Hydrogen-bond system and dehydration behavior of the natural zeolite parthéite

BILJANA LAZIC,^{1,*} THOMAS ARMBRUSTER,¹ BERNARD W. LIEBICH,² AND LUKAS PERFLER³

¹Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland ²Via Saleggi 9, CH-6612 Ascona, Switzerland

³Institute of Mineralogy und Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

ABSTRACT

The crystal structure, including H positions, of the monoclinic zeolite mineral parthéite (space group C2/c) of framework type **-PAR** from Denezhkin Kamen (Urals, Russia) was refined, from single-crystal X-ray data to $R_1 = 3.46\%$. In addition, in situ single-crystal X-ray data have been measured in steps of 25 °C up to 375 °C to analyze dehydration behavior. In situ Raman spectra of the natural (room temperature) and partly dehydrated varieties of parthéite have been recorded at 100, 150, and 275 °C.

The structure of parthéite, $Ca_2Al_4Si_4O_{15}(OH)_2\cdot 4H_2O$, is characterized by a tetrahedral framework interrupted by an OH-group forming the apex of one AlO₄ tetrahedron. In addition, this OH-group coordinates extraframework Ca together with two H₂O molecules and four framework oxygen sites. The structure has four strong hydrogen bonds with H…O interactions below 2 Å. The fifth hydrogen associated with a H₂O molecule, exhibits two potential acceptors of weak hydrogen bonds with H…O distances of ca. 2.5 Å. This softly bound H₂O molecule is released at 150 °C without severe impact on framework distortions but with decrease of Ca coordination from seven to six. Concurrently with loss of the second H₂O molecule at 250 °C, the structure further compacts and becomes severely distorted. The space group *C*2/*c* and the tetrahedral connectivity are preserved but β changes from 91 to 79° and the volume drops from 1730 to 1600 Å³. Ca is still six-coordinated by five framework O atoms and OH.

Keywords: Zeolite, parthéite, hydrogen bonding, dehydration, Raman spectroscopy, crystal structure

INTRODUCTION

The atlas of zeolite framework types (Baerlocher and McCusker, August 2011) lists 197 tetrahedral frameworks characterized by a three letter framework-type code. Among these structure types eight examples have a minus sign (-) in front of their code name indicating that the framework is interrupted by an OH group. Parthéite (-PAR), simplified Ca₂Al₄Si₄O₁₅(OH)₂·4H₂O is one of the latter representatives described from two occurrences. The first type locality is rodingitic rocks from an ophiolitic zone in the Taurus Mountains, southwest Turkey (Sarp et al. 1979). A second occurrence has been described from gabbropegmatites of the Denezhkin Kamen intrusive complex in the Urals, Russia (Ivanov and Mozzherin 1982). The analog of the mineral has not been synthesized and other compositions with -PAR framework type have not been reported. In the original description of parthéite, based on electron-microprobe analyses, Sarp et al. (1979) could not recognize the OH-bearing nature of this mineral and the formula was given as $CaAl_2Si_2O_8 \cdot 2H_2O(Z)$ = 8). A few years later when the crystal structure was solved (Engel and Yvon 1984), the formula was correctly rewritten as $Ca_2Al_4Si_4O_{15}(OH)_2 \cdot 4H_2O$, Z = 4 (Sarp 1985). The assumption that parthéite is a dimorph of lawsonite CaAl₂Si₂O₇(OH)₂·H₂O is not correct. Although these two minerals have similar stoichiometry, containing both OH-groups as well as H₂O, they have different OH/H2O ratios and they are classified as zeolite and sorosilicate, respectively.

The -PAR structure (Engel and Yvon 1984) is characterized

0003-004X/12/1112-1866\$05.00/DOI: http://dx.doi.org/10.2138/am.2012.4197

by essentially complete order of tetrahedral Si and Al and oblate 10-membered ring channels running parallel to the **c** axis. The apex of one AlO₄ tetrahedron is terminated by an OH group. Pockets within the channels host extraframework Ca coordinated by four framework O atoms, one OH-group and two H₂O molecules. In the existing structural data of parthéite (Engel and Yvon 1984), H sites have not been located. This study aims for understanding the hydrogen bond system and the dehydration behavior of parthéite based on new X-ray single-crystal diffraction data collected on crystals from Denezhkin Kamen (Urals Region, Russia). Parthéite from this locality has been used before for calorimetric determination of the enthalpy of formation (Ogorodova et al. 2007) yielding good agreement with corresponding calculations based on crystal structure data (Vieillard 1995).

Experimental methods

A prismatic parthéite crystal $20 \times 30 \times 76 \ \mu m$ in size from Denezhkin Kamen (Urals Region, Russia) was mounted on a glass needle and used for data collection at room temperature. The crystals originated from the very same sample investigated by Ivanov and Mozzherin (1982). Their chemical analysis showed Ca₂Al₄Si₄O₁₅(OH)₂·4H₂O stoichiometry, with traces of Mg²⁺ and Na¹⁺. Measurements were made with an Oxford Diffraction SuperNova area-detector equipped diffractometer using mirror optics and monochromatized MoK\alpha radiation ($\lambda = 0.71073 \ \text{Å}$). The unit-cell constants were obtained from least-squares refinement of the setting angles of 3120 reflections in the range $1.88^{\circ} < \theta < 29.73^{\circ}$. A total of 1366 frames were collected using ω scans, 60 s exposure time, rotation angle of 0.5° per frame, and a crystal-detector distance of 65.0 mm.

Data reduction was performed using the CrysAlisPro program (Oxford Diffraction 2010). The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in CrysAlisPro was applied. Data-collection parameters and refinement parameters

^{*} E-mail: biljana.lazic@krist.unibe.ch

are given in Table 1. Neutral atom scattering factors and starting coordinates from Engel and Yvon (1984) in space group C2/c were used for structure refinement with SHELXL-97 (Sheldrick 2008). Hydrogen positions were extracted from difference-Fourier maps applying the restraint H-O = 0.95(2) Å (Franks 1973) and refined with isotropic displacement parameters. The final refinement, based on 1897 observed reflections and 162 parameters with 5 restraints, converged to $R_1 = 0.0346$. Bond-valence calculations were performed using the parameters summarized by Brown and Altermatt (1985).

To study in situ dehydration, a second crystal from the same locality was attached to a glass fiber by two-component epoxy-glue. The crystal was too small and fragile to be mounted in a capillary. X-ray diffraction data were collected with ω scans at different φ settings (φ-ω scan) (Bruker 1999) using a Bruker APEX II SMART diffractometer and a self-constructed temperature controlled gas flow heater. The heater was mounted on the ω -axis, its gas nozzle was located 3 mm underneath the sample position. Temperature stability was ensured by using a constant flow of N2 regulated by a mass flow controller. The heating power was controlled by an Eurotherm controller, which kept the temperature at a thermocouple in the nozzle constant. Powder measurements of well-known phase transitions as described by Krüger and Breil (2009) were utilized to obtain a temperature calibration function for temperatures at the sample position. Complete data sets were collected in steps of 25 °C up to 375 °C. Prior to the data collection, which took ca. 20 h, the crystal was equilibrated in situ for 1 h at the corresponding temperature. Data were processed using SAINT (Bruker 1999). An empirical absorption correction using SADABS (Sheldrick 1996) was applied. The refinement procedure using the program SHELXL97 (Sheldrick 2008) was the same as for the crystal measured under ambient conditions. All sites except hydrogen were refined with anisotropic displacement parameters. The isotropic displacement parameters of the hydrogen atoms were treated differently. For room-temperature data, all $U_{\rm iso}$ of H atoms were refined. For 150 °C data, $U_{\rm iso}$ of the hydrogen atom forming the hydroxyl group was refined, but those belonging to H_2O were fixed at $U_{iso} = 0.05$. From the data obtained at 275 °C, positions of the hydrogen atoms were not located.

After the final heating excursion to 375 °C, the crystal was cooled under nitrogen atmosphere to room temperature and subsequently exposed to humidity under ambient conditions. After allowing for rehydration for 48 h, a long exposure diffraction pattern was collected.

Confocal Raman spectra of randomly oriented single crystals were recorded in the range of 100–4000 cm⁻¹ with a Horiba Jobin Yvon Labram-HR 800 Raman

micro-spectrometer. The samples were excited using the 532 nm emission line of a frequency-doubled 100 mW Nd:YAG laser and the 633 nm line of a 17 mW helium-neon laser using an Olympus 100× objective lens. The size of the laser spot on the surface was approximately 1 μ m in diameter. The scattered light was dispersed by an optical grating with 1800 lines mm⁻¹ and collected by a 1024 × 256 open electrode CCD detector. The spectral resolution, determined by measuring the Rayleigh line, was about 2 cm⁻¹. Unpolarized spectra were recorded. The accuracy of the Raman line shifts, calibrated by regularly measuring the Rayleigh line, was in the order of 0.5 cm⁻¹. In situ high-temperature Raman experiments were performed on a Linkam TS1500 heating-stage. The sample was loaded into the ceramic crucible on a 7 mm sapphire disk. Measurements were performed at 25, 100, 150, and 275 °C.

RESULTS

Atomic coordinates and displacement parameters for the parthéite structure at room temperature, at 150 and at 275 °C are given in Tables 2 and 3¹, respectively. Results of bond valence calculations for fully hydrated parthéite are given in Table 4¹ and selected distances and angles of hydrogen bonds under ambient conditions are in Table 5. Table 6 compares Ca-O and selected O-O distances at room temperature, 150, and 275 °C. T-O distances and T-O-T angles are summarized in Table 7. Raman spectra between 100 and 1300 cm⁻¹ at different temperatures are displayed in Figure 1. Unpolarized Raman spectra of parthéite at ambient conditions are given as a deposited item. Those characteristic of the OH-stretching region are given in Figures 2 and 3.

¹ Deposit item AM-12-077, Tables 3 and 4; CIFs. Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the *American Mineralogist* Contents, find the table of contents for the specific volume/ issue wanted, and then click on the deposit link there.

