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Abstract

Brauni te,  Mn'+Mn!+SiOn,  e:9.403(16) ,  c  :  18.668 (32)A,  tet ragonal  holosymmetr ic ,
space group I4t/acd, Z = 8,is a derivative structure offluorite with ordered anion vacancies.
R : 0.036 (Rw: 0.050) for 5ll non-zero reflections.

The structures of cubic and orthorhombic bixbyite (a-MnrO3), braunite, and probably
braunite-l l (Mn'z+MnllSiOrn), are related according to the space group lbca. The regions in
common include sheets of edge- and corner-l inked octahedra (the A and l '  sheets of bixbyite).
Braunites differ in having B sheets in place ofthe A'sheets in bixbyite. The B sheets consist ol
Mn2+ in cubic coordination, Mn3+ in octahedral coordination, and Sia+ in tetrahedral coordi-
nation with respect to oxygen.

Average polyhedral distances are (8)Mn(l)2+ -O 2.33, (6)Mn(2)e+-O 2.04,(6)Mn(3)3+-O 2.05,
(6)Mn(4)3+-O 2.04,and (4)Si-O l.6lA. The Mns+Oe groups are distorted as a result of Jahn-
Teller effects, forming elongate tetragonal bipyramids which are further distorted by shared
polyhedral edges.

With help from an enumeration theorem, a cooperative lattice game is proposed which
conveniently classifies all structures derived from fluorite.

Introduction

Braunite has been a crystal-chemical enigma
since it was first characterized by Haidinger in
183 l  Var ious ly  in te rpre ted  as  (Mn,S i ) rOr ,
3Mn2+Mn4+Or.MnSiO, or 3MnzOs.MnSiOs, the
problematical compound has been a center of con-
troversy concerning the role of silica and the oxida-
tion states of the transition metal. Dispute also cen-
tered around its crystal class and space group:
Aminoff (1931) proposed the space Eroup I4r/acd
and Bystrdm and Mason (1943) proposed 14c2, the
latter study including a crystal structure analysis. In
addition, they concluded that the correct formula was
3MnrO3'MnSiOr. Those authors also presented an
account of earlier studies on the species.

There the matter stood until de Villiers and Herb-
stein (1967) investigated braunites from several local-
ities and concluded from single crystal study that the
space group was in fact I4r/acd, the group originally
proposed by Aminoff. A variant of braunite (braun-
ite-Il) was also characterized, which required a
doubling of the c axis, a halving of the amount of
SiOz, but a space group which was the same as or-

dinary braunite. The question then arose as regards
the correct crystal structure, the relationship between
the two braunites, and their relationship with bix-
byite, a-Mnroa. With these facts at hand, we con-
cluded that the braunite problem required further
study.

We have also explored more deeply the subtle rela-
tion between braunite and bixbyite with the large
family of anion-deficient fluorite derivative struc-
tures. Perhaps the most intriguing part of this study is
not the braunite structure per se, but its relationship
with other equally complex compounds.

Experimental

A single crystal of braunite was selected from a
specimen from St. Marcel, Piedmont, Italy, originally
from the collection of George L. English (University
of Chicago number 1663). Gorgeu (1893) reported
MnO 74.40; O 7.50; Fe2O3, Al,Og 3.80; CaO 0.50;
MgO, KrO, NarO 1.00; PbO, CuO 0.15; CoO 0.30;
BaO trace; HrO 0.20; SiOz 9.80; PrOu 0.05, gangue
2.60 percent for Piedmont material. Accepting the
sum of cations : 8 and the sum of 02- : 12. the
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BRAUNITE 1227

formula unit contains (Mn31rMgBl.Ca31.XMn3l,,
Fe31")Si1loOrz.

The crystal measured 0. 140 mm alongar,0.l37 mm
along a2 and 0. 137 mm along c and was mounted on a
Pailred semi-automated diffractometer with an a axis
parallel to the machine rotation axis. Utilizing graph-
i te -monochromat ized  MoKar  rad ia t ion  ( I
0.709264), reflections with indices hkl, hkl (h > k)
were gathered to k : l0 with an upper limit of sind/tr
= 0.80 on each level. Other details: scan speed lo
min-', 20 second stationary background measure-
ments on each side of the peak, scan width range of
4.20 .

Absorption correction employed the Gaussian in-
tegration method (Burnham, 1966) with ten faces
approximating the crystal shape. The maximum
transmission factor computed to 0.414 and the min-
imum, 0.305. Unobserved reflections with intensity
less than 2o(l) were set 1o : o(1). After the correc-
tions for absorption, Lorentz, and polarization fac-
tors, equivalent reflection pairs l(hkl) and l(hkl) were
averaged; 896 independent l4l were available for the
ensuing study.

The cell parameters for braunite were more pre-
cisely ascertained by a powder diffractometric trace
on the same sample (CuKal radiation, graphite mon-
ochromator, l/2" min-'scan speed). The trace was
corrected for absorption by the sample and alignment
of the specimen slide. Twenty-nine indexed lines were
used in a least-squares refinement, the results of
which appear in Table l.

Solution and refinement of the structure

Since the space group we determined for braunite
did not match that of Bystrrim and Mason (1943), we
assumed that the structure of our crystal was un-
known. Further on, we will discuss the relationship
between the two.

Three-dimensional Patterson synthesis, P(uuw), in-
dicated a structure based on fluorite, with a' : a/2
and c' : c/4 as the subcell period. This required that
all cation positions be occupied but that vacancies
occurred in the anion positions. Since we did not
detect any violations of the space group l{t/acd
(which is uniquely determined), severe restrictions
were place on atom locations and the structure was
solved without difficulty. The trial parameters for all
independent cations were used toward a p synthesis
(Ramachandran and Srinivasan, 1970) from which
the anion positions were recovered.

The trial structure consisted of one cation in cubic
coordination, one in tetrahedral coordination, and
three independent cations in octahedral coordina-
tion. Approximate bond distances revealed that Sia+
alone appeared in the tetrahedral site. From the unit
formula we assigned Mn(l)  :  0.78Mn'?+ * 0. l6Mg'+
* 0.06Ca'?+ to the cubic site, and the trivalent (Mnt*
* Fe3+) cations were distributed equally over the
octahedral sites. This leads to 19.3 electrons at the
Mn(l) site instead of 23 for Mn'*, yielding an "occu-
pancy" of 0.84 if the Mn'+ scattering curve is used.

