
Midgley’s interatomic distance tables. Ca(2), which
is in the pinwheel, possesses only 8-coordination
with Ca-O 2.36-2.80 A, and Ca(l) above the
tetrahedral base possesses 6 inner coordination
spheres ranging from 2.30-2.75 A and 6 outer co-
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Fic. 10. Condensation of bracelets in Figure 6 which may
correspond to the bredigite arrangement.

ordination spheres from 2.98-3.56 A. It is clear from
this discussion that the ideal arrangements are
approximated in crystals only when an approach
to the geometrical ideal in Figure 4 is evident.
Briefly, controlling factors are the ionic radius ratio
of the large cation to the small tetrahedrally co-
ordinated cation, a point which shall be discussed
in greater detail further on.

Bredigite («,”-Ca; [SiO,]): An Attempt At
Postulating Its Structure

Evidently, no three-dimensional solution of the
bredigite atomic arrangement has been reported.
This is not surprising in light of its large cell with
fairly low symmetry. Douglas (1952) presented a
detailed single crystal investigation on the com-
pound, which is also called ay’-Cao[SiO;]. She reports
a = 1093, b = 6.75, ¢ = 18.41 A, space group

Fic. 11. Condensation of pinwheels corresponding to Fig-
ure 10.
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Pmnn, Z = 16. These values are essentially those
of the “ideal” B3-K;[SO,] equivalent of g-larnite, but
with doubled a and c axes. It is clear that the pin-
wheel repeat direction is the b-axis. Douglas’ study
appears to be a careful investigation and she points
out the cell relationship with 8-K.[SO4]. In addi-
tion, she notes that the intensity distribution indi-
cates a centrosymmetric crystal.

A structure for bredigite is postulated which is
consistent with the cell criteria of Douglas and which
is derived directly from the bracelet combination
which allows Pmnn symmetry. Figure 10 is a con-
densation diagram of the bracelets which lead to ideal
symmetry Pmnn, and Figure 11 is the correspond-
ing condensation of pinwheels which effectively is
an idealized model of the proposed structure. It is
made up of 2Ca in the bracelet (3 + 3), 2 Ca
in (3 + 3)q, 2Cain (3 + 3),, 2Cain (3 + 3),
and 8 Ca in (4 + 2),. Figure 6 reveals that the
ideal coordination numbers would be 8, 10, 12, 6,
and 9 respectively. This would suggest a bredigite
composition CaygMoMy[TO4);¢ where M and M’ are
smaller “impurity” cations of maximum coordination
numbers 6 and 8, respectively. This would suggest
a solid solution range of Mg?* for Ca®* between
(Cay.7sMgo.25) and (Ca, gsMgy12), where the upper
bound is Mg?* in the (3 + 3), environment, This
range is close to compositions of synthetic bredigite
reviewed by Biggar (1971). The remaining 16 Ca
are in the positions above and below the tetrahedra
and are automatically defined from the bracelets
specified beforehand. Their coordination numbers
average 10.

No assertion is made that this is the correct struc-
ture for bredigite; the actual structure can only be
revealed through careful three-dimensional crystal
structure analysis. I only wish to emphasize that an

TABLE 1. ALKALl SULFATE STRUCTURES: FORMAL
COMPOSITIONS
T4 = tetrahedron
M!81 = octahedron
XMl = nodes of 3 2/m polyhedron
Yol = 3 m polyhedron
F»l = nodes of cuboctahedron
glaserite X121y, 0] MISI[TT410 ],
merwinite (distortion) XBIY Y IBIMIS[TI410,],
8-K. SO, X1y O T1410,]
larnite (distortion) XI1YI81T1410,
palmierite X121y, Uel[T1410,],
kalsilite FUITT4[T4104]
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arrangement with Pmnn symmetry can be retrieved
in the same manner that the ideal Pnma arrange-
ment for B-K.[SO.] was retrieved with no prior
knowledge of its crystal structure. Because of ob-
vious structural relationships among these com-
pounds, particularly evident in projection down the
axis normal to the pseudo-hexagonal outline where
electron densities would be similar, careful three-
dimensional analysis is the only good tool for ascer-
taining the true arrangement,

Additional Structure Types With Pinwheels

The idealized coordination polyhedra encountered
in this study includes the pinwheel polyhedron whose
coordination number is at least 6 (the octahedron)
and whose possible maximum is 12, when all
meridional oxygens are present. It is symbolized
as X'"1 where 6 < n = 12; for n = 6, the resulting
octahedron is symbolized as M. The second poly-
hedron with ideal point symmetry 3m is ideally
10-coordinated and shall be symbolized as Y!:°l.
The third polyhedron is the tetrahedron, symbolized
as T. Table 1 summarizes the compositions and struc-
tures considered in this study; I emphasize that the
coordination numbers refer to the ideal model and
actual crystals may show true coordination numbers
which are lower on account of distortion.