TABLE 1. Parameters for X-ray data collection and crystal-structure refinement

Crystal data for	Parthéite (RT)	Parthéite (150 °C)	Parthéite (275 °C)
Cell dimensions (Å)	a = 21.5474(4)	a = 21.524(7)	<i>a</i> = 20.82(4)
	<i>b</i> = 8.75638(15)	<i>b</i> = 8.667(3)	<i>b</i> = 9.350(16)
	<i>c</i> = 9.30578(16)	<i>c</i> = 9.292(3)	c = 8.359(14)
	ß = 91.5524(18)°	ß = 91.067(5)°	ß = 78.86(2)°
Cell volume	1755.15(5) ų	1733.1(10) Å ³	1596.3(5) ų
Space group	C2/c	C2/c	C2/c
Z	4	4	4
Chemical formula	$Ca_2AI_4Si_4O_{15}(OH)_2\cdot 4H_2O$	Ca ₂ Al ₄ Si ₄ O ₁₅ (OH) ₂ ·2H ₂ O	Ca ₂ Al ₄ Si ₄ O ₁₅ (OH) ₂
Diffractometer	Oxford SuperNova	Bruker Apex II	Bruker Apex II
X-ray radiation	MoKα (0.71073 Å)	MoKα (0.71073 Å)	MoKα (0.71073 Å)
X-ray power	50 kV, 0.8 mA	50 kV, 35 mA	50 kV, 35 mA
Temperature	296 K	423 K	548 K
Crystal size (mm)	$0.08 \times 0.03 \times 0.02$	$0.10 \times 0.05 \times 0.01$	0.10 × 0.05 × 0.01
Time per frame (s)	60	60	60
Number of frames	1366	1080	1080
Completeness	100%	99.5%	99.4%
Reflections collected	10172	8183	3829
Max. θ (°)	29.73	28.45	20.5
Index range	-29≤h≤29	$-28 \le h \le 25$	$-20 \le h \le 20$
	$-12 \le k \le 12$	$-11 \le k \le 11$	$-9 \le k \le 9$
	–12≤/≤12	-12≤/≤12	-8≤1≤8
Unique reflections	2375	2182	807
Reflections $> 2\sigma(l)$	1897	1234	399
Restraints	5	3	0
Number of parameters	162	155	123
R _{int}	0.049	0.1299	0.2547
R _σ	0.050	0.1401	0.1855
GooF	1.039	0.960	0.986
$R1, I > 2\sigma(I)$	0.0346	0.0536	0.0727
R1, all data	0.0522	0.1173	0.1757
wR2 (on F ²)	0.0732	0.1148	0.1982
$\Delta \rho_{min} (-e^{-\dot{A}^{-3}})$	-0.40 close to Si2	-0.56 close to Si2	-0.63 close to Al2
$\Delta \rho_{max}$ (e Å ⁻³)	0.51 close to O10	0.76 close to O10	0.61 close to O9

TABLE 2a. Atomic coordinates and displacement parameters (Å³) of parthéite at RT (U_{enu} for Si1 to O11, U_{iso} for H sites)

Atom	х	У	z	$U_{ m equ/iso}$	
Si1	0.06721(3)	0.18348(8)	0.28940(7)	0.00653(15)	
Si2	0.23984(3)	0.00789(8)	0.46198(7)	0.00596(15)	
Al1	0.11617(4)	0.08403(9)	0.60078(8)	0.00693(17)	
Al2	0.19981(4)	0.31654(9)	0.28577(8)	0.00626(16)	
Ca1	0.35596(3)	0.19896(6)	0.04443(6)	0.01130(13)	
01	0.06952(8)	0.0168(2)	0.21617(19)	0.0098(4)	
02	0.07252(8)	0.1721(2)	0.46320(19)	0.0099(4)	
O3	0.12242(8)	0.2886(2)	0.22936(19)	0.0094(4)	
04	0.17245(8)	0.0354(2)	0.02491(19)	0.0093(4)	
O5	0.20795(8)	0.46651(19)	0.40976(19)	0.0090(4)	
06	0.23450(9)	0.1559(2)	0.36083(19)	0.0109(4)	
07	0.23371(8)	0.3601(2)	0.12194(18)	0.0084(4)	
08	0.0000	0.2627(3)	0.2500	0.0082(5)	
09	0.35277(9)	0.2676(2)	0.2914(2)	0.0125(4)	
010	0.07184(11)	0.5030(3)	0.0158(3)	0.0342(6)	
011	0.45417(10)	0.3049(3)	0.0797(2)	0.0212(5)	
H1	0.4552(17)	0.387(3)	0.141(3)	0.038(11)	
H2	0.4911(12)	0.312(5)	0.033(4)	0.051(13)	
H3	0.3205(12)	0.216(4)	0.327(4)	0.034(10)	
H4	0.051(3)	0.466(8)	0.095(5)	0.18(3)	
H5	0.0772(19)	0.609(2)	0.014(5)	0.060(14)	

TABLE 2b. Atomic coordinates and displacement parameters (Å³) of parthéite at 150 °C (U_{rev} for Si1 to O11, U_{rev} for H sites)

	partificite				1 51(05)
Atom	Occ.	х	У	Z	$U_{\rm equ/iso}$
Si1	1	0.06687(6)	0.18563(17)	0.28767(15)	0.0154(3)
Si2	1	0.24008(6)	0.01065(16)	0.46284(15)	0.0139(3)
Al1	1	0.11439(7)	0.09085(18)	0.60152(16)	0.0149(4)
Al2	1	0.19875(7)	0.31896(18)	0.28582(15)	0.0139(4)
Ca1	1	0.35172(5)	0.21062(13)	0.04383(11)	0.0213(3)
01	1	0.06940(16)	0.0181(4)	0.2143(4)	0.0202(9)
02	1	0.07327(16)	0.1748(4)	0.4609(3)	0.0208(9)
03	1	0.12215(15)	0.2932(4)	0.2225(3)	0.0178(8)
04	1	0.17264(15)	0.0304(4)	0.0293(3)	0.0161(8)
05	1	0.20593(15)	0.4691(4)	0.4126(3)	0.0165(8)
06	1	0.23476(16)	0.1580(4)	0.3608(4)	0.0184(8)
07	1	0.23635(15)	0.3586(4)	0.1232(3)	0.0163(8)
08	1	0.0000	0.2671(6)	0.2500	0.0185(12)
09	1	0.35323(18)	0.2632(5)	0.2884(4)	0.0256(14)
011a	0.27(3)	0.0402(12)	0.333(9)	-0.078(3)	0.092(17)
011b	0.73(3)	0.4544(4)	0.2796(18)	0.0813(8)	0.037(4)
H1	0.73	0.492(2)	0.266(11)	0.033(8)	0.050
H2	0.73	0.467(4)	0.368(6)	0.132(8)	0.050
H3	1	0.3168(18)	0.224(7)	0.330(6)	0.05(2)

TABLE 2c. Atomic coordinates and equivalent displacement parameters (Å³) of parthéite at 275 ℃

Atom	x	У	Z	U _{equ}	
Si1	0.0624(3)	0.2007(7)	0.2969(7)	0.0438(18)	
Si2	0.2415(3)	0.0525(6)	0.4526(7)	0.0394(17)	
Al1	0.0925(3)	0.1123(7)	0.6391(7)	0.0452(19)	
Al2	0.2041(3)	0.3130(7)	0.2866(7)	0.0419(18)	
Ca1	0.3381(2)	0.1878(5)	0.0636(5)	0.0485(15)	
01	0.0697(8)	0.0570(16)	0.3036(19)	0.090(6)	
02	0.0539(6)	0.1847(13)	0.4903(14)	0.045(4)	
03	0.1291(6)	0.2954(14)	0.2252(15)	0.050(4)	
04	0.1760(6)	-0.0984(14)	0.0659(16)	0.055(4)	
05	0.1968(6)	0.4310(13)	0.4506(14)	0.043(4)	
06	0.2525(6)	0.1574(13)	0.2924(14)	0.044(4)	
07	0.2539(6)	0.3842(13)	0.3906(13)	0.040(4)	
08	0.0000	0.2869(17)	0.2500	0.037(5)	
09	0.4178(7)	0.2720(16)	0.1886(15)	0.064(4)	

DISCUSSION

Single-crystal X-ray diffraction techniques are certainly not the best choice to analyze hydrogen-bond systems. However, for low material quantities or small crystal size, neutron diffraction is not applicable. It is the well-known disadvantage of X-ray diffraction that for hydrogen not the position of the

 TABLE 5.
 Hydrogen bond distances (Å) and O-H…O angles of parthéite at room temperature

			ture .			
Species	D-H	HA	DA	<(DHA)°	Hydrogen bond	
H ₂ O II	0.917(18)	1.84(2)	2.714(3)	159(3)	011-H1-01	
H ₂ O II	0.919(19)	1.89(2)	2.805(3)	172(4)	011-H202	
(OH)	0.899(18)	1.96(2)	2.821(3)	160(3)	O9-H3O6	
H ₂ O I	0.94(2)	2.55(4)	3.429(3)	156(6)	O10-H4O8	
H ₂ O I	0.94(2)	2.50(4)	2.922(3)	108(6)	O10-H4O3	
H ₂ O I	0.936(19)	1.98(2)	2.887(3)	164(4)	O10-H5O2	
D: donor; A: acceptor; H1-O11-H2: 104(3)°; H4-O10-H5: 115(5)°.						

TABLE 6. Ca-O and O-O (Å) distances (related to hydrogen bonding) in parthéite under ambient conditions and after partial dehydration at 150 and 275 °C

Ca coordination	RT	150 °C	275 °C
Ca-011 (H ₂ O)	2.326(2)	2.310(7)	
Ca-O9 (OH)	2.3785(19)	2.317(4)	2.266(14)
Ca-O10 (H ₂ O)	2.431(3)		
Ca-04	2.4862(18)	2.400(4)	
Ca-07	2.4971(18)	2.500(4)	2.518(14)
Ca-O5	2.5005(18)	2.470(4)	2.519(13)
Ca-O3	2.6048(19)	2.549(4)	2.382 (13)
Ca-07'			2.697(13)
Ca-O6			2.367(13)
Mean	2.461	2.425	2.458
010-02	2.887(3)		
010-08	3.429(3)		
011-01	2.714(3)	2.859(12)	
011-02	2.805(3)	2.839(8)	
09-06	2.821(3)	2.802(5)	3.55(2)
09-02			3.02(2)

TABLE 7. Selected bond-distances (Å) and T-O-T angles (°) for parthéite at different temperatures

ite ut	amerent temperata	165	
Bond/angle	RT	150 °C	275 °C
Si1-O1	1.6122(19)	1.605(4)	1.575(15)
Si1-O3	1.6155(19)	1.637(4)	1.662(14)
Si1-O2	1.6214(18)	1.616(3)	1.598(13)
Si1-08	1.6384(12)	1.635(3)	1.638(9)
Mean	1.6218	1.623	1.618
Si2-06	1.6040(18)	1.594(4)	1.639(13)
Si2-07	1.6227(18)	1.627(4)	1.653(13)
Si2-04	1.6251(19)	1.628(3)	1.563(14)
Si2-O5	1.6333(18)	1.634(3)	1.650(13)
Mean	1.6213	1.621	1.626
Al1-01	1.7325(19)	1.722(4)	1.698(16)
Al1-02	1.7475(18)	1.726(4)	1.741(13)
Al1-09	1.762(2)	1.762(4)	1.778(14)
Al1-04	1.7632(19)	1.777(4)	1.734(14)
Mean	1.7513	1.747	1.738
Al2-06	1.7312(19)	1.735(4)	1.776(14)
Al2-07	1.7503(19)	1.761(3)	1.764(13)
Al2-03	1.7519(19)	1.754(4)	1.740(14)
Al2-05	1.7537(19)	1.761(4)	1.743(14)
Mean	1.7468	1.753	1.756
Si1-O1-Al1	138.46(12)	141.1(2)	160.0(12)
Si1-O2-Al1	141.25(12)	144.3(2)	141.6(9)
Si1-O3-Al2	132.84(11)	129.3(2)	132.8(8)
Si1-O8-Si1	129.88(16)	128.9(3)	121.1(10)
Si2-O4-Al1	129.57(11)	130.9(2)	159.0(9)
Si2-O5-Al2	129.66(11)	127.3(2)	119.3(8)
Si2-O6-Al2	156.44(13)	155.5(2)	121.6(8)
Si2-O7-Al2	138.87(12)	137.1(2)	127.7(8)
Mean	137.12	136.8	135.4

nucleus but that of the bonding electron to the adjacent donor is located. Thus, the direction of the O-H vector is correct but not the OH-distance. This shortcoming is corrected by addition of restraints during the refinement procedure to improve the "true" crystal-chemical model. These restraints act as additional observations and define an elongate O-H vector [0.95(2) Å in this study] corresponding to an average distance derived from neutron diffraction data (Franks 1973).