For refinement, we employed Mn2+ for Mn(l),
Mn(2),  Mn(3),  and Mn(4),  Sio+ for Si ,  and O'-  for
oxygen. X-ray scattering factors were obtained from
the tables of Cromer and Mann (1968). Anomalous
dispersion correction ernployed the tables of Cromer
and Liberman (1970). Full-matrix least-squares re-
finement proceeded from FLMXLS, a program de-
veloped by T. Araki with options for bond distances
and angles, derived from the familiar ORFLS pro-
gram of Busing et al. (1962). The final cycle included
one scale factor, one secondary extinction coefficient
(Zachariasen, 1968), eight atomic coordinate para-
meters, thirty-seven anisotropic thermal vibration pa-
rameters and one occupancy parameter for Mn(1).
At convergence, R : 0.076 and R. : 0.072 for all 896

TAsr-r  L Brauni te and re lated compounds.  Structure cel l  parameters
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byites with space group Ia3. Metrically, both kinds of
bixbyite possess approximately the same cell parame-
ters and differ only in distortion from cubic symmetry
for the orthorhombic crystal. To the 48 equivalent
oxygen atoms in a cell of cubic bixbyite there corre-
spond 6 sets of 8 equivalent oxygen atoms in the
orthorhombic bixbyite. Two questions then arise re-
garding bixbyite and braunite: do similar group-sub-
group relations exist between the two, and to what
extent is the isomorphism of the oxygen packing con-
served?

It is convenient to inquire first about their space
groups. Braunite crystallizes in space group I4r/acd
and cubic bixbyite in Ia3. But I4r/acd is not a sub-
group of 1c3, since the elements of the former are not
contained in the latter when either one or two unit
cells of Ia3 arc considered. Rather, the nearest sub-
group relatio n is I a3d(a r,a",as)-l 4 r/ acd(a raz,c = a t).
We then ask what is the maximal subgroup common
to I4'/acd(abe2,c : 2at) and la3(ar,ar,as). This is lbca
and its multiplication table is given in Table 7. The
formal relation is S(14'/acdteye2,c) )S(la3:at,a2,as)
: S(lbca:a,b,c), where the S is the set of symmetry
e lemen ts  and  a  deno tes  i n te rsec t i on .  The
group-subgroup relationship can be shown diagram-
matically, uiz.'.

Ia3 (8)

I4'/acd (32)

\ , , , "  , ,u,o,
+

Pbcs (8\

This states that for the equivalent points in I4'/acd
and for those coordinates in Ia3 where z is in the as-
axial position, a nearest group whose elements are in
both is lbca. The orthorhombic group contains half
the elements in 14t/acd and one-third the elements in
1a3. Since its equivalent point set has sixteen ele-
ments, it remains to inquire if the three non-equiva-
lent oxygens for braunite match with three coordi-
nates for the oxygens in bixbyite. Indeed, these can be
found,  and they are O( l )  :  (0 .149,  -0.146,  -0.1 l0)

(0.129,  -0.147,  -0.084) ;  O(2)  (0.146,  0.073,
0 .114 ) ,  ( 0 .147 ,0 .084 ,  0 .128 ) ;  and  O(3 )  =  (0 .079 ,
0.135,  -0.150) ,  (0.083,  0.129,  -0.146)  for  brauni te
and bixbyite respectively. Since the bixbyite cell
shape was chosen, the z coordinates in braunite were
doubled. Finally, the coordinate for oxygen reported

l'frr (1)

Inh(2)
Itr (3)
I'tr (4)

s i

0  ( 1 )
o ( 2 )
0  (3 )

8

1 6
I 6
1 6

8

3 2
32
32

222 0

1 0
2 r /4
2  0 . 2 3 r 8 ( r )

4 o

1  0 . 1 4 8 7  ( 4 )
I  0 . 1 4 s 7 ( 3 )
r  0 .0787 (4 )

r /4

0
0 . 2 1 s 7 ( i )

l / 4 + x

r /4

0. 8s37 (4)
0.0734(3)
0 . L s 4 7  ( 3 )

3/8

0.  94s3 (2)
0.  0s69 (  2 l
0 .92s0 (2 )

L / 8

0
0

r /8

*Estinated 
standard errors in parentheses refer to

the last digit .  The atons designated are fol lowed
by the nunber of positions and point sFnnetry.

reflections; and R : 0.036 and R, = 0.050 for the 5l I
reflections above background error where R, :

tE,(l f. | -l F.l)" />-fll ' l2, with w : oF|. The "good-
ness of f i t , "  ̂ S = E, l l4 l- l  F" l l , / (n-m), where n :
number of independent .F's and m : number of pa-
tameters ,  i s  1 .23 .  The secondary  ex t inc t ion
coefficient, co, is 2.0(3) X l0-? and the scale factor, s,
is 0.810(5). Finally, the "occupancy" parameter for
Mn(l ) is 0.828(6), in good agreement with the chem-
ical analysis for St. Marcel braunite. Thus, the minor
Ca'+ and Mg2+ substitute at this site.

Table 2 lists the atomic coordinates, Table 3 the
anisotropic thermal vibration parameters, and Table
4 the root-mean-square displacements and the orien-
tations of the ellipsoids of vibration. Table 5 lists the
structure factorsl and Table 6 the polyhedral inter-
atomic distances and angles.

Braunite and bixbyite: group subgroup relationships

The structures of bixbyite and braunite are related,
but they are not isomorphic. We inquire as to what
extent they are related, and proceed by examining
group-subgroup relationships between the two and
seek out those subsets of the equivalent point sets
which are isomorphic in the two structures.

Bixbyite and braunite are metrically related (Table
I ) and differ by the c-crystallographic axis of braunite
being double that of bixbyite. Geller (1971), in a
detailed analysis of structures of synthetic bixbyites,
noted that pure a-Mn2O, crystallizes in space group
Pcab but that small amounts of Fd+ result in bix-

I To receive a copy of this material, order document AM-76-031

from the Business Office, Mineralogical Society of America, 1909

K Street ,  N.W.,  Washington,  D.C. 20006. Please remit  $100 in

advance for the microfiche
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Tesln 3. Braunite. Anisotropic thermal vibrat ion parameters (x ICF)*
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rfrt(1)

lhr(2)
lfrt (3)
lftr (4)

S i

0  ( 1 )
0  (2 )
0 (3)

B r r

3s.0(27)

14 .  e  (8 )
r 7 . 0 ( 9 )
1s .  s  (12)

13.o(24)

2 3 . 8 ( 3 r )
ls .s  (30)
22 .6 (s2 )

BzsB r sB s gBzz

=  B t t  4 . 3 ( 4 )

1 7 . 6 ( e )  3 . 8 ( 2 )
1 3 . 7 ( s )  4 . 1 ( 2 )
=  B r r  3 . s ( z )

=  B r r  4 . 8 ( 6 )

18 .8  (30 )  s . s  (8 )
14 .6 (30 )  s .8 (8 )
r s .  s  ( 3 1 )  6 . 7  ( 8 )

9tz

- 2 4 .  I  ( 1 s )

-  J . J t / J

0
-  1 . 7 ( 6 )

0

r .7  (23)
-  2 . 3 ( 2 r )

0 . 7  ( 2 s )

- 1 . 4 ( 4 )  0 . 3 ( 3 )
1 . 2 ( 4 )  0

- 0 . 2 ( 5 )  =  - 9 z z

0 0

- o . s  ( r 3 )  - 0 . 2  ( 1 3 )
- 0 . 8 ( 1 3 )  3 . 1 ( 1 2 )
- 2 . 3 ( r 3 )  0 . 6 ( 1 2 )

Coeff icients in exp[-(Brrhz * 3zzk2 * gggl2 + 2312hk + 2113hl '  + 2Bzsk[)] .

by Geller (1971) was reoriented to conform with the
transformation Pcab - Pbca.