Many compounds in the literature have com-
positions suggesting ordered derivatives of the sim-
pler structure types. For example, among the 47
compounds listed by Wyckoff (1965) representing
the B-K,[SO,] structure type, are compositions like
KBa[PO,], KCa[PO,], NaCa[PO,](low), etc. It is
instructive to inquire how the alkali and alkali-earth
cations are distributed. According to Table 1, the
general formula can be written X [?1Y 11°)[TO,] where
9-coordination for X is the ideal number for the
(4 + 2), pinwheel. Struck and White (1962), in
their structure analysis of KBa[PO,], have estab-
lished X = Ba and Y = K. Although a structure
analysis of KCa[PO,] has not been done, it is reason-
able to assume that X = Ca. We shall note through-
out this discussion that the smaller cations tend
toward the X positions and the larger cations toward
the Y positions.

Several other structure types are particularly in-
triguing and are now discussed. Although they do
not fall within the restrictions of the structures based
on the condensation of pinwheels, similar if not
identical coordination polyhedra prevail in their
arrangements.
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Fic. 12. Coordination polyhedron associated with Ba in
Ba[Al:O,]. Solid disks represent meridional oxygens which
coordinate to the central Ba atom. Note that three meridional
positions which would complete the cuboctahedron are miss-
ing.

The K[LiSO,] structure type. Some confusion exists
in the literature regarding this structure type. Bradley
(1925) approximately solved the structure and the
polar character of the crystals was well-established.
The structure reveals the tetrahedral pinwheel (6 + O),
and its self-complement. Such an arrangement pos-
sesses ideal 9-coordination. In this arrangement, the
meridional oxygens are rotated away from the trigonal
antiprism. The Li atoms occur in tetrahedral co-
ordination, defining a [LiSO,]'~ tetrahedral framework
with space group P6,. When the tetrahedral atoms are
identical, the Ba[Al,O,] structure results, with space
group P6;22. Figure 12 presents the disposition of
circumjacent oxygen atoms around the central barium
atom. In this arrangement, the meridional oxygens are
rotated exactly 30° away from the trigonal antiprism.
This defines nine of the twelve vertices of a polyhedron,
symbolized F''*!, featured in Figure 2c. It is ideally
the cuboctahedron, an Archimedean solid with 12
vertices, 24 edges and 14 faces, and is a frequent
coordination polyhedron in alloy and metal structures
when the central atom and its coordinating atoms have
similar crystal radii. In addition, it is the coordination
polyhedron of an anion with respect to its nearest
neighbor anions in ideal cubic close-packing. Move-
ment from the X™' polyhedron to the F™"! polyhedron
is geometrically ¢ontinuous even though the polydehra
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PALMIERITE
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Fic. 13. Stacking sequence in the palmierite
arrangement. Heights are given as Angstrom
units.

are not topologically identical since the former is
3—connected and the latter is 4-connected. This
movement is facilitated by rotation of the tetrahedra
in the pinwheel about their trigonal axes. Kalsilite,
K[AISiO,] possesses the K[LiSO,] structure but
oxygen disorder occurs in the structure (Perrotta and
Smith, 1965). Wyckoff (1965, p. 113) lists 15 com-
pounds which may possess the K(LiSO,] structure but
it appears more likely that they actually belong to the
aphthitalite structure type (P3m1) since the “7” atoms
are large cations such as Ca®', Ba®*, K* and Na*,

The palmierite, K,Pb[SO,}, structure type. About
10 compunds crystallize in the palmierite structure
type, most notably the alkaline earth ortho-
phosphates. This arrangement crystallizes in space
group R3m and differs from the other structures since
the pinwheel and its complement no longer make up
the c-axis repeat. As Figure 13 reveals, the sequence
along the c¢,-axis involves --- X" _yi_p_ 7
Y ... _ The Pb = X cation corresponds to the

(3 + 3). pinwheel found in glaserite. The K atoms
reside in the Y position with actual point symmetry
3m. This is yet another example where ordering of
different cations leads to site preference of the larger
cation in the YO,, polyhedron.

The merwinite structure: its topological identity
with glaserite. Moore and Araki (1972) have pre-
sented an extensive discussion on the geometry of
the merwinite (CasMg[SiO.]s, a = 13.25, b = 5.29,
c =933 A, 8 =9190° P2,/a, Z = 4) structure
and pointed out its profound pseudo-hexagonal
character when idealized (i.e., freed from geometri-
cal distortions). Despite its complicated structure,
the present study reveals that merwinite is a distorted
equivalent of the glaserite structure, compared with
the B-larnite structure as the distorted equivalent
of the B8-K,[SO,] structure. The authors have shown
that the geometrical ideal of merwinite can be
written X1121Y,0IM[TO,], which is identical to
the general glaserite formula. In the actual struc-
ture, where X, ¥ = Ca?>*, M = Mg*" and T =
Si**, the coordination numbers are closer to
XY PLIYBIM[TO,],.

Figure 14 illustrates the relationship in the stack-
ing of the cations for merwinite and glaserite along
the (pseudo-) hexagonal axis. The correspondence
in actual heights along the a-axis of merwinite and
the c-axis of glaserite is apparent.