Bond-valence calculations (Brown and Altermatt 1985) were used to confirm the experimentally derived hydrogen bond systems. In a first step of calculations of bond-valence sums (bvs), hydrogen bonds contributing to the bond valence of oxygen atoms were ignored. An oxygen by <0.5 valence units (v.u.) characterizes a H₂O molecule and a bys of about 1 suggests a donor of a hydrogen bond (OH group). Valence sums considerably below 2 v.u. (>1.5 v.u.) indicate that such oxygen atoms possibly participate at a hydrogen bond as acceptor. According to a model by Ferraris and Ivaldi (1988), which is here strongly simplified, the bvs for a donor of a hydrogen bond may be increased by 0.8 v.u. and the bvs of acceptor oxygen may be increased by 0.2 v.u. Corresponding calculations (Table 4) indicate that O9 represents an OH group; O10 and O11 belong to H₂O molecules. In addition, O1, O2, and O6 have low bys making them candidates for acceptors of hydrogen bonds.

FIGURE 1. Unpolarized Raman spectra of a parthéite single crystal measured in the range of 110–1300 cm⁻¹ at 25, 150, and 275 °C.

FIGURE 2. Raman spectrum of parthéite $Ca_2Al_4Si_4O_{15}(OH)_2$ · $4H_2O$ measured at room temperature in the range of 3000–4000 cm⁻¹.

FIGURE 3. Raman spectra of parthéite measured in the range of 3200–3700 cm⁻¹ at 100, 150, and 275 °C.

FIGURE 4. Crystal structure of parhéite $Ca_2Al_4Si_4O_{15}(OH)_2 \cdot 4H_2O$ at room temperature. Oxygen of H_2O and OH are shown as light blue spheres with attached small white spheres representing H. Hydrogen-bond acceptor interactions are shown by gray dashed connectors. Extraframework Ca is dark blue, SiO₄ tetrahedra are red with yellow faces. The Al2O₄ tetrahedron is green delimited by external faces, whereas, for better distinction, the Al1O₄ tetrahedron, terminated by the O9-H3 group, is only drawn with green spheres and bonds (without polyhedral faces). (a) Projection along the c axis showing the porous character of the structure, (b) projection along the b axis for better visibility of the hydrogen-bond system. (Color online.)

FIGURE 5. Distorted parthéite structure at 275 °C, $Ca_2Al_4Si_4O_{15}(OH)_2$, after all H₂O molecules have been expelled. Extraframework Ca is dark blue, SiO₄ tetrahedra are red with yellow faces. The Al2O₄ tetrahedron is green delimited by external faces, whereas, for better distinction, the Al1O₄ tetrahedron, terminated by the O9-H3 group, is only drawn with green spheres and bonds (without polyhedral faces). (a) Projection along the **c** axis showing the porous character of the structure, (b) projection along the **b** axis for better visibility of the Ca coordination. (Color online.)

A detailed description of the interrupted framework of parthéite (Figs. 4 and 5), including secondary building units, has been given by Engel and Yvon (1984). Our structure refinement with five located H positions (Fig. 6) indicates that there are four strong hydrogen bonds with H...O acceptor distances below 2 Å: O9-H3…O6, O10-H5…O2, O11-H1…O1, and O11-H2…O2. Thus O2 with the lowest bvs, which is not an OH-group, acts as acceptor of two hydrogen bonds. The refined position of H4 has no bond acceptors within 2 Å. Within 2.6 Å, there are two potential acceptors (O3 and O8). This indicates that H4 is fixed by weak hydrogen bonds only. The potential hydrogen bond O10-H4...O8 is bent (156°) with an O10-O8 separation of 3.4 Å (Table 5). Actually O8 may accept two hydrogen bonds from H4 of adjacent H4-O10-H5 molecules (Fig. 4a). The alternative O10-H4...O3 hydrogen bond is even kinked (108°) but with a considerably shorter O10-O3 distance of 2.9 Å (Table 5). The increased U_{iso} displacement parameter of H4 (Table 3) is a factor of 3-5 times larger than U_{iso} of other H sites in parthéite. This suggests that H4 is disordered and an average position has been

FIGURE 6. Decrease of the Ca coordination and hydrogen bonds in partheite structure at different temperatures. (a) Parthéite at room temperature with O10 and O11 fully occupied. The O10-H5 \cdots O2 hydrogen bond is not shown. The vector H5 \cdots O2 points toward the observer, approximately parallel to the **b** axis. (b) Parthéite at 150 °C: The H₂O molecule at O10 has been expelled, the H₂O molecule at O11 is disordered on a split position. Loss of H₂O at O10 reduces the Ca coordination from seven to six. (c) Parthéite at 275 °C: Both H₂O molecules are liberated. Ca is six-coordinated but has few new bonding partners compared to the coordination at 150 °C. (Color online.)

determined. Moreover, this is also evident from the large standard deviations associated with coordinates of this atom (Table 2a). The H4-O10-H5 angle of $115(5)^{\circ}$ is within 2 e.s.d. values from the expected value of 104.5° for a H₂O molecule. In the H-corrected bys calculations, we have added 0.1 v.u. to the bys of O3 and O8, respectively. Bond-valence sums of framework oxygen sites without hydrogen correction scatter between 1.78 and 2.01 v.u. (Table 4). After introducing the hydrogen correction the corresponding values are between 1.98 and 2.18 v.u.

 H_2O at O10 is connected to Ca and plugs the elliptical channels parallel to **c**, confined by 10-membered rings of tetrahedra (Fig. 4). Hydrogen bonds fix O10 to opposite walls of the channel. In contrast to the position of O10, H_2O at O11, also with one bond to Ca, is positioned at a side pocket of the one-dimensional channels (Fig. 4a) and does not interfere with channel diffusion. In addition, H1 and H2 of the H₂O molecule at O11 form strong hydrogen bonds to O1 and O2, respectively. Another view of the hydrogen-bond system is shown in Figure 4b. Both H₂O molecules at O10 and O11 decorate the walls of a six-membered ring channel, running along **b**, formed by $4 \times Si1$ and $2 \times A11$ with hydrogen bonds across the channel's transverse section.

The OH/H₂O-specific region of the powder IR spectrum of parthéite (Ivanov and Mozzherin 1982) is not easy to interpret. Their sample was probably contaminated by hydrocarbons as evidenced by strong absorptions at 2970 and 1500 cm⁻¹. Other observed bands characteristic of OH stretching modes are at 3300 (shoulder), 3420, and 3585 (shoulder) cm⁻¹. According to Libowitzky (1999) absorptions between 3300 and 3585 cm¹ correspond to donor-acceptor $(O \cdots O)$ distances of ca. 2.8–3.2 Å, which agrees with the corresponding D-A distances in Table 5. Qualitatively, the high-frequency part of the IR spectrum shown by Sarp (1985) for parthéite from Turkey is very similar to that from Denezhkin Kamen (Ivanov and Mozzherin 1982). Sarp (1985) lists the following absorption bands (cm⁻¹): 2850 (w), 2920 (m), 3250 (w), 3304 (m), 3410 (vs), 3480 (sh), and 3580 (vs). Absorptions at 1650 and 1635 cm⁻¹ were assigned to H₂O deformations. We interpret the bands at 2920 and 2850 cm⁻¹ as hydrocarbon specific absorptions. Our room-temperature Raman spectrum (Fig. 2) displays bands (cm⁻¹) at 3256 (m), 3308 (m), 3384 (m shoulder), 3417 (vs), 3476 (m shoulder) and 3574 (m) cm⁻¹. Thus there is rather good agreement between Raman and IR data (Ivanov and Mozzherin 1982; Sarp 1985) for OH stretching signals. Due to the increased atomic vibrations with temperature the resolution of the Raman spectra at 150 and 275 °C (Figs. 1 and 3) strongly decreased. Major differences with temperature are noted below ca. 300 cm⁻¹, which is related to the coordination change of Ca upon dehydration.

Previous studies (e.g., Cruciani 2006; Wadoski et al. 2011 and references therein) have shown that dehydration of Ca-rich zeolites proceeds with only minor structural changes until the Ca-coordination decreases to six. Further dehydration leading to lower Ca-coordination may cause phase transitions, partial rupture of T-O-T bonds, or structural collapse (Alberti and Martucci 2011).

Our in situ dehydration experiments at elevated temperature and dry N₂ atmosphere showed that parthéite starts losing H₂O already at 100 °C. At this temperature the population of H₂O at O10 decreased to 0.88(1). The population was further lowered to 0.346(16) at 125 °C, and the unit-cell volume dropped from 1757.6(4) to 1742.6(7) Å³ between 100 and 125 °C. At 150 °C, two H₂O pfu have been expelled and O10 became vacant. The Ca coordination decreased from seven to six (Table 6) accompanied by a shortening of the mean Ca-O distance from 2.461

FIGURE 7. Development of unit-cell volume vs. temperature for in situ dehydration experiments of parthéite from $Ca_2Al_4Si_4O_{15}(OH)_2\cdot 4H_2O$ (up to 100 °C) to $Ca_2Al_4Si_4O_{15}(OH)_2\cdot 2H_2O$ (up to 225 °C). The size of the symbols approximately corresponds to e.s.d. values of volume.

FIGURE 8. Development of the long Ca-O7' distance vs. temperature for in situ dehydration experiments of parthéite from Ca₂Al₄Si₄O₁₅(OH)₂·4H₂O (up to 100 °C) to Ca₂Al₄Si₄O₁₅(OH)₂·2H₂O (up to 225 °C). The line largely follows the same trend as observed for the volume (Fig. 4). The size of the symbols approximately corresponds to e.s.d. values of Ca-O distances.

to 2.425 Å (Table 6). In addition, the unit-cell volume reduced to 1733.1(10) Å³ and H₂O at O11 became disordered over two positions (O11a and O11b), ca. 1 Å apart. From 150 to 225 °C, the O11 disorder increased while the unit-cell volume further decreased (Fig. 7). The decrease of the unit-cell volume (Fig. 7) after H₂O at O10 had already been expelled is rather unusual and one should instead expect "normal" thermal expansion. We assume that the structure at 150 °C was still too rigid to adapt to the new situation with 2 H₂O less in the structural channels. Thus upon increasing temperature (150–225 °C) the tetrahedral framework became more flexible (thermal motion) to adjust hysteresis-like to the less occupied channel system. Thus subsequent expansion led to slight reduction of porous space and not to increase of bulk volume. One indicator of the latter behavior is the decrease of the distance of the remote O7 site to channel Ca (Fig. 8). This distance significantly decreases with temperature and largely follows the observed trend of the volume vs. temperature (Fig. 7). One may suggest that the framework structure compensates the loss of H_2O by offering an additional framework oxygen site (O7) as contributor to the Ca coordination.

Sarp et al. (1979) reported that the X-ray diffraction pattern of parthéite did not significantly change after 64 h heating at 150 °C. This can be explained by the fact that their X-ray pattern was recorded at ambient condition and a zeolite with intact framework structure will under moist ambient conditions rehydrate to its original composition. A first endothermic DTA signal and a corresponding DTG peak with a maximum at 230 °C have been noted by Ivanov and Mozzherin (1982). However, the onset of this dehydration is ca. 100 °C lower and may correspond to the loss of 2 H₂O pfu determined in this study. It should also be stressed again that our in situ dehydration has been performed under dry N₂ atmosphere but environmental conditions are not specified for the DTA and DTG experiments by Ivanov and Mozzherin (1982).