Inspection of the space group lbca (Table 7) re-
veals that eight symmetry elements are generated by
the  compos i t i on  o f  symmet ry  e le  men ts

[ ] , ( l ) ]  .11,a161,b61,2," , ]and the remain ing e ight  by the

composition of these with [1,2',",]. For the real bix-

byite and braunite crystals, 11,a61,b61,21",] generate a

sheet of crystal structure which is isomorphic in both
crystals. The composition with i(l) leads to com-
pleted octahedral sheets, and these with [,2u"1] leads

to equivalent sheets which are translated (l/2+z) in

bixbyite. In braunite, the composition with 4u"y in
place of 2,,", leads to equivalent sheets displaced

(l/4+z), (l/2-tz), and (3/4+z). Therefore' we con-
clude that bixbyite and braunite contain sheets which
are locally isomorphic to each other and which occur
at (z+ml2) in bixbyite and (21-m/4) in braunite,
where m is an integer. Call these the I sheets. The
distinct kind of sheets at lz'*(2m-l I )/81 in braunite
we call the I sheets.

Light is cast on the interesting phase, braunite-Il,
first described by de Villiers and Herbstein (1967).
For this phase, the c axis of braunite is doubled
(Table l), but the space group remains unchanged.
The ideal formula is Mn,uSiOrn or Mn2+MniISiOrn'
We now propose a structure for this phase. Consider
bixbyite in Pbca orientation. Since Pbca is a sub-

Trgr-B 4. Braunite. Parameters for the ellipsoids of vibration*

0 ib o ic  B( [2 ) u i o i a e ib o i c  B ( [ 2 )Atorn

Mn(1)

Mn (2)

I'&t (3)

l'ftr(4)

u i

0 . 0 7 0  ( 8 )
0 .  087 (s )
0 .  1 6 3  ( s )

0 . 0 7 2 ( 3 )
0  . 0 8 3  ( 3 )
o .  os6 (2)

o .078 (3 )
0  .07e (3 )
0 . 0 e 2 ( 2 )

0 . 0 7 9  ( 4 )
o .  0 8  1  ( 3 )
0 . 0 8 8  ( 3 )

Aton

5 1

o (3)

o .090 (7)
0 .0s8  (7 )
0 .  10s  (7 )

0 .070  ( s )
0 .  083 (8)
o .  109  (7 )

o i a

q J

on
+ J

39
76

1 ) A

90
5 1
39

4 J

9 8
L34

I

2
J

I
2
5

1
2

I
2

4S
90

135

9 0  1 . 0 3 ( 7 )
I 8 0
90

69 s8 0.  s6 (2)
53 140
45 68

|  0 .076(7)
2  0 . 0 7 6 ( 7 )
3  0 . 0 9 2  ( 6 )

0 . s 3 ( 6 )

090

/ 5

109
1 5 4

108
1 5 8
t02

78
145
t23

o ( l )  I
z

J

o ( 2 )  I
z

3

1 6 3  9 0  0 . 7 6  ( s )
96  160

106 70

0
90
90

45
82
46

s0 0 .ss  (2 )
1 4 1

J I

90  o .  s4  (3 )
169
79

150
80
6 2

6 6  0 . 6 3 ( s )
109

z 1

L64 79  0 .76  (5 )
105 l2].
87  33

I  0 . 0 8 2  ( 8 )
2  0 .094(7)
3  0 .  l l s  ( 6 )

1 =

ce 11
ith principal axis;
axes  g l ,  ! z  and c .

o i b ,  e i c
thennal

ui = rns arnpl i tude; eia,
Tfie equivalent isotropic

= angles between the
vibration paraneters

i th pr incipal  axis and the
aie also stated.
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Tlnlr 6. Braunite. Polyhedral interatomic distances and angles*

4 l ' h ( r ) - o ( 1 Y t )
4 -o(2)

average

2 o(2) -o(2Y8)
4  o(2)  -o ( r ) (3 )
2 o(r lsL6111ts)
4  O(2)  -0 ( I ) 'u

average

2 o( lY tLo( lY6)
2 O(2) -O(2)\r '

si

4 Si -o3l2, I .612(4)

2  o(3 l f t s131ts t  2 .626(8)  roe . l (2 )
4 O(3)z'-O(3)b' 2.635(7) 109.6(r)

2 . 6 3 2

l"tn (2)

I  .866 (2)
r  .866 (2)
2.028 (s)
2 .028 (5 )
2 .212 (s)
2.212(S)

2 . u 5 5

2 .60s  (6 )
2 .60s (5)
2 .7sr  (7)
)  a < l  ( a \

2.854 (7 )
2  .8s4  (7 )
2.898(7)
2.898(7)
2 . 9 s 4 ( 7 )
2 .s34 (7 )
s . 2 s 2  ( 8 )
3 .2s2  (8 )

2  ,879

140 .7  ( 2 )
r 7 e . 8  ( 1 )

Mn(4)

l . s 4 6 ( s )
I  .92r  (5 )
1 . e 4 6 ( s )
r . 9 2 1  ( 3 )
2  .240 (s )
2 .240 (s)

average 2.036

average 2 .877 90 .0

o(3)(3)  -o(3)6)

Bg}si:B[3]li;

aveTage

Mn (2)  -0 (2)
-O (2)(l)
- 0  ( 3 )
-o (3)0)
-o(r) . . .
-o ( l  IU

average

o(2)  - -o (5)
0 (2)(lL0 (3)(l)
o ( r )  -o (3)
o (r l lLo (3)(u
o(2)  -o ( r I l )
o (zl t tLs 111
o(2 I  -o (3yr )
o (2)(u-o (3)
0(2)  -o (1)
o (z;ttLe 11;or
o(3)  -0 ( r ) (1 )
o (3YrLo (r )

aveTage

o(1)  -o ( r ) (1 )
o(2) -o(2)( l l
o(3) -o(3It)

Mn (r)

2. rs3 (s) i
2.  s0r (6)
2 , 3 2 7

2.s76 (6 )
2 .638 (6 )
2 .694 (8)
2.8s3(7)

2 , 7 0 9

2 lh(3) -o ( r )€ l
2 -o(2)
2  -o (3)

average

Mn(3)

r .906 (s)
r .  e71 (6)
2 .267 (s )

2 .048

2.50s  (6 )  7s .s  (2 )
2.638(6) 85.7 (2)
2 .678(6)  78 .0(2)
2 . 7 e 2 ( 8 )  s 4 . 2 ( 2 )
2 ,Fsz( r )  94 .4(3)
3 .246(8)  r0 r .8 (1)
3 . 3 r 2 ( 8 )  1 0 4 . 7 ( 1 )

2 ,887 90 .0

r79 .9 (2)
r77 .0 ( r )
r77 .0 ( r )

6 2 . 0  ( 1 )
6 8 . 6  ( r )
7 7 . s ( 2 )
7 s . 2 ( r )
7 1  t

164 .0 (2)
r70 .6 (2)

1 0 9 . 5

83.  9  (2 )
83 .  s  (2 )
8 0 . 8  ( r )
80 .  8  ( r )
88  .4  (2 )
8 8 . 4  ( 2 )
e6 .  I  (2 )
96 .  I  (2 )
s r  .6  (2 )
e l  .6  (2 )
s9 .  2  ( l )
9 e .  2  ( l )

90 .  0

180.0  (0 )
r80 .0  (0 )
r80 .  0  (0 )

aveTage

o(3) -o(3Y2)
o(2)  -0 (u4 l

Mn(4)  -o ( r t6 )
_o (2)4'
-o  (1Y3)
-6 12 1{l  0}
_oislll
-0  (3 )o '

*siril"" 
regions of lr{n(2) anal l,tr(4) are listed for conparison, e)elained in the text.