Although there is no evidence that a higher
temperature polymorph of merwinite exists, it is
logical to assume that if such a polymorph oc-
curred, it would possess the glaserite arrangement,
just as “silico-glaserite” is the high temperature
polymorph of B-larnite. Although Wyckoff (1965)
classifies high-K,[SO4] and high-Nao[SO,] with the
K[LiSO,] structure type, there is no evidence sup-
porting this classification. More logical would be
their classification with the aphthitalite (glaserite)
arrangement, A self-consistent relationship between
the alkali sulfate and calcium orthosilicate structures
is evident: at low temperatures, the olivine structure
type exists; at intermediate temperatures, the g-
Ko[SO4] structure and its geometrical distortions;
and at high temperature the glaserite arrangement
prevails. It is noted that the proposed structure of

- bredigite shares aspects of its structure with both

B-Ko[SO4] and glaserite arrangements and may
represent a field of structural transition where prop-
erties of both low and high temperature polymorphs
are present.
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Fie. 14. Comparison of stacking sequences between (a)
merwinite and (b) glaserite.

Coordination Number and Structure

For an ideal arrangement, if a pinwheel has
coordination number X221 where O = p = 6,
then its complement has coordination number
X1e*?], Pinwheel and complement average to mean
coordination number X!, This is the maximum
average coordination number for the X polyhedra
in glaserite-derivative structures; the actual struc-
tures on account of geometrical distortion may
possess average coordination number less than this
value.

For mixed cations where the differences in ionic
radii are considerable (such as Ca?* and Mg?* or
K* and Na*), p will tend toward O for the larger
cation oxygen coordination and the smaller cation
will be accommodated in its complementary poly-
hedron. But it is more difficult to propose an order-
ing scheme between the X! and Y™l polyhedra.
Geometrically, the two polyhedra are similar and
the coordination number of Y will tend toward a
higher value than n for most structures discussed in
this study. A further controlling factor appears to
be the cation-cation repulsion effect. It is noted that

the Y polyhedron shares a face with the small highly
charged tetrahedral group but the X polyhedron
shares faces only with similar large polyhedra of
relatively low central positive charge. Even in
palmierite, the X polyhedra are shielded from the
tetrahedra by the intervening Y polyhedra. Thus,
cation-cation repulsions between the T and Y poly-
hedra are particularly violent and can be minimized
in two ways: in the case of cations of same charge
but different ionic radius, the larger cation will tend
toward the Y polyhedron; and for cations of different
charge but similar ionic radius, that cation of lower
charge will tend toward the Y polyhedron. Thus,
for KBa[PO,] and K,Pb[SO,l,, the K atoms are
located in the Y polyhedra. Likewise, in the
aphthitalite structure, the larger K* cations are lo-
cated in the Y polyhedra.

Several trends are advanced on the basis of fore-
going discussions:

1. For distributions over the X polyhedra for
structures involving cations of different crystal radii
in X271 p will tend toward O for the large cation
and will tend toward 6 for the small cation in the
complementary pinwheel.

2. For distribution between X and Y, the lower
charged cation among cations of similar crystal
radius will tend toward the Y polyhedron.

3. For distribution between X and Y, the cation
of larger radius among cations of same charge will
tend toward the Y polyhedron.

It is worthwhile to note that one of the problems
in the study of high temperature polymorphs, espe-
cially the Cay[SiO4] structures, is the inversion of
such structures upon quenching. Investigators, espe-
cially in the cement and blast furnace industries,
have empirically observed that the presence of
“impurity atoms” can stabilize high temperature
Ca,[Si0O,] structures. Especially good cations for
this purpose are Na*, Mg?*, Sr** and Ba**. The
explanation for the stabilizing influence of these
cations appears straightforward. In structures, where
p differs considerably between a pinwheel and its
complement, larger cations will order over the sites
of low p and the smaller cations over sites of high p.
Likewise, in structures where a pinwheel and its
complement are identical, ordering will occur be-
tween the X and Y polyhedra. Arguing from the
opposite direction, it should be possible to select just
the right cations to assure the stability of that struc-
ture. This emphasizes the pressing need for more
accurate refinements of the crystal structures of the
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various polymorphs with especial emphasis on the
site preferences of the “impurity” cations.

Addendum

During construction of this manuscript while in Aus-
tralia, I corresponded with Dr Walter Eysel concerning
crystals of calcium orthosilicates. He informed me of his
studies on A[BX,] and A:[BX:] compounds. Upon my
return, Dr. Eysel kindly presented me with his doctoral
dissertation (Eysel, 1968), which is an extensive study
on glaserite and other alkali sulfate compounds, and many
of his tabulations on refined cell parameters constitute new
information. His study appears to be the most exhaustive
review on the A.[BX.] and AJ[BX,] compounds to date. My
approach to this problem appears unique and with little
duplication of the Eysel study. Accordingly, I submitted
this manuscript with but minor alteration and urge interested
readers to the outstanding study of Dr. Eysel as well.
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