The H₂O I molecule with the weakest hydrogen bonds is H4-O10-H5. This molecule seems to be most favorable to escape at low temperature. The bands at 3476 and 3574 cm⁻¹ of the room-temperature Raman spectrum (Fig. 2) are assigned to these soft hydrogen bonds based on donor (O10) acceptor distances (Libowitzky 1999). The sharp Raman band at 3417 cm⁻¹ is assigned to the OH group and the broadened bands at 3256 and 3308 cm⁻¹ correspond to H₂O II at O11 (Table 5). The shoulder at 3384 cm⁻¹ (Fig. 2) remains unassigned. H4 of H₂O I is only fixed by a very weak hydrogen bond (Table 5) and if the hydrogen bond H5...O2 is broken the bvs of O2 reduces from 2.18 to 1.98 v.u. (Table 4). Thus, O2 retains an appropriate bys even if H₂O at O10 is expelled. The expulsion of H4-O10-H5 was found in this study to be complete at 150 °C, decreasing the Ca coordination from seven to six. At 150 °C, the Raman spectrum (Fig. 3) of the range characteristic of OH stretching vibrations is only poorly resolved. Our structure data collected at the same temperature indicate (Tables 5 and 6) that according to donor-acceptor distances the strongest hydrogen bonds are formed by O9 (OH) followed by O11 as donor (H₂O II). Thus the broad shoulder in the Raman spectrum (Fig. 3) at 3483 cm⁻¹ is assigned to H₂O II.

Sarp et al. (1979) report that the X-ray pattern became slightly modified after further dehydration 40 h at 300 °C and after 40 h at 350 °C a different pattern was recognized. Our in situ single-crystal dehydration experiments indicate that at 250 °C, the second H₂O molecules is released and that the tetrahedral framework strongly distorts and compacts by a volume decrease of ca. 8%. The associated distortions cause a strongly streaked diffraction pattern, thus significant reflection intensities were only monitored in the low- θ range. H completing the OH group with oxygen at O9 could not be resolved.

In addition, the asymmetric, strongly elongated shape of X-ray reflections prevents the reliable tracking of cell dimensions above 250 °C. Up to 375 °C, the space-group symmetry C2/c and the tetrahedral topology remained preserved. Ca nestles at the cavity wall and maintains sixfold coordination by five framework O atoms and the OH-group linked to Al1. The high-

temperature structure is strongly distorted. Most significantly, β decreases from 91 to 79°, *b* increases from 8.7 to 9.4 Å, *c* decreases from 9.3 to 8.4 Å, and *a* from 21.5 to 20.8 Å, leading to a decline of volume from 1730 to 1600 Å³.

The weakest connector in the framework of parthéite is the All tetrahedron, which is linked to three Si tetrahedra and one terminate OH group at O9. At 275 °C Al1 strongly rotates, thus the hydrogen bond O9-H3...O6 becomes disconnected. The donor O9 to acceptor O6 distance increases from originally 2.8 (Table 5) to 3.6 Å. The new acceptor of the OH group at O9 becomes O2 with d(O9-O2) = 3.02(2) Å (Table 6). Thus, the O9-related poorly resolved Raman band (Fig. 3) shifts to higher frequency (Libowitzky 1999). O6 compensates for the lost bond valence from the hydrogen bond by formation of a new bond to Ca (Table 6, Fig. 6c) leading to strong bending of the Si2-O6-Al2 angle (Table 7) from 155° at 150 °C to 122° at 275 °C. On the other hand, readjustment of the Ca position leads to an increase of the Ca-O4 distance from 2.4 to 3.6 Å but simultaneously O7' comes close (2.7 Å) to Ca. In spite of different bonding partners, Ca preserves its sixfold coordination (Table 6). Stepwise dehydration of parthéite did not cause significant change of average Si-O or Al-O bond distances (Table 7). Loss of hydrogen bonding (at 275 °C) and rotation of the Al1-tetrahedron can be clearly seen from modification of T-O-T angles: Si1-O1-All increased from 138.46(12)° to 160.0(12)° and Si2-O4-Al1 from 129.57(12)° to 159.0(12)° (Table 7, Fig. 6).

After the heating excursion to 375 °C and subsequent equilibration for 48 h under ambient humidity, the crystal strongly swelled. However, neither a single crystal nor a powder diffraction-pattern could be monitored. This does not necessarily mean that parthéite turned X-ray amorphous. More probably upon rehydration the crystal disintegrated to a micro-aggregate whose powder pattern could not be detected due to the very small amount of material.

Heating 60 h at 400 °C led to destruction of the parthéite related high-temperature phase and the strongest reflections of anorthite appeared (Sarp et al. 1979). Ivanov and Mozzherin (1982) found additional DTA (endothermic) and DTG maxima at 400 and 600 °C. The onsets of the latter dehydration steps are, however, at least 100 and 150 °C lower.

The crystal structure of parthéite is unique for several reasons. (1) Essentially complete Si, Al order leads to an ordered arrangement of channel Ca and coordinating H_2O . Thus hydrogen positions could be straight forward extracted from routine single-crystal X-ray diffraction data. (2) Calcium does not plug the porous one-dimensional channels but occupies side pockets. (3) The interrupted tetrahedral framework with a terminate OH group linked to an Al tetrahedron has special flexibility (up to 400 °C) enabling to accomplish sixfold Ca coordination even if all H_2O molecules are expelled.

ACKNOWLEDGMENTS

We are deeply grateful to Igor Pekov for a leaving us a sample of parthéite from Denezhkin Kamen (Urals Region, Russia) for studying the dehydration behavior. This study was supported by the Swiss National Science Foundation, project "crystal chemistry of minerals" to T.A. and B.L. The authors thank Jürg Hauser for performing data collection on Oxford Diffraction diffractometer and Vladimir Malogajski for constructing the gas flow heater. Constructive reviews by Reinhard X. Fischer and Mariko Nagashima are highly appreciated.

REFERENCES CITED

- Alberti, A. and Martucci, A. (2011) Reconstructive phase transitions in microporous materials: Rules and factors affecting them. Microporous Mesoporous Materials, 141, 192–198.
- Baerlocher, C. and McCusker, L.B. (2011) Database of Zeolite Structures: http:// www.iza-structure.org/databases (accessed on 1/5/2012).
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.
- Bruker (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, U.S.A.
- Cruciani, G. (2006) Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67, 1973–1994.
- Engel, N. and Yvon, K. (1984) The crystal structure of parthéite. Zeitschrift f
 ür Kristallographie, 169, 165–175.
- Ferraris, G. and Ivaldi, G. (1988) Bond valences vs bond length in O. O hydrogen bonds. Acta Crystallographica, B44, 341–344.
- Franks, F., Ed. (1973) Water: Comprehensive Treatise, vol 2, 684 p. Plenum, New York.
- Ivanov, O.K. and Mozzherin, Yu.V. (1982) Partheite from gabbro-pegmatites of Denezhkin Kamen, Urals (first occurrence in the USSR). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 111, 209–214 (in Russian).
- Krüger, H. and Breil, L. (2009) Computer-controlled high-temperature single crystal X-ray diffraction experiments and temperature calibration. Journal of Applied Crystallography 42, 140–142.
- Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O

hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.

- Ogorodova, L.P., Kiseleva, I.A., and Mel'chakova, L.V. (2007) Calorimetric determination of the enthalpy of formation of partheite, a calcium zeolite. Russian Journal of Physical Chemistry, A, 81, 315–316.
- Oxford Diffraction (2010) CrysAlisPro (Version 1.171.34.36). Oxford Diffraction Ltd., Yarnton, Oxfordshire, U.K.
- Sarp, H. (1985) Quelques données nouvelles sur la parthéite et son etude au spectrometer à l'infrarouge. Schweizerische Mineralogische und Petrographische Mitteilungen, 65, 129–135.
- Sarp, H., Deferne, J., Bizouard, H., and Liebich, B.W. (1979) La partheite, CaAl₂ Si₂O₈ 2H₂O, un nouveau silicate naturel d'aluminium et de calcium. Schweizerische Mineralogische und Petrographische Mitteilungen, 59, 5–13.
- Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- Vieillard, P. (1995) Estimation of enthalpy of formation of some zeolites from their refined crystal structures. Zeolites, 15, 202–212.
- Wadoski, E., Armbruster, T., Lazic, B., and Fisch, M. (2011) Dehydration of the natural zeolite goosecreekite CaAl₂Si₆O₁₆·5H₂O upon stepwise heating: A single-crystal and powder X-ray study. American Mineralogist, 96, 1070–1078.

MANUSCRIPT RECEIVED APRIL 12, 2012 MANUSCRIPT ACCEPTED JULY 9, 2012 MANUSCRIPT HANDLED BY G. DIEGO GATTA

Table Sa. (for deposit) Anisotropic displacement parameters (except hydrogen) for partnette at K1.								
Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂		
Si1	0.0059(3)	0.0079(3)	0.0059(3)	0.0002(3)	0.0005(3)	0.0000(3)		
Si2	0.0062(3)	0.0061(3)	0.0057(3)	-0.0003(3)	0.0007(3)	0.0009(3)		
Al1	0.0072(4)	0.0079(4)	0.0058(4)	0.0013(3)	0.0010(3)	0.0005(3)		
Al2	0.0068(4)	0.0064(4)	0.0055(3)	0.0004(3)	0.0001(3)	-0.0009(3)		
Ca1	0.0126(3)	0.0107(3)	0.0105(3)	0.0002(2)	-0.0020(2)	-0.0031(2)		
01	0.0094(9)	0.0107(9)	0.0095(9)	-0.0017(7)	0.0044(8)	-0.0003(7)		
02	0.0106(9)	0.0117(9)	0.0076(9)	0.0008(7)	0.0004(8)	0.0026(7)		
03	0.0075(9)	0.0110(9)	0.0096(9)	0.0012(7)	0.0000(7)	-0.0020(7)		
04	0.0065(9)	0.0097(9)	0.0119(9)	-0.0005(7)	0.0037(7)	0.0004(7)		
05	0.0101(9)	0.0085(9)	0.0084(9)	-0.0011(7)	-0.0016(7)	0.0004(7)		
06	0.0139(10)	0.0090(9)	0.0099(9)	0.0045(7)	-0.0002(8)	0.0012(7)		
07	0.0112(9)	0.0089(9)	0.0053(8)	0.0003(7)	0.0023(7)	-0.0031(7)		
08	0.0046(12)	0.0088(12)	0.0112(12)	0.000	-0.0006(10)	0.000		
09	0.0123(10)	0.0139(10)	0.0114(9)	-0.0023(8)	0.0011(8)	-0.0051(8)		
010	0.0301(14)	0.0124(12)	0.0604(18)	0.0054(12)	0.0062(13)	0.0015(10)		
011	0.0145(11)	0.0264(12)	0.0231(12)	-0.0139(10)	0.0081(9)	-0.0073(9)		

Table 3a. (for deposit) Anisotropic displacement parameters (except hydrogen) for parthétice at RT