Based on the list in Table 2, the equivalent points are (l) -x, -y, -zi Q) l/2-x, y,
- z t  ( 3 )  x ,  L / 2+y ,  - z t  ( 4 )  l / 2 - x ,  l / Z+y ,  z t  (S )  L /2+x ,  l / 2 - y ,  - z ;  ( 6 )  r / 4+y ,  t / 4+x ,
l / .4+z;  (7)  -x,  l /2-y,  z;  (8)  l /4-y,  L/4-x,  t /4-z;  (9)  3/a+y,  L/4+x.  t /4-z;  ( tO) t /4+y,
s /4 - x ,  l / 4 - z ;  ( l t )  l / z - x ,  l / 2 - y ,  I / 2 - z ;  ( r 2 )  - x ,  y ,  t / 2+z ;  ( r 3 )  x ,  - y ,  t / 2 - z t  ( 14 )  s / 4 - y ,
l / 4 - x ,  l l 4+2 .

group of lbca and conserv€s 211sy, it follows that there repeat for orthorhombic bixbyite is . .. IAA'lr. . .
are two kinds of sheets normal to the c axis. Call with the z translation being (2"-l2m/4) for A; and
these the A and I' sheets respectively. For cubic lz",*(2m*l)/4lfor A'. For braunite, the cell repeat
bixbyite, these sheets would be equivalent. The cell is . . .lABlo. . . with the z translation being
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T,lsls 7. Group multiplication table for the symmetry elements in lbca+

t23l

I  r  i  ( 1 )  i ( 2 )  2 tG )  2 r  ( b )  4@)  2 ( c ) 2 (b) 2 (a ) b (a)c  (b ) c (a) b  (c ) a (b)

I

i  ( r )

i  ( 2 )

2r  (c)

2r  (b)

2 r  ( a )

2 ( c )

2(b)

2 (a )

co )

b (a)

a ( c )

c (a)

b  ( c )

a o )

i  ( 1 )

i  (2)

I

l r
I

i ( 2 )

i  ( r )
I

2 1 ( c )  2 r ( b )

2 (c) 2 (b)

a (c)  c (b)

b (c) a (b)

|  2 t @ )

I

21@) 2  (c )

2  (a )  2 r  (c )

b  (a )  b  (c )

c  (a )  a  (c )

2 r O )  I
2r (c) 2 (a)

|  2 r b l

I

2 (b) 2 (a)

2 r  G )  2 t @ )

a O )  c ( a )

c (b) b (a)

2 (a) 2 (b)

I  2 ( c )

2 ( c )  I

2 t @ )  2 r  ( b )

I  zr  ( " )

I

c (b) b (a)

a (b) c (a)

2 i  O )  2 1 @ )

2 b) 2 (a')

b ( a )  c O )

i  ( r )  a  (c )

a  ( c )  i  ( I )

c ( a )  a O )

i  (2 )  b  (c )

b  (c )  i  (2 )

I zr (")
I

a (c) c (a)

b  (c )  b  (a )

21  (c )  2  (a )

2  (c )  2 tG)

i  ( i )  a  (b )

b (a) b (c)

c  (b )  i  (2 )

i  (2 )  c  (b )

c  (a )  a  (c )

a  (b )  i  (1 )

2 t @ )  2  ( c )

2 r G )  I

I  z ( t l
I

b (c) a (b)

a  (c )  c  (b )

2 (c) 2 (b)

2 r  ( c )  2 r  ( b )

i  (2 )  c  (a )

c  (a )  i  (2 )

a (b) b (c)

i  (1 )  b  (a )

b  ( a )  i  ( 1 )

c (b) a (c)

2 ( a )  I

2 O )  2 ( c )

|  2 ( a )

2 r  G )  2 r  ( c )

I  z r ( t )

I

The elenents nean the folluing: I is the identity, I the body-centering;

at (* * +). For screws and rotations, the axes to which they are parallel

refer to the axes to which these planes are nornal '

i( l) the inversion at the origin, i(2) the inversion

are in parentheses. For glide Planes, the parentheses

(za+2m/8) foi  A, and lzs*(2m+1)/81 for B. For
braunite-I l ,  the postulated sequence is .-- lA'A
BAln. . .  with the z translat ion being .  .  - [2f t(4m+l)/
l6 l  and lzo*(4m*3/ l6) l  for A; (za,*4m/16) for A' ;
and lzpl(4m+2)/l6l for B. We note that each B
is adjacent to two I's in the braunites. In order to
conserve the symmetry elements of the B slab, an
I slab is placed at the origin for bixbyite and braunite;
and the A' slab is at the origin for braunite-Il The
next sequence would be .  -  . l ,AA'AA'A874- .  .  with the
,4 slab at the origin and the z translation of B being
fzp+(6mi3)/24]. Such long sequences are probably
unstable for they require a long-range order between
the B layers. Very long sequences, of course, are
expressions of an epitaxial relationship between
blocks of bixbyite and braunite structures.

If our interpretation of braunite-Il proves to be
correct, it would appear that the presence of a B slab
requires a quadrupling of the sequence in brackets to
achieve the c-axial repeat, and that each B is bounded
on either side by A. All such sequences would possess
space group I4r/acd.

Mention should be made about the difference be-
tween the structure of braunite proposed by Bystrdm
and Mason (1943) and our structure. First, we note
thar S(14,/acd)OS(14c2) : S(14c2), so the space
group selected by Bystrdm and Mason is contained in
the holosymmetric group and the application of 41 in
place of 2rin I4c2 generates I4r/acd. Furthermore, if

the origin of their cell is shifted by (0, -l/4, l/8),

near-coincidence of their atomic cordinate parame-

ters can be found with ours (Table 8). The only ex-

ception is their O(l) x-parameter [l inked to their

Si(l)1, which has a reversed sense of direction. Two

noteworthy results obtain flrom this difference: first,

the reversed direction of O(1) destroys the 4'-screw

axis in I4r/acd, and second, the Mn3+ cations in the A

sheet remain in octahedral coordination but with

changed orientation. These observations emphasize

the strong homometric character inherent in the

braunite structure. We suspect that with their l imited

data set, Bystr<im and Mason could not have resolved

the ambiguity in the choice of orientation for the

Si(l)O(l). tetrahedron. Excluding the ambiguity in

O(l), their structure agrees with ours in every detail,
'  

and their analysis is praiseworthy in l ight of the un-

usual diff iculty inherent in the analysis of the struc-

ture of braunite.

Description of the structure

Braunite is based on the packing of cubes [Mn(l )h
octahedra [Mn(2), Mn(3), and Mn(4)]; and tetra-

hedra (Si). Excepting the SiOo tetrahedron, the poly-

hedra are substantially distorted away from regular
geometry, and these will be discussed in detail in the

next section.
The most convenient description is based on the I

and B sheets . The A sheets, oriented parallel to {001}



P B. MOORE AND T, ARAKI

Tlsre 8. Comparison of atomic coordinate parameters for braunite+

BystrUrn and Mason (1943)* This Study

0 r /4  r /8
o 3/4 7/8

0 .232 3 /4+x  7 /8
,232 ! /4+x  l /8
L /4  .216 0
L /4  r /4  1 /4

r /4  7/8
s lq L/8

L/4  7 /8
3/q r/8

. 1 0 4  . 3 4 0  . 9 2 7

.129 .619 .942

. t 3 2  . 3 8 6  . 0 5 8

.  r04  .659 .073

. 1 3 5  . 8 8 4  . 9 4 2

. t 3 2  . L L z  . 0 5 8

group !492

l{n(1)
I'frt (2)
Mn (3)
I'kr (4)
l'&r(5)
lln(6)

s i  ( 1 )
s i  (2 )

0 ( 1 )
o ( 2 )
0  (3 )
o(4)
0 (s )
0(6)

space

Mn (1)  , ,  .
l t r  ( l ;  "  t
l tu (4 ) (3 )
l"fn (4)
I,h r3)
nn izj ter

5 i ( 1 2 )
s i ( r3 )

o , /o r /e
0 s/4 7/8

0 .236 3 /4+x  7 /8
.236 l /4+x  I /8
.264 .236 .000
.264 .236 .250

0
0

0
U

o(3)11l  -  .o7s .36s
o(2 ) ' r ,  . 146  . s73
o i l i ( 3 )  . 1 4 9  . s s 4
o i s j t s r  . o7s  . 63s
o (1 )  . L49  .8s4
o (2 )  . 146  .073

o t c
. 9 4 3
. 0 5 5
. 0 7 5
. 9 4 5
. 0 5 7

lqJzg9

After shif t ing origin (0 -1l4
superscripts, are provided in

I /8) .  The equivalent  posi t ions,  l is ted as
Tab le  6 ,

and situated at z : 0, l/4, l/2, and 3/4, are isomor-
phic to the I and l' sheets in bixbyite. Figures I a and
lb afford a comparison between the I sheets in
braunite and bixbyite. In braunite, the Mn(2) and
Mn(3) atoms define a planar checkerboard, and their

octahedra form a sheet through corner- and edge-
sharing. If the octahedra were regular, a sheet of
cubic close-packing would appear, since along one
direction, edges would be shared, and orthogonal to
it, corners would be shared. Along a row in the

FIc.  l l  The,4 sheet in the brauni te crystal  s t ructure.  Locat ions
of  nonequivalent  atoms conform to Table 2.

FIc.  I  s .  The,4 sheet in the bixbyi te crystal  s t ructure drawn from
the coordinates of  Gel ler  (  I  97 I  ) .  The or ig in of  the cel l  in  that  study
is shown, the sheet reor iented for  convenient  compar ison wi th Fig.
l a .
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Frc.  2,q The B sheet in brauni te Note tetrahedral .  octahedral ,

and cubic coordinat ion for  Si ,  Mn(4),  and Mn( l )  respect ively.

braunite and bixbyite l-sheets, the edge-sharing oc-
curs in units of three octahedra and is then inter-
rupted by corner-sharing; this arises from a major
departure of the Mn(3)O. octahedron away from the
2/m symmetry implicit in the cubic dense-packed
sheet.

The,B layer  (F ig.  2a)  is  not  isomorphic to the A'  1:
A) layer in bixbyite (Fig. 2b). These sheets, also ori-
ented paral le l  to  {001} ,  are s i tuated at  z  :  l /8 ,3/8,
5/8, and 7/8 in braunite, and consist of l inked
Mn(l)O, cubes, Mn(4)O. distorted octahedra, and
SiOn tetrahedra. Although the cations define a check-
erboard pattern and although the oxygens between
the A- and B-layer cations are isomorphic to those in
bixbyite, only eight of the twelve oxygens above the
plane of the B-layer cations are isomorphic in the two
structures. Fig. 2b shows that four oxygens [two O(7)
oxygens and two O(10)  oxygens of  Gel ler  (1971) l
must be "shuffied" to achieve isomorphism of the
bixbyite A-layer with the braunite B-layer. The
group-subgroup relations require that some equiva-
lent points in Ia3 are not isomorphic to points in
I4r/acd. Based on the braunite cell, these include the
4x2x2: l6 atoms requiring shuffi ing. In Figure 2b,
it is seen that from shuffi ing the C polyhedron re-
ceives two additional coordinating oxygens to form a
distorted cube, and the D polyhedron loses two to
form a distorted tetrahedron. Finally, polyhedron E
achieves a more resular octahedral coordination.

The "shuffi ing" of anions disguises a deeper rela-

tion of the braunite and bixbyite structures. Braunite,

bixbyite, pyrochlore, and several more complex
structure types are derivative structures of the fluorite

structure type and are obtained from an ordered defi-

cit of anions. Figure 3a features the regular f luorite

checkerboard as a system of edge-linked cubes. One

route of ordering anion vacancies (!) leads to the

important pyrochlore Xt")M;")O.,,a structure type
(Fig. 3b). How many discrete ordered holes are there

on the ver t ices of  the cube? Ut i l iz ing Polya 's  (1937)

enumeration theorem, there are twenty-three discrete

arrangements, discussed in Appendix I and shown in

Figure 6. It is immediately seen that f luorite is based

on the u ' (1)  arrangement a lone;  pyrochlore on u ' (1)

and 'd'(3); bixbyite on u'd'(2) and u6d2(3); and
braunite on z'(1); uud"(2), uud2(3); and undn(4), that
is, the cube, two kinds of distorted octahedra, and the
tetrahedron, respectively. Thus, braunite is in one
sense a shuffied bixbyite, but in another sense a novel

structure type based on a different combination of
ordered anion vacancies over the fluorite structure
type. Enumeration of ordered holes in lattices derives

from Appendix I, and in Appendix II a cooperative
lattice game is proposed to characterize these ar-

rangements in a quick and straightforward way.

FIc 2s.  The,4 '  sheet  in b ixbyi te,  or iented for  d i rect  compar ison

with Fig 2a.  The coordinates are f rom Gel ler  (1971) The arrows

show the atoms which must be shul ied to create the I  sheel  in

brau ni te
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FIc. 3n. The unit checkerboard representing the fluorite arrange-
ment.