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
Si1	0.0105(7)	0.0203(8)	0.0154(7)	-0.0012(7)	-0.0014(6)	0.0010(6)
Si2	0.0120(7)	0.0164(7)	0.0133(7)	-0.0006(6)	-0.0006(6)	0.0007(6)
Al1	0.0118(8)	0.0185(8)	0.0144(8)	0.0006(7)	-0.0006(7)	0.0007(7)
Al2	0.0142(8)	0.0156(8)	0.0119(8)	-0.0008(7)	-0.0013(6)	0.0000(7)
Ca1	0.0248(6)	0.0222(6)	0.0168(6)	0.0010(5)	-0.0038(5)	-0.0051(5)
01	0.0141(19)	0.022(2)	0.025(2)	-0.0071(18)	0.0065(16)	-0.0023(16)
02	0.022(2)	0.029(2)	0.0117(18)	0.0025(17)	-0.0016(16)	0.0065(17)
03	0.0097(18)	0.025(2)	0.0186(18)	0.0004(17)	0.0000(15)	-0.0046(16)
04	0.0111(18)	0.020(2)	0.0176(18)	-0.0005(16)	0.0045(15)	-0.0040(15)
05	0.0163(19)	0.017(2)	0.0163(19)	-0.0031(15)	-0.0045(15)	0.0015(15)
06	0.022(2)	0.0161(19)	0.0173(18)	0.0038(16)	0.0000(16)	0.0027(15)
07	0.015(2)	0.0190(19)	0.0147(18)	0.0024(15)	-0.0005(15)	-0.0006(15)
08	0.015(3)	0.019(3)	0.022(3)	0.000	-0.002(2)	0.000
09	0.021(2)	0.033(3)	0.022(2)	-0.0036(18)	-0.0001(18)	-0.0074(18)
O11a	0.039(14)	0.15(5)	0.082(18)	0.04(2)	0.033(13)	0.037(19)
011b	0.017(4)	0.065(8)	0.030(4)	-0.014(4)	0.008(3)	-0.008(4)

Table 3b. (for deposit) Anisotropic displacement parameters (except hydrogen) for parthéite at 150 °C.

Site	01	02	03	O4	05	06	07	08	09	O10	011	Bvs*
Sil	1.03	1.01	1.02					0.96				4.02
								2x↓				
Si2				1.00	0.98	1.06	1.00					4.04
Al1	0.80	0.77		0.74					0.74			3.05
Al2			0.76		0.76	0.81	0.77					3.10
Ca			0.18	0.25	0.24		0.24		0.33	0.29	0.37	1.90
H1	0.2										0.8	1
H2		0.2									0.8	1
H3						0.2			0.8			1
H4			0.1					0.1		0.8		1
								$2x\downarrow$				
H5		0.2								0.8		1
Bvs*	1.83	1.78	1.96	1.99	1.98	1.87	2.01	1.92	1.07			
without H												
Bvs*	2.03	2.18	2.06	1.99	1.98	2.07	1.99	2.12	1.87	1.89	1.97	
with H												

Table 4. (for deposit) Results of bond valence calculations for parthéite (RT), parameters from Brown and Altermatt (1985).

*bond valence sum

```
data patheite 275c
data publication text
_publ_requested_journal
                             'American Mineralogist'
_publ_contact_author_name
                             'Biljana Lazic'
_publ_contact_author_address
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
;
publ_contact_author_email biljana.lazic@krist.unibe.ch
loop
_publ_author_name
_publ_author_address
'Lazic, Biljana '
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Armbruster, Thomas'
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Liebich, Bernard W.'
;Via Saleggi 9
6612 Ascona
Switzerland
'Perfler, Lukas'
;Institute of Mineralogy and Petrography
University of Innsbruck
Innrain 52
6020 Innsbruck
Austria
;
UNIT CELL INFORMATION
#
#-----#
_chemical_formula_sum 'H2 Al
_chemical_formula_weight 574.43
                             'H2 Al4 Ca2 O17 Si4'
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M
                             'C 1 2/c 1'
```

#

loop _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' 'x+1/2, y+1/2, z' 'x+1/2, -y+1/2, z+1/2' '-x, -y, -z' '-x, y, -z-1/2''-x+1/2, -y+1/2, -z''-x+1/2, y+1/2, -z-1/2' _cell_length_a 20.82(4)_cell_length b 9.350(16)_cell_length_c 8.359(14) _cell_angle_alpha 90.000(0) _cell_angle_beta 78.86(2) _cell_angle_gamma 90.000(0) cell volume 1596.3(5)_cell_formula_units_Z 4 cell_measurement_temperature 586(2) _cell_measurement_theta_min 1.99 _cell_measurement_theta_max 20.5 #_____ _# # # CRYSTAL INFORMATION #_____ --# 'plate' exptl crystal description 'transparent' exptl crystal colour exptl_crystal_size_max 0.01 _exptl_crystal_size_mid 0.05 _exptl_crystal_size_min 0.1 _exptl_crystal_density_diffrn 2.382 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1136 _exptl_absorpt_coefficient mu 1.325 _exptl_absorpt_correction_type 'multi-scan' exptl absorpt correction T min ? exptl absorpt correction T max ? exptl absorpt process details SADABS #------# # # DATA COLLECTION #-----_diffrn_ambient_temperature 568(2) diffrn radiation wavelength 0.71073 _diffrn_radiation_type MoK\a diffrn radiation source 'fine-focus sealed tube' diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Apex II Smart' _diffrn_measurement_method 'phi-omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ?

```
_diffrn_standards_interval_count
                               ?
diffrn_standards_interval_time
                               ?
diffrn standards decay %
                               ?
diffrn reflns number
                               3829
diffrn_reflns_av_R_equivalents
                               0.2547
diffrn reflns av sigmaI/netI
                               0.1855
_diffrn_reflns_limit_h_min
                               -20
_diffrn_reflns_limit_h_max
                               20
diffrn reflns limit k min
                               -9
diffrn reflns limit k max
                               9
diffrn reflns limit 1 min
                               -8
_diffrn_reflns_limit_l_max
                               8
_diffrn_reflns_theta_min
                               1.99
diffrn reflns theta max
                               20.52
reflns number total
                               807
_reflns_number_gt
                               399
_reflns_threshold_expression
                               >2sigma(I)
                          ______
#_____
#
                  COMPUTER PROGRAMS USED
                                                                       #
#-----
                                                                     ___#
               _____
                                          _____
_computing_data_collection
                               ?
computing cell refinement
                               ?
_computing_data_reduction
                               ?
_computing_structure_solution
                                     'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement
                                     'SHELXL-97 (Sheldrick, 1997)'
#______
#
                                                                       #
                  REFINEMENT INFORMATION
                                                                      --#
#_____
_refine_special_details
;
Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and
 goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F<sup>2</sup> are statistically about twice as large as those based on F, and R-
 factors based on ALL data will be even larger.
;
refine ls structure factor coef
                               Fsqd
refine ls matrix type
                               full
refine 1s weighting scheme
                               calc
refine ls weighting details
 'calc w=1/[\s^2^(Fo^2^)+(0.0867P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3'
atom sites solution primary
                               direct
atom sites solution secondary
                               difmap
_atom_sites_solution_hydrogens
                               geom
_refine_ls_hydrogen_treatment
                               mixed
_refine_ls_extinction method
                               none
_refine_ls_number reflns
                               807
refine ls number parameters
                               123
```

_refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1757 refine ls R factor gt 0.0727 refine ls wR factor ref 0.1982 _refine_ls_wR_factor_gt 0.1488 _refine_ls_goodness_of_fit_ref 0.986 _refine_ls_restrained S all 0.986 _refine_ls_shift/su max 0.000 refine ls shift/su mean 0.000 #_____ # ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS # #______ loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion real atom type scat dispersion imag atom type scat source H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Al Al 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ca Ca 0.2262 0.3064 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 0 0 0.0106 0.006 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Si Si 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop atom site label atom site type symbol atom site fract x _atom_site_fract y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type atom site occupancy _atom_site_symmetry_multiplicity _atom_site_calc flag _atom_site_refinement_flags atom site disorder assembly atom site disorder group Sil Si 0.0624(3) 0.2007(7) 0.2969(7) 0.0438(18) Uani 1 1 d . . . Si2 Si 0.2415(3) 0.0525(6) 0.4526(7) 0.0394(17) Uani 1 1 d . . . All Al 0.0925(3) 0.1123(7) 0.6391(7) 0.0452(19) Uani 1 1 d . . . Al2 Al 0.2041(3) 0.3130(7) 0.2866(7) 0.0419(18) Uani 1 1 d . . . Cal Ca 0.3381(2) 0.1878(5) 0.0636(5) 0.0485(15) Uani 1 1 d . . . 01 0 0.0697(8) 0.0570(16) 0.3036(19) 0.090(6) Uani 1 1 d . . . O2 O 0.0539(6) 0.1847(13) 0.4903(14) 0.045(4) Uani 1 1 d . . . O3 O 0.1291(6) 0.2954(14) 0.2252(15) 0.050(4) Uani 1 1 d . . . 04 0 0.1760(6) -0.0984(14) 0.0659(16) 0.055(4) Uani 1 1 d . . . O5 O 0.1968(6) 0.4310(13) 0.4506(14) 0.043(4) Uani 1 1 d . . . O6 O 0.2525(6) 0.1574(13) 0.2924(14) 0.044(4) Uani 1 1 d . . . 07 0 0.2539(6) 0.3842(13) 0.3906(13) 0.040(4) Uani 1 1 d . . . 08 0 0.0000 0.2869(17) 0.2500 0.037(5) Uani 1 2 d S . . 09 0 0.4178(7) 0.2720(16) 0.1886(15) 0.064(4) Uani 1 1 d . . .

```
loop
 atom site aniso label
_atom_site_aniso U 11
atom site aniso U 22
 _atom_site_aniso_U_33
_atom_site_aniso U 23
_atom_site_aniso_U_13
 atom site aniso U 12
Sil 0.058(5) 0.048(4) 0.032(4) -0.005(3) -0.023(3) 0.007(3)
Si2 \ 0.060(4) \ 0.033(4) \ 0.032(4) \ -0.005(3) \ -0.026(3) \ 0.002(3)
All 0.066(5) 0.047(4) 0.028(4) 0.000(3) -0.023(3) -0.003(4)
Al2 0.058(5) 0.044(4) 0.028(4) 0.002(3) -0.018(3) 0.001(3)
Cal 0.064(3) 0.059(3) 0.029(3) -0.003(2) -0.023(2) -0.004(3)
01 \ 0.122(14) \ 0.065(12) \ 0.096(13) \ -0.041(10) \ -0.054(11) \ 0.023(10)
02 \ 0.063(10) \ 0.046(9) \ 0.030(8) \ 0.014(7) \ -0.015(7) \ -0.003(7)
03 0.058(10) 0.068(10) 0.029(8) 0.007(8) -0.024(7) -0.004(8)
04 \ 0.050(10) \ 0.050(10) \ 0.068(11) \ 0.012(8) \ -0.023(9) \ -0.008(8)
05 0.048(8) 0.049(9) 0.036(8) -0.001(7) -0.022(7) -0.004(7)
06\ 0.066(9)\ 0.050(10)\ 0.025(8)\ 0.004(7)\ -0.026(7)\ -0.005(7)
07 \ 0.056(9) \ 0.044(9) \ 0.025(8) \ 0.004(7) \ -0.023(7) \ -0.006(7)
08 0.056(13) 0.024(11) 0.032(11) 0.000 -0.013(10) 0.000
09 \ 0.077(11) \ 0.093(12) \ 0.026(8) \ -0.026(8) \ -0.023(8) \ 0.002(9)
#_____
#
                  MOLECULAR GEOMETRY
                                                                           #
#______#
geom special details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
geom bond atom site label 1
_geom_bond_atom_site_label 2
 geom bond distance
_geom_bond_site_symmetry_2
 _geom_bond_publ_flag
Sil Ol 1.576(15) . ?
Si1 02 1.599(13) . ?
Sil 08 1.638(9) . ?
Sil 03 1.659(14) . ?
Sil 01 3.050(17) 2 ?
Sil Cal 3.472(8) 7 ?
Sil 04 3.690(14) 6 556 ?
Si1 02 3.727(14) 2 ?
Si1 04 3.922(15) . ?
Sil 05 3.938(14) . ?
Si1 O6 3.971(15) . ?
```

```
si1 09 4.004(15) 8 456 ?
```