Bond distances, angles and their distortions

A major problem in describing the bond distances,
angles, and their distortions for braunite is the com-
bined effect of the severe Jahn-Teller distortion of the
Mn3+O. octahedra, the relation to the fluorite struc-

FIc. 3s. The unit sheet representing the crystal structure of
pyrochlore. Note octahedral coordination about M and cubic
coordination about X.

ture type, and the presence of shared polyhedral
edges. The bond distances and angles are l isted in
Table 6; atom designations and the shared edges are
conveniently shown as Schlegel diagrams in Figure 4.
These diagrams are the planar maps of the three-
dimensional polyhedra and conserve order of vertices
and paths along edges. The Mn(2)Ou and Mn(4)Ou
octahedra are similar in that their six shared edges
define Hamiltonian paths which are isomorphic to
each other with respect to the elongated Mn3+-O2-
bonds. The opposing pair ofelongated bonds arising
from the d high-spin electronic distribution in a weak
crystal field are called the apical bonds, and the four
shortened planar bonds are called the meridional
bonds.

The Mn(2)06 octahedron of point symmetry I has
a distribution of shared edges and apical bonds which
suggests 2/m pseudosymmetry, as does Ihe u6*(3)
arrangement. Indeed, l isting the bond distances and
angles in Table 6 according to the "equivalent"
distances for 2/m shows that deviations range at
most  about  0. lA for  O-O'  edges and about  3o
for O-Mn(2)-O' angles. The apical bonds are
2Mn(2)-O( l  )  :  2 .21A and the mer id ional  bonds are
2Mn(2)-o(2) : 1.874 and 2Mn(2)-o(3) : 2.034.
We shall demonstrate later that the splitting of the
merid ional  bonds by 0.  16A is  a consequence of
deviations from local electrostatic neutrality. The
Mn(a)-0(6) octahedron of point symmetry 2likewise
possesses 2/m pseudosymmetry, but this is more seri-
ously degraded than in Mn(2)O. by the unsymmet-
rical distribution of nearest-neighbor edge-sharing
polyhedra, the Mn(l)O, cube distributed such that
the 2/m pseudosymmetry is broken. As a result,
"equivalent" O-O' distances deviate by as much as
0.3A and angles by 8o.The apical  bonds are
2Mn(a)-O(3) : 2.244, and the meridional bonds are
2Mn(4)-o(l) :  l .9sA and 2Mn(4)-o(2) : t .92A;
owing to local electrostatic neutrality, the meridional
bonds are split by only 0.03A. Bond distances for
Mn(2) and Mn(4) are listed in Table 6 as increasing
values for Mn(2); those listed for Mn(4) are accord-
ing to the isomorphism of the Schlegel diagrams in
Figure 4. It is apparent that Mn(2) and Mn(4) are
similar in their geometry.

The Mn(3)O. octahedron of point symmetry 2,
which also shares six of its edges, differs markedly
from Mn(2) and Mn(4). Although the Mn(3)-O
bond distances are not unusual [2Mn(3)-O(l) :
1 .91 ,  2Mn(3) -O(2)  :  t .97 ,  2Mn(3) -O(3)  :  2 .27  A) ,
the polyhedron is severely distorted. This is partic-
ularly evident if the O(3)-Mn(3)-O(3;t'r - l4lo



apical angle is noted, and clearly results from the
Mn-Mn repulsions across shared edges. The Schlegel
diagram in Figure 4 reveals that the shared edges are
along one side of the polyhedron so that Mn(3)
moves away from the O(2)-O(2)('z) edge and toward
the O( l ) (3)-O( l ) (4)  edge.  The resul t  is  a bending of
O(l)-Mn(3)-O(3)t'r by 39' away from regular tetra-
gonal coordination. It is l ikely that this kind of dis-
tortion is a key feature in the stabil ity of braunite and
bixbyite structure types, since the polyhedron more
closely represents the shape derived from the fluorite
cube, which as uod2(2) is a highly distorted octahe-
dron.

The Mn(l)O, cube of point symmetry 222 shares
all twelve of its edges with other polyhedra. It is best
described as a twisted cube, and possesses four short
4Mn(1)-O1t ; ' ' '  :  2 .154 and four  long 4Mn( l ) -O(2)

2.504 bonds. The average bond distance,
Mn(l)-O : 2334, is identical to the value obtained
by Shannon and Prewitt (1969) on a garnet structure.
The O-Mn(l)-O angles range from 62o to 78o com-
pared with the 70.5' angle for the regular cube. The
most significant angular distortions are found for the

t235

body diagonals, which deviate from 180o by 9o and

l6o as a result of the twist. The SiOo tetrahedron of

point symmetry 4 is nearly regular as only corners are

shared with other polyhedra.

Electrostatic bond strength sums

For spherical ions, the bond strength, s, is obtained

by dividing the charge of the cation by its coordina-

tion number. For minerals and other stable ionic

crystals the sum p, : 2si of the i cations bonded to

the anion should deviate, Ap", only slightly from the

charge of the anion with reversed sign. The deviations

correlate with deviations in individual bond distances

away from polyhedral averages. Baur (1970) has dis-

cussed such calculations and correlations in great

deta i l .
Owing to the non-spherical electron-density distri-

bution about Mns+ (HS), Kampf and Moore (1976)

proposed, on empirical grounds, s = 4/12 for elon-

gate apical bonds and s : 7/12 for the shortened

meridional bonds, distinct from s : 6/12 for a regu-

lar octahedral anion coordination about a spherical

trivalent cation. Calculating Lp,, we observe that

BRAUNITE

Frc.  4 Schlegel  d iagrams of  the Mn-o polyhedra in brauni te These diagrams show the

order of  the atom nomenclature as used in Table 6 Shared edges are dashed, and the adjacent

cat ion is  l is ted.  The cat ion in the center  of  the polyhedron is  l is ted in the center  of  the diagram.

Apical  oxygens showing elongate bond distances are drawn as disks
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O(2)has Ap, = 0.00, O(l ) has Lp" : -0.25, and O(3)
has Ap" : +0.25. The local cation undersaturation
about O( 1 ) doubtless correlates with the short
Mn(1)-O(l )(1) distances and oversaturated O(3) with
the long Mn(2)-O(3) meridional distances observed
for braunite.

Appendix I

Enumeration of uacancies on the uertices of the cube

We are interested in the permutation group, G,
whose elements are based on the point groups 4/m3
2/m (cubic holosymmetric), 432 (cubic enantiomor-
phic), 4/m 2/ m 2/ m (tetragonal holosymmetric), and
422 (tetragonal enantiomorphic). The domain, D,
consists  of  e ight  e lements,  Idrdr , . . . ,dr ) ,  which are
the eight vertices of the cube or tetragonal prism,
and the range, R, consists of two elements, lu,dl .The
elements of the range may be conceived as two colors
or as statements l ike "yes" and "no." Here, d corre-
sponds to a vacancy at the vertex ofthe cube and a to
an occupancy. Diagrams of the discrete distributions
of vacancies can be conveniently shown as squares
(Fig. 6). A vacancy on the vertex above the plane of
projection shall be shown as a solid disk, and a va-
cancy on a vertex below the plane as an open disk.

The cycle indices, PIG:DI, for the four crystal
classes acting upon D are'.

G\4/m3 2/mt Pl4/m3 2/m:Dl
I: 

* 
(x? f l3xi + 8x?x3 -t 6xix| + SxlxA + 12x,,)

Gl432l

Thus, for G, D, and R as specified, there are 22
discrete arrangements which are distinguishable un-
der cubic holosymmetry, 23 discrete arrangements
under the cubic enantiomorphic class, 34 arrange-
ments under the tetragonal holosymmetric, and 43
arrangements under the tetragonal enantiomorphic
cfass. It follows thatlF\43211 - lF$/m3 2/mll : 1,
the only arrangement having chirality being found in
undo. Also,lFl422ll - 

lF$/m 2/m 2/mll : 9, the
chiraf arrangments being one in u6*, two in u't,
three in u4X, two in ugff, and one in u'f .

The configurations are shown diagrammatically in
Figure 6. Under each category, u'd", those grouped
together are equivalent for the cube but distinct for
the tetragonal prism. They are coded u'd"(m), where a
is an occupancy, r the number of occupied sites (:
coordination number), d, the vacancies of which
there are r, and m is an integer for codifying. The
symbol, "*", means that the arrangement has a chiral
mate. Interchanging solid (: above) and open (:
below) disks leaves the configuration unchanged, so
these are shown by "equal" signs. Thus, unf(3) is an
arrangement on a cube and involves one of the six
discrete ways of distributing four vacancies over the
cube's vertices. When the tetragonal prism is chosen
as the domain, it is broken into two discrete arrange-
ments, uod'(3) and undn(3t) which are isomorphic over
the cubic domain but distinguishable over the tetra-
gona l  p r i sma t i c  doma in .  S ince  S14 /m 2 /m
2/mlCSl4/m3 2/ml, the tetragonal prismatic do-
main has a larger number of discrete configurations.

In Appendix II, these modules shall be used as
"players" in a lattice game. Since a tetragonal board
is used, there are 34 kinds of players, those acting
under the tetragonal holosymmetric class as the basis
for the permutation group. Nine of these players have
chiral mates. If handedness is counted as distinct,
then there are 43 "players." In turn, the 34 kinds of
players can be reduced to 22 possible arrangements
over the vertices of a cube, with only undn(6) having a
chiral mate. The maximal point symmetries of the
arrangements for the two holosymmetric classes as
bases for the permutations are given in Table 9.

Appendix II

Cooperatiue lqtlice games

The thirty-four discrete patterns in Appendix I can
be uti l ized as "players" in a three-dimensional lattice
game. The "board" consists ofa checkerboard ofany
specified planar edge dimensions. The "black"
squares of the checkerboard will be called the unit

Gl422l

P1432:Dl

: * r r , +ex l t 8x?x?+6xz )

Gl4/ m 2/m 2/ ml P14/ m 2/ m 2/m:Dl

: 
* of + exl4- 2xixl + 4xi)

P1422:Dl :  
*Ot +Sxi+2x,^)

The pattern inventories, F{P:R}, are:

Pl4/m3 2/m:Dl FIP:u,dl :
u8 + u1d -f 3u,il -l 3usd * 6uad i- ...

P1432:Dl FIP:u,dj :
uE * u1d I 3u6& -l 3u5fr * Tuada * ...

P\4/m 2/m 2/m:DlFlP:u,dl :
u" * uId * 5u6fr -f 5uufr -t l\uadn * ...

P\422:Dl FIP:u,dl :
u8 * u1d l- 6u8il l- 7u5& * l3uada r ...
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Trslr 9. Point groups for the vacancies at the vertices of a cube*
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u8 ( l )

uTa l  ( r )

,r6d2 ( t )

u6d2 (  t t )

u6a2 (z)

u6d2 12t ;

3 z/n
2/n 2/n

3m
n

u5d2 (s)

,-rsa3 (r)

usd3 ( t t )

usd3 (z )

usd3 1Zt ;

usd3 (g )

3 z/n
2/n

m
n

I

n
n

I

3n
m

u4dq  ( t )

u+d+  ( l t )

uada (z)

uadq 12t1

u4d4 (3)

uaaa 1 st ;

4/n
4ln

ii srn
4 2 n

4nn
4nun

3n
m2nrn

2

,rada 14;

rrada (s)

,raaa (e )

,rada (6t)

n
m

2nn
2run

2/n 2/n 2/n
2/n 2/n 2/n

n

2nn
2nm

2

I

2/n

*After 
each configuration symbol, the point symmetry of the

followed by the syllllnetry for a tetTagonal prisnatic domain.
the tetragonal  pr ismat ic donain.  For u idr ,  where s<r,  the

schene is given
Synbols with a

symrnetry is the

for a cubic donain
I'trr in thern inply

sarne as utds.

checkerboard; the "red" squares will be called the
complementary checkerboard. Fout rules are required
for play:

Rule I. The unit checkerboard and com-
plementary checkerboard have translational proper-
ties, the l inear translations corresponding to the vec-
tors of the two edges of the board.

Rule 2. Adjacent players can be l inked at a com-
mon corner only if the symbols of each match. The
possible matching symbols at a corner are no disk;
solid disk; open disk; or both solid and open disk.

Rule 3. The complementary checkerboard adopts
open disks in place of solid disks of the unit checker-
board. If open disks or no disks appear on the unit
checkerboard no open disk can be placed at that
position on the complementary checkerboard. The
player is free to add solid disks providing rules I and
2 are satisfied.

Rule 4. The articulated complementary checker-
board becomes the new unit checkerboard and the
game is continued unti l a repeated pattern along the
stacking axis of the boards is achieved.

With respect to the fluorite structure, the unit
checkerboard corresponds to a sheet of edge-linked
cubes, the players being u'(l). The complementary
checkerboard is also a sheet of edge-linked cubes
which share edges with the tops of the cubes of the
unit checkerboard below.

Several rather interesting kinds of games can be

conceived. Any arrangement of a unit checkerboard
which is identical to that of its complementary check-
erboard is called self-complementary. This means that
the same k inds of  u 'd(m),  u ' '  d" '  (m') . . '  occur  on
both boards and these occur in the same order. The
complementary board may have to be rotated to
achieve an exact match with the unit checkerboard.
This. in effect. admits the existence of screw axes
normal to the boards.

The unit checkerboard of pyrochlore (Fig. 5a) is
one such example of a self-complementary structure.
It is generated from rz8(l) and u"fr(3). The board's
edges are each twice the length of the fluorite board.
The stacking axis requires four boards. A more ele-
gant example of a self-complementary structure is
that of calzirtite, CarZrZroTirO'. (Fig. 5b). It is gen-
erated from z'(l), u'd(l), and u"t(3). This structure,
too, requires four repeats. The unit board has length
three times that of f luorite. All self-complementary
structures only require specifications of the unit
checkerboard, since the structure is repeated by the
appropriate choice and orientation of a screw axis.
Thus, in Figures 5a and 5b, the 4r-screw axis is added
to complete the sequence. Self-replicating patterns
are the composition of a two-sided plane group with
a screw axis normal to it. We are presently retrieving
in a systematic way just those arrangements which
are self-complementary.