Si2	2 04 1.564(14)	6_556	?
Si2	2 06 1.640(13)	. ?	
Si2	2 05 1.651(13)	7_556	?
Si2	2 07 1.653(13)	4_545	?
Si2	2 Cal 3.266(8)	6_556	?
Si2	2 06 3.467(14)	7_556	?
Si2	2 06 3.495(14)	6_556	?
Si2	2 05 3.553(14)	4_545	?
Si2	2 05 3.660(14)	. ?	
Si2	2 04 3.678(15)	4 ?	
Si2	2 03 3.700(14)	4_545	?
Si2	2 07 3.728(14)	7_556	?
Al1	01 1.695(16)	6_556	?
Al1	04 1.732(14)	6_556	?
Al1	02 1.742(13)	. ?	
Al1	09 1.780(14)	7 556	?
Al1	Cal 3.626(8)	7 556	?
Al1	09 3.739(16)	8 456	?
Al1	01 3.741(19)	5 556	?
Al1	03 3.803(14)	?	
Al1	05 3.841(14)	. ?	
Al1	01 3.855(17)	. ?	
Al1	02 3.962(14)	2 556	?
Al1	03 3.981(16)	6 556	?
A12	2 03 1.742(14)	?	
A12	2 05 1.744(13)	. ?	
A12	2 07 1.766(13)	. ?	
A12	2 06 1.775(13)	. ?	
A12	204 3.048(15)	6 5 5 6	?
A12	2043.103(14)	4?	
A12	2 Cal 3.214(8)	7 ?	
A12	2 Cal 3.258(8)	. ?	
A12	$206_{3.375(14)}$	4 ?	
A12	2 02 3.472(14)	. ?	
A12	2 05 3.716(14)	6 565	?
A12	2 07 3.742(14)	7 ?	•
Cal	09 2.266(14)	. ?	
Cal	06 2.366(13)	. ?	
Cal	03 2.384(13)	••• 7 ?	
Cal	07 2.516(14)	. ?	
Cal	05 2.518(14)	••• 4 545	?
Cal	07 2.697(13)	7 ?	•
Cal	$\Delta 12 3 214(8)$, . 7 ?	
Cal	Si2 3 266(8)	6 ?	
Cal	Si1 3 472(8)	7 2	
Cal	01 2 525(19)	7 ÷ 7 ?	
Cal	112626(10)	7 5 5 6	2
01	$\lambda = 11 + 1 + 605(16)$	6 2	÷
01	AII I.095(10)	0 <u>1</u> 2	
01	00 2.00(2)	ະ ວ	
01	$03 2 \cdot 30(2) \cdot 02 2 604(10)$	•	
01	02 2.094(19)	• • >	
01	$0 + 2 \cdot 10(2) \cdot 10(2)$	• 5/5 0	
	$0 \neq 2.00(2) 4_{-}$	040 (2	
	$\bigcup Z \cdot \nabla / (3) Z$	ເ ເ	
UT	UZ Z.099(19)	υſ	

01 Si1 3.050(17) 2 ? 01 02 3.47(2) 2 ? O1 Ca1 3.535(18) 7 ? 02 08 2.661(13) . ? 02 03 2.663(16) . ? 02 04 2.850(17) 6 556 ? 02 09 2.885(17) 7_556 ? 02 01 2.899(19) 6 556 ? 02 09 3.021(18) 8 456 ? 02 01 3.47(2) 2 ? 02 05 3.725(17) . ? O3 Cal 2.384(13) 7 ? 03 08 2.657(13) . ? 03 07 2.720(18) . ? 03 05 2.858(18) . ? 03 06 3.022(19) . ? 03 05 3.543(17) 6 565 ? 03 04 3.678(18) 6_556 ? O3 Si2 3.700(14) 4 ? O4 Si2 1.564(14) 6 ? O4 Al1 1.732(14) 6 ? 04 06 2.581(18) 6 ? 04 05 2.639(18) 4 545 ? 04 07 2.732(18) 7 ? 04 09 2.818(18) 4_545 ? 04 02 2.850(17) 6 ? O4 Al2 3.048(15) 6 ? 04 06 3.085(18) 4 545 ? O4 Al2 3.103(14) 4 545 ? 04 05 3.259(18) 6 ? O5 Si2 1.651(13) 7_556 ? O5 Cal 2.518(14) 4 ? 05 07 2.601(17) 6_566 ? 05 04 2.639(18) 4 ? 05 06 2.700(17) 7_556 ? 05 07 2.903(16) . ? 05 06 2.982(18) 4 ? 05 06 3.007(18) . ? 05 04 3.259(18) 6 556 ? 05 03 3.543(17) 6 566 ? 06 04 2.581(18) 6 556 ? 06 07 2.612(17) . ? 06 07 2.678(18) 4_545 ? 06 05 2.700(17) 7_556 ? 06 05 2.982(18) 4 545 ? 06 04 3.085(18) 4 ? O6 Al2 3.375(14) 4 545 ? 07 Si2 1.653(13) 4 ? $07 \ 05 \ 2.601(17) \ 6_{565}$? 07 06 2.678(18) 4 ? O7 Cal 2.697(13) 7 ? 07 04 2.732(18) 7 ? 07 07 3.13(2) 7 ? 07 04 3.326(17) 4 ? O8 Si1 1.638(9) 2 ?