A curious, and probably rather l imited version of



l  238 P, B, MOORE AND T. ARAKI

Ftc.  5.  Checkerboards found in brauni te and re lated structures.  Vacancies at  the vert ices of the cube are shown as sol id d isks (above) or
as open disks (below). The occupied cubes are crossed Loci of screw axes are shown.

(a) Unit board for pyrochlore.
(b)  Uni t  board for  calz i r t i te.
(c)  Uni t  board for  b ixbyi te.
(d) Complementary board for bixbyite.
(e)  Complementary board for  brauni te (compare wi th 5d).
( f )  Uni t  board for  brauni te (compare wi th 5c) .

self-complementary arrangements are those we call
pseudo-self-complementary. In such arrangemented,
the kinds of u'd"(m), u'' d"'(m'),. . . are the same with
respect to (r ,s),  (r ' ,s ' ) ,  .  ' .  but the (m), (m') ,  . . .  arc
not all the same. For such arrangements, although the
coordination numbers are of the same kind for the
articulated boards, the polyhedral shapes are not su-
perimposable. Bixbyite is one such example; in Fig-
ure 5c, it is seen that the unit checkerboard consists of
u"*(2t) and u"d(3), but the complement (Fig. 5d)
consists of uu*(2) and u6&(2t). The structure is re-
peated by applying the 2,-screw to unit and com-
plement. In the actual cubic bixbyite structure,

u"E(2) and u"t(3) are distorted so that they are
equivalent in the cubic structure. The ease of forma-
tion of the orthorhombic structure may reflect the
presence of two kinds of vacancy orderings on the
undeformed fluorite cubes for the cube, and three
kinds for the tetragonal prism. Furthermore, the
space group Pbca for orthorhombic bixbyite allows
the existence of the three kinds of distortions,
u6d(2t), u"fr(2), and u6*(3).

Structures whose unit and complement do not have
the same kinds of (r,s), (r ',s'). . . or in which these are
not in the same order are c,alled non-self-replicating.
For these, freedom in the choice of solid disks on the
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desirable result is the systematic retrieval of both fil=f-]
space group and structure type associated with these - 

*

patterns. It is clear that the fluorite arrangement is .l,3lJ

complementary board is permissible. The braunite B-
layer is one such example (Fig. 5e): the pattern, made
up of aE( I ), u6t(3), and uada(4), is not self-replicating
since inspection shows that each square on the com-
plementary checkerboard has one open disk. The
complement to braunite (Fig. 5f) is recognized as the
unit checkerboard of bixbyite. The repeat pattern for
braunite is made complete by applying a 4,-screw to
the composite of unit and complement.

Beyond the mere enjoyment of playing these
games, we are extending our study to explore system-
atically and retrieve all patterns and seek out those
structures which satisfy these patterns. We proceed
from lines similar to the study of space group geneal-
ogies and their application to structure types (see
Neubiiser and Wondratschek, 1966). Completed
three-dimensional composites of boards with the
same axial dimensions are called "Zellengleich," and
composite boards whose arrangements belong to the
same point group are called "Klassengleich." One

particularly adaptive and admits a range of coordina-
tion numbers, from eight to at least three, and we
suspect that a large number of as yet unrecognized
structure types exist.

Since the checkerboards classify "holes," the task
of describing the structures is much easier. In fact,
bixbyite, braunite, pyrochlore, and calzirt ite are tri-
vial. We are presently exploring structures of rather
monstrous size, all of which upon preliminary exam-
ination prove to be anion-deficient f luorite derivative
structures. These include magnussonite, 32Mnu (OH)
(AsO3)3, Ia3d; stenhuggarite, 8CarFerSbrO2(AsO3)r,
I4r/a; cafarsite, 4Ca.MnrFenTir(OH)n(AsOa)rr, Pr3;
and, perhaps most complicated of all, parwelite,
l6MnuSbAsSiO," ,  A2/a.

Addendum

Shortly after this study was submitted for pub-
lication, deVill iers (1975) announced solution and
refinement of the braunite crystal structure on a
sample from Ldngban, Sweden. The two studies are
not only completely independent but proceed from
quite different approaches and emphasize quite dif-
ferent aspects of the problem. Therefore, we decided
not to alter our manuscript except in response to the
suggestions by the referee, which materially improved
the text. Readers of both papers wil l note that de
Vill iers' study does not mention Jahn-Teller dis-
tortion but attributes polyhedral distortion to elec-
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Frc. 6. The discrete vacancies on the vertices of a cube (numer-

als)  and a tetragonal  pr ism (numerals,  and numerals p lus let ters) .

A vacancy above the plane of  project ion is  shown as a sol id d isk

and a vacancy below the plane as an open disk.  Coordinat ion

numbers head the pat terns.  Chira l  arrangements are starred.  Ar-

rangements which are equivalent  by reor ientat ion are shown.

Under undn, for example, there are six kinds ofvacancy diStribu-

t i ons  ove r  t he  cube  (1 ,2 ,3 ,4 ,  5 ,  and  6 )  and  t en  k i nds  ove r  t he

te t r agona l  p r i sm  (1 ,  2 ,  3 , 4 ,  5 ,  6 ,  l t , 2 t , 3 t ,  and  6 l )  d i s rega rd i ng
chira l  mates.

trostatic effects, that is, from the local arrangement of
nearest-neighbor coordination polyhedra. We believe
that this is hardly the complete state of affairs, and
our discussion on bond distances and strengths in-
cludes both the effects of Jahn-Teller distortioh and
electrostatic repulsion across shared edges; Table 6
and the attendant discussion show that consistency is
therein obtained. One minor point concerns the
stated M(l)-O distance of 2.23 A in the earlier study,
which is really 2.34 A as shown in the table on inter-
atomic distances and should be compared with Mn'z+
in eight-fold oxygen coordination, not six, from the
tables of Shannon and Prewitt (1969).

Regarding the details of the structure refinement,
both studies are in good agreement, save for a con-
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sistently higher average of about 0.01 A in bond
distances in de Vil l iers' study, doubtless arising from
differences in cell dimensions: a and c are 0.024 A and
0.035 A larger than our values. These differences
reflect the different techniques in cell refinement, and
it is not possible here to ascertain which is closer to
the true values. Scientists who tabulate bond dis-
tances should be cautioned about this difference in
the two studies.

De Vil l iers emphasizes the importance of sil ica
substitution, which increases to at least 40 weight
percent at high temperature. In agreement with de
V i l l i e r s ,  w e  s u s p e c t  a  c o u p l e d  r e l a t i o n s h i p
Mn3+Mn3+= Mn'+Sin+.  Indeed,  ut i l iz ing cooperat ive
lattice games, a large family of derivative structures
can be obtained, all consistent with tetragonal cells,
but in many instances, suggesting the appearance of
superstructure l ines.
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