08 01 2.58(2) 2 ? 08 03 2.657(13) 2 ? 08 02 2.661(14) 2 ? 08 09 3.775(14) 8 456 ? 08 09 3.775(14) 7 ? O8 Cal 3.857(7) 8 456 ? O8 Cal 3.857(7) 7 ? O9 All 1.780(14) 7 556 ? 09 04 2.818(18) 4 ? 09 01 2.86(2) 4 ? 09 02 2.885(17) 7_556 ? 09 02 3.021(18) 8 ? 09 01 3.56(2) 7 ? O9 All 3.739(16) 8 ? 09 09 3.76(3) 2_655 ? 09 08 3.775(14) 7 ? loop geom angle atom site label 1 geom angle atom site label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O1 Si1 O2 116.1(8) . . ? 01 Sil 08 106.9(8) . . ? O2 Si1 O8 110.5(6) . . ? O1 Si1 O3 105.9(8) . . ? O2 Si1 O3 109.6(7) . . ? 08 Sil 03 107.3(7) . . ? O1 Si1 O1 68.2(9) . 2 ? O2 Si1 O1 91.0(6) . 2 ? 08 Sil 01 57.9(6) . 2 ? O3 Si1 O1 158.5(6) . 2 ? 01 Sil Cal 79.2(7) . 7 ? O2 Sil Cal 146.7(6) . 7 ? O8 Sil Cal 90.7(3) . 7 ? O3 Si1 Ca1 37.6(4) . 7 ? O1 Si1 Ca1 122.2(4) 2 7 ? O1 Si1 O4 95.5(7) . 6 556 ? O2 Si1 O4 47.0(5) . 6 556 ? O8 Si1 O4 154.7(4) . 6_556 ? O3 Si1 O4 76.6(5) . 6_556 ? O1 Si1 O4 123.8(4) 2 6_556 ? Cal Sil 04 105.1(3) 7 6 556 ? O1 Si1 O2 68.3(6) . 2 ? O2 Sil O2 133.6(5) . 2 ? O8 Si1 O2 39.0(4) . 2 ? O3 Si1 O2 113.1(5) . 2 ? O1 Si1 O2 45.5(3) 2 2 ? Cal Sil 02 78.8(3) 7 2 ? O4 Si1 O2 162.7(3) 6_556 2 ? 01 Sil 04 31.0(6) . . ? 02 Sil 04 111.7(6) . . ?

```
08 Sil 04 131.5(4) . . ?
O3 Si1 O4 79.6(5) . . ?
O1 Si1 O4 98.6(4) 2 . ?
Cal Sil 04 65.4(2) 7 . ?
O4 Si1 O4 73.7(3) 6_556 . ?
O2 Si1 O4 93.4(3) 2 . ?
01 Si1 05 129.7(7) . . ?
O2 Si1 O5 70.6(5) . . ?
08 Sil 05 117.1(6) . . ?
O3 Si1 O5 39.4(5) . . ?
O1 Si1 O5 158.4(4) 2 . ?
Cal Sil 05 77.1(2) 7 . ?
O4 Si1 O5 50.5(3) 6 556 . ?
O2 Si1 O5 145.4(3) 2 . ?
O4 Si1 O5 98.7(3) . . ?
01 Sil 06 85.1(7) . . ?
O2 Si1 O6 85.1(5) . . ?
08 Sil 06 151.9(5) . . ?
O3 Si1 O6 44.5(5) . . ?
O1 Si1 O6 148.0(4) 2 . ?
Cal Sil 06 66.1(2) 7 . ?
O4 Si1 O6 39.2(3) 6_556 . ?
O2 Si1 O6 139.4(3) 2 . ?
O4 Si1 O6 54.4(3) . . ?
O5 Si1 O6 44.7(3) . . ?
O1 Si1 O9 118.0(7) . 8_456 ?
O2 Si1 O9 42.4(5) . 8_456 ?
O8 Si1 O9 70.1(3) . 8 456 ?
O3 Si1 O9 134.9(5) . 8 456 ?
O1 Si1 O9 58.7(4) 2 8 456 ?
Cal Sil 09 156.8(3) 7 8 456 ?
O4 Si1 O9 89.3(3) 6 556 8 456 ?
O2 Si1 O9 92.9(3) 2 8_456 ?
O4 Si1 O9 137.3(3) . 8_456 ?
O5 Si1 O9 99.7(3) . 8 456 ?
O6 Si1 O9 127.2(3) . 8_456 ?
O4 Si2 O6 107.3(8) 6 556 . ?
O4 Si2 O5 110.4(7) 6_556 7_556 ?
O6 Si2 O5 110.2(7) . 7 556 ?
O4 Si2 O7 116.2(7) 6 556 4 545 ?
O6 Si2 O7 108.8(7) . 4 545 ?
O5 Si2 O7 103.9(7) 7 556 4 545 ?
O4 Si2 Cal 122.0(6) 6_556 6_556 ?
O6 Si2 Cal 130.3(6) . 6 556 ?
O5 Si2 Cal 49.2(5) 7 556 6 556 ?
O7 Si2 Cal 55.5(4) 4 545 6 556 ?
O4 Si2 O6 62.8(5) 6_556 7_556 ?
O6 Si2 O6 91.0(5) . 7 556 ?
O5 Si2 O6 60.1(5) 7 556 7 556 ?
07 Si2 06 158.5(5) 4 545 7 556 ?
Cal Si2 O6 105.5(3) 6_556 7_556 ?
O4 Si2 O6 81.3(6) 6_556 6_556 ?
O6 Si2 O6 168.1(7) . 6_556 ?
O5 Si2 O6 58.4(5) 7_556 6_556 ?
07 Si2 O6 73.3(5) 4_545 6_556 ?
```

```
Cal Si2 O6 40.8(2) 6 556 6 556 ?
O6 Si2 O6 85.64(19) 7_556 6_556 ?
O4 Si2 O5 140.8(6) 6_556 4_545 ?
O6 Si2 O5 56.5(5) . 4 545 ?
O5 Si2 O5 108.8(6) 7_556 4_545 ?
O7 Si2 O5 53.8(5) 4 545 4 545 ?
Cal Si2 O5 85.4(3) 6_556 4_545 ?
O6 Si2 O5 141.6(3) 7_556 4_545 ?
O6 Si2 O5 121.5(3) 6 556 4 545 ?
O4 Si2 O5 62.9(6) 6 556 . ?
O6 Si2 O5 54.1(5) . . ?
O5 Si2 O5 97.7(5) 7 556 . ?
O7 Si2 O5 156.6(5) 4 545 . ?
Cal Si2 O5 146.9(3) 6 556 . ?
O6 Si2 O5 44.4(3) 7 556 . ?
O6 Si2 O5 127.1(3) 6_556 . ?
O5 Si2 O5 110.5(3) 4 545 . ?
O4 Si2 O4 97.3(6) 6_556 4 ?
O6 Si2 O4 56.3(5) . 4 ?
O5 Si2 O4 62.4(5) 7 556 4 ?
O7 Si2 O4 146.4(6) 4 545 4 ?
Cal Si2 O4 108.3(3) 6 556 4 ?
O6 Si2 O4 42.2(3) 7 556 4 ?
O6 Si2 O4 115.4(3) 6 556 4 ?
O5 Si2 O4 99.4(3) 4_545 4 ?
O5 Si2 O4 42.2(3) . 4 ?
O4 Si2 O3 154.7(6) 6_556 4_545 ?
O6 Si2 O3 94.9(6) . 4 545 ?
O5 Si2 O3 71.6(5) 7 556 4 545 ?
07 Si2 03 42.5(5) 4 545 4 545 ?
Cal Si2 O3 39.4(2) 6 556 4 545 ?
O6 Si2 O3 130.2(3) 7 556 4 545 ?
O6 Si2 O3 78.8(3) 6_556 4_545 ?
O5 Si2 O3 46.4(3) 4_545 4_545 ?
O5 Si2 O3 142.4(3) . 4 545 ?
O4 Si2 O3 105.2(3) 4 4_545 ?
O4 Si2 O7 63.1(5) 6 556 7 556 ?
O6 Si2 O7 132.9(5) . 7 556 ?
O5 Si2 O7 48.2(5) 7_556 7 556 ?
O7 Si2 O7 116.6(5) 4 545 7 556 ?
Cal Si2 07 72.3(2) 6 556 7 556 ?
O6 Si2 O7 42.4(3) 7 556 7 556 ?
O6 Si2 O7 43.4(3) 6_556 7_556 ?
O5 Si2 O7 155.4(3) 4_545 7_556 ?
O5 Si2 O7 84.6(3) . 7 556 ?
O4 Si2 O7 78.5(3) 4 7 556 ?
O3 Si2 O7 110.1(3) 4_545 7_556 ?
O1 All O4 103.7(8) 6 556 6 556 ?
O1 All O2 115.0(8) 6 556 . ?
O4 All O2 110.2(7) 6 556 . ?
O1 All O9 110.8(8) 6_556 7_556 ?
O4 All O9 106.7(7) 6_556 7_556 ?
O2 All O9 110.0(7) . 7_556 ?
O1 Al1 Cal 114.5(6) 6 556 7 556 ?
O4 All Cal 77.0(5) 6_556 7_556 ?
```

```
O2 All Cal 126.1(5) . 7_556 ?
O9 All Cal 30.0(5) 7_556 7_556 ?
O1 All O9 91.5(7) 6_556 8_456 ?
O4 All O9 161.6(6) 6 556 8 456 ?
O2 All O9 52.7(5) . 8_456 ?
O9 Al1 O9 76.8(6) 7 556 8 456 ?
Cal All O9 106.4(3) 7_556 8_456 ?
O1 All O1 46.9(7) 6 556 5 556 ?
O4 All O1 150.5(6) 6 556 5 556 ?
O2 All O1 85.4(5) . 5_556 ?
09 All 01 90.0(6) 7 556 5 556 ?
Cal All O1 114.6(3) 7_556 5_556 ?
O9 All O1 45.0(4) 8 456 5 556 ?
O1 All O3 132.3(6) 6 556 . ?
O4 All O3 72.6(5) 6_556 . ?
O2 All O3 38.2(4) . . ?
O9 All O3 115.7(6) 7_556 . ?
Cal All O3 110.8(3) 7_556 . ?
O9 All O3 89.5(3) 8_456 . ?
O1 All O3 122.2(3) 5 556 . ?
O1 All O5 161.0(7) 6 556 . ?
O4 All O5 57.6(5) 6 556 . ?
O2 All O5 73.0(5) . . ?
O9 All O5 80.3(6) 7 556 . ?
Cal All 05 67.2(2) 7 556 . ?
O9 All O5 106.4(3) 8 456 . ?
O1 All O5 151.3(4) 5 556
                         . ?
O3 Al1 O5 43.9(3) . . ?
O1 All O1 93.8(5) 6 556 . ?
O4 All O1 87.2(5) 6 556
                        . ?
O2 All O1 37.6(5) . . ?
O9 All O1 147.1(6) 7_556 . ?
Cal All O1 150.0(3) 7_556 . ?
O9 All O1 81.2(3) 8_456 . ?
O1 All O1 91.5(4) 5_556 . ?
O3 All O1 39.4(3) . . ?
O5 All O1 82.8(3) . . ?
O1 All O2 78.9(6) 6_556 2_556 ?
O4 All O2 149.0(5) 6 556 2 556 ?
O2 All O2 95.8(5) . 2 556 ?
O9 All O2 46.3(5) 7 556 2 556 ?
Cal All O2 74.0(2) 7 556 2 556 ?
O9 All O2 43.9(3) 8_456 2_556 ?
O1 All O2 44.1(3) 5_556 2_556 ?
O3 All O2 128.6(3) . 2_556 ?
O5 All O2 118.5(3) . 2 556 ?
O1 All O2 123.7(4) . 2 556 ?
O1 All O3 26.8(6) 6_556 6_556 ?
O4 All O3 77.2(5) 6_556 6_556 ?
O2 All O3 129.2(5) . 6 556 ?
O9 All O3 115.6(6) 7_556 6_556 ?
Cal All O3 104.7(2) 7_556 6_556 ?
O9 All O3 118.2(3) 8_456 6_556 ?
O1 All O3 73.7(3) 5_556 6_556 ?
O3 All O3 125.7(3) . 6 556 ?
```

```
O5 All O3 134.8(3) . 6_556 ?
O1 All O3 96.2(3) . 6_556 ?
O2 All O3 99.6(3) 2_556 6_556 ?
O3 Al2 O5 110.1(7) . . ?
O3 Al2 O7 101.7(6) . . ?
O5 Al2 O7 111.6(7) . . ?
O3 Al2 O6 118.4(7) . . ?
O5 Al2 O6 117.4(6) . . ?
O7 Al2 O6 95.1(6) . . ?
O3 Al2 O4 96.5(5) . 6 556 ?
O5 Al2 O4 80.8(5) . 6 556 ?
O7 Al2 O4 152.3(6) . 6_556 ?
O6 Al2 O4 57.7(5) . 6 556 ?
O3 Al2 O4 167.8(6) . 4 ?
O5 Al2 O4 58.2(5) . 4 ?
O7 Al2 O4 81.1(5) . 4 ?
O6 Al2 O4 72.8(5) . 4 ?
O4 Al2 O4 85.5(4) 6_556 4 ?
O3 Al2 Ca1 46.7(4) . 7 ?
O5 Al2 Cal 136.1(5) . 7 ?
07 Al2 Cal 57.1(4) . 7 ?
O6 Al2 Cal 106.2(5) . 7 ?
O4 Al2 Cal 130.6(3) 6 556 7 ?
O4 Al2 Cal 138.1(3) 4 7 ?
O3 Al2 Cal 121.0(5) . . ?
05 Al2 Cal 127.7(5) . . ?
07 Al2 Cal 50.0(4) . . ?
O6 Al2 Cal 45.1(4) . . ?
O4 Al2 Cal 102.6(3) 6 556 . ?
O4 Al2 Ca1 70.0(3) 4 . ?
Cal Al2 Cal 80.3(2) 7 . ?
O3 Al2 O6 104.7(6) . 4 ?
O5 Al2 O6 61.9(5) . 4 ?
O7 Al2 O6 52.0(5) . 4 ?
O6 Al2 O6 130.9(4) . 4 ?
O4 Al2 O6 141.5(4) 6_556 4 ?
O4 Al2 O6 67.5(3) 4 4 ?
Cal Al2 O6 86.2(3) 7 4 ?
Cal Al2 O6 93.6(3) . 4 ?
O3 Al2 O2 48.6(5) . . ?
O5 Al2 O2 84.2(5) . . ?
O7 Al2 O2 150.3(5) . . ?
O6 Al2 O2 99.5(5) . . ?
O4 Al2 O2 51.3(3) 6 556 . ?
O4 Al2 O2 127.9(4) 4 . ?
Cal Al2 O2 93.9(3) 7 . ?
Cal Al2 O2 138.3(3) . . ?
O6 Al2 O2 127.4(3) 4 . ?
O3 Al2 O5 70.6(5) . 6_565 ?
O5 Al2 O5 100.2(4) . 6 565 ?
O7 Al2 O5 39.3(5) . 6_565 ?
O6 Al2 O5 130.9(5) . 6_565 ?
O4 Al2 O5 166.7(4) 6_556 6_565 ?
O4 Al2 O5 106.4(4) 4 6_565 ?
Cal Al2 O5 41.8(2) 7 6_565 ?
```

```
Cal Al2 O5 87.4(3) . 6 565 ?
O6 Al2 O5 44.4(3) 4 6 565 ?
O2 Al2 O5 115.4(3) . 6_565 ?
O3 Al2 O7 76.3(5) . 7 ?
O5 Al2 O7 167.8(5) . 7 ?
O7 Al2 O7 56.3(6) . 7 ?
O6 Al2 O7 65.4(5) . 7 ?
O4 Al2 O7 109.3(4) 6 556 7 ?
O4 Al2 O7 114.5(4) 4 7 ?
Cal Al2 07 41.5(2) 7 7 ?
Cal Al2 07 44.7(2) . 7 ?
O6 Al2 O7 106.8(3) 4 7 ?
O2 Al2 O7 107.4(3) . 7 ?
O5 Al2 O7 71.7(3) 6 565 7 ?
09 Cal 06 100.0(5) . . ?
O9 Cal O3 110.6(5) . 7 ?
O6 Cal O3 148.3(4) . 7 ?
09 Cal 07 103.1(5) . . ?
O6 Cal O7 64.6(4) . . ?
O3 Cal O7 99.3(4) 7 . ?
O9 Cal O5 126.6(5) . 4_545 ?
O6 Cal O5 75.2(4) . 4_545 ?
O3 Cal O5 92.5(4) 7 4 545 ?
O7 Cal O5 120.3(5) . 4_545 ?
O9 Cal O7 173.0(5) . 7 ?
O6 Cal O7 84.4(4) . 7 ?
O3 Cal O7 64.4(4) 7 7 ?
O7 Cal O7 73.6(4) . 7 ?
O5 Cal O7 59.7(4) 4 545 7 ?
O9 Cal Al2 140.7(4) . 7 ?
O6 Cal Al2 116.1(3) . 7 ?
O3 Cal Al2 32.1(3) 7 7 ?
O7 Cal Al2 80.5(3) . 7 ?
O5 Cal Al2 79.8(3) 4_545 7 ?
O7 Cal Al2 33.3(3) 7 7 ?
09 Cal Al2 103.5(4) . . ?
O6 Cal Al2 32.1(3) . . ?
O3 Cal Al2 127.0(4) 7 . ?
07 Cal Al2 32.5(3) . . ?
O5 Cal Al2 98.4(3) 4 545 . ?
O7 Cal Al2 77.2(3) 7 . ?
Al2 Ca1 Al2 99.7(2) 7 . ?
O9 Cal Si2 156.3(4) . 6 ?
O6 Cal Si2 74.8(3) . 6 ?
O3 Cal Si2 80.2(3) 7 6 ?
07 Cal Si2 95.5(3) . 6 ?
O5 Cal Si2 29.7(3) 4 545 6 ?
O7 Cal Si2 30.3(3) 7 6 ?
Al2 Cal Si2 56.53(17) 7 6 ?
Al2 Cal Si2 84.5(2) . 6 ?
09 Cal Sil 85.9(4) . 7 ?
O6 Cal Sil 165.5(3) . 7 ?
O3 Cal Sil 25.2(3) 7 7 ?
07 Cal Sil 101.2(3) . 7 ?
O5 Cal Sil 112.0(3) 4_545 7 ?
```

```
O7 Cal Sil 88.6(3) 7 7 ?
Al2 Cal Sil 55.41(19) 7 7 ?
Al2 Cal Sil 133.7(2) . 7 ?
Si2 Cal Si1 104.9(2) 6 7 ?
O9 Cal O1 71.9(4) . 7 ?
O6 Cal O1 144.4(4) . 7 ?
O3 Cal O1 47.0(4) 7 7 ?
O7 Cal O1 83.2(4) . 7 ?
O5 Cal O1 137.9(4) 4 545 7 ?
O7 Cal O1 101.3(4) 7 7 ?
Al2 Cal O1 69.7(3) 7 7 ?
Al2 Cal Ol 114.4(3) . 7 ?
Si2 Cal O1 125.5(3) 6 7 ?
Sil Cal Ol 26.0(2) 7 7 ?
O9 Cal All 23.1(4) . 7 556 ?
O6 Cal All 81.1(3) . 7_556 ?
O3 Cal All 125.9(4) 7 7_556 ?
O7 Cal All 83.0(3) . 7_556 ?
O5 Cal All 132.9(3) 4 545 7 556 ?
O7 Cal All 156.1(3) 7 7 556 ?
Al2 Cal Al1 147.2(2) 7 7 556 ?
Al2 Ca1 Al1 80.4(2) . 7 556 ?
Si2 Cal All 153.88(19) 6 7 556 ?
Sil Cal All 101.0(2) 7 7 556 ?
O1 Ca1 Al1 80.4(3) 7 7_556 ?
Si1 01 Al1 160.0(11) . 6 ?
Sil 01 08 37.4(4) . . ?
All 01 08 160.6(9) 6 . ?
Sil 01 03 38.1(5) . . ?
All 01 03 136.0(9) 6 . ?
08 01 03 61.9(5) . . ?
Si1 01 02 32.2(5) . . ?
All 01 02 130.5(9) 6 . ?
08 01 02 60.5(4) . . ?
03 01 02 60.6(5) . . ?
Sil 01 04 131.5(9) . . ?
All 01 04 38.6(5) 6 . ?
08 01 04 155.3(8) . . ?
03 01 04 97.6(7) . . ?
02 01 04 123.6(7) . . ?
Si1 01 09 128.4(9) . 4 545 ?
All 01 09 35.6(5) 6 4_545 ?
08 01 09 143.2(7) . 4_545 ?
O3 O1 O9 134.1(7) . 4_545 ?
02 01 09 96.3(6) . 4_545 ?
04 01 09 60.9(5) . 4 545 ?
Sil 01 01 81.1(7) . 2 ?
All 01 01 107.4(6) 6 2 ?
08 01 01 56.3(4) . 2 ?
03 01 01 116.4(5) . 2 ?
02 01 01 77.2(7) . 2 ?
04 01 01 146.0(5) . 2 ?
09 01 01 92.7(5) 4_545 2 ?
Sil 01 02 166.2(10) . 6 ?
All 01 02 33.0(5) 6 6 ?
```

08 01 02 128.9(7) . 6 ? 03 01 02 147.1(8) . 6 ? 02 01 02 151.6(8) . 6 ? 04 01 02 61.1(5) . 6 ? 09 01 02 60.1(5) 4_545 6 ? 01 01 02 87.8(6) 2 6 ? Sil Ol Sil 67.7(6) . 2 ? All O1 Si1 128.2(8) 6 2 ? 08 01 Si1 32.5(3) . 2 ? O3 O1 Si1 93.7(6) . 2 ? O2 O1 Si1 80.7(5) . 2 ? 04 01 Sil 155.7(7) . 2 ? 09 01 Si1 123.0(6) 4 545 2 ? 01 01 Si1 30.7(3) 2 2 ? O2 O1 Si1 98.6(5) 6 2 ? Si1 01 02 86.7(7) . 2 ? All 01 02 112.7(7) 6 2 ? 08 01 02 49.5(3) . 2 ? 03 01 02 98.9(6) . 2 ? 02 01 02 106.7(6) . 2 ? 04 01 02 128.7(6) . 2 ? 09 01 02 126.5(6) 4 545 2 ? 01 01 02 49.2(5) 2 2 ? 02 01 02 79.8(5) 6 2 ? Sil 01 02 27.4(3) 2 2 ? Si1 O1 Ca1 74.8(7) . 7 ? All O1 Cal 111.5(7) 6 7 ? O8 O1 Ca1 76.4(5) . 7 ? O3 O1 Ca1 42.4(4) . 7 ? O2 O1 Cal 102.6(5) . 7 ? O4 O1 Ca1 79.0(5) . 7 ? O9 O1 Cal 139.6(6) 4 545 7 ? 01 01 Cal 126.1(5) 2 7 ? O2 O1 Cal 105.7(5) 6 7 ? Sil Ol Cal 95.4(4) 2 7 ? O2 O1 Ca1 81.5(4) 2 7 ? Sil 02 All 141.5(9) . . ? Sil 02 08 35.2(4) . . ? All 02 08 176.6(7) . . ? Sil 02 03 35.9(4) . . ? All 02 03 117.9(7) . . ? 08 02 03 59.9(4) . . ? Si1 02 01 31.7(5) . . ? All 02 01 119.2(7) . . ? 08 02 01 57.7(5) . . ? 03 02 01 57.7(5) . . ? Si1 02 04 108.8(7) . 6 556 ? All 02 04 34.8(4) . 6_556 ? 08 02 04 142.5(5) . 6_556 ? 03 02 04 83.6(5) . 6 556 ? 01 02 04 96.9(6) . 6_556 ? Si1 02 09 157.7(8) . 7_556 ? All 02 09 35.4(4) . 7_556 ? 08 02 09 147.5(7) . 7_556 ? 03 02 09 121.8(6) . 7 556 ?

```
01 02 09 154.1(7) . 7 556 ?
04 02 09 58.9(4) 6_556 7_556 ?
Sil 02 01 132.1(8) . 6_556 ?
All 02 01 32.0(4) . 6 556 ?
08 02 01 147.3(7) . 6_556 ?
03 02 01 133.0(6) . 6 556 ?
01 02 01 100.9(4) . 6_556 ?
04 02 01 55.9(5) 6_556 6_556 ?
09 02 01 59.3(5) 7 556 6 556 ?
Si1 02 09 116.8(7) . 8 456 ?
All 02 09 100.0(6) . 8 456 ?
08 02 09 83.0(4) . 8_456 ?
03 02 09 138.0(6) . 8_456 ?
01 02 09 119.7(6) . 8 456 ?
04 02 09 134.3(6) 6_556 8_456 ?
09 02 09 79.0(5) 7_556 8_456 ?
01 02 09 88.8(5) 6_556 8_456 ?
Sil 02 01 61.5(5) . 2 ?
All 02 01 132.2(6) . 2 ?
08 02 01 47.6(4) . 2 ?
03 02 01 97.3(5) . 2 ?
01 02 01 53.6(6) . 2 ?
04 02 01 140.6(6) 6 556 2 ?
09 02 01 140.3(6) 7 556 2 ?
01 02 01 100.2(5) 6_556 2 ?
09 02 01 66.1(5) 8_456 2 ?
Si1 O2 Al2 63.8(5) . . ?
All 02 Al2 89.4(5) . . ?
O8 O2 A12 88.7(4) . . ?
O3 O2 Al2 29.4(3) . . ?
O1 O2 Al2 76.5(5) . . ?
O4 O2 A12 56.6(4) 6 556 . ?
O9 O2 Al2 94.7(4) 7_556 . ?
O1 O2 Al2 111.5(5) 6_556 . ?
O9 O2 Al2 152.0(5) 8 456 . ?
01 02 Al2 125.0(5) 2 . ?
Sil 02 05 85.5(5) . . ?
All 02 05 80.4(5) . . ?
08 02 05 99.0(5) . . ?
03 02 05 49.8(4) . . ?
01 02 05 103.8(5) . . ?
04 02 05 57.6(4) 6 556 . ?
09 02 05 72.1(4) 7_556 . ?
01 02 05 110.8(5) 6 556 . ?
09 02 05 127.9(5) 8_456 . ?
01 02 05 145.2(5) 2 . ?
Al2 02 05 27.8(2) . . ?
Sil 03 Al2 132.8(8) . . ?
Sil 03 Cal 117.2(6) . 7 ?
Al2 O3 Cal 101.2(6) . 7 ?
Si1 03 01 35.9(5) . . ?
Al2 03 01 125.5(8) . . ?
Cal 03 01 90.6(5) 7 . ?
Sil 03 08 36.1(4) . . ?
Al2 03 08 158.5(7) . . ?
```

```
Cal 03 08 99.7(4) 7 . ?
01 03 08 59.0(6) . . ?
Sil 03 02 34.4(4) . . ?
Al2 03 02 102.0(6) . . ?
Cal 03 02 151.1(6) 7 . ?
01 03 02 61.8(5) . . ?
08 03 02 60.0(4) . . ?
Si1 03 07 165.2(8) . . ?
Al2 03 07 39.5(4) . . ?
Cal 03 07 63.4(4) 7 . ?
01 03 07 132.2(7) . . ?
08 03 07 156.8(6) . . ?
02 03 07 141.5(6) . . ?
Sil 03 05 118.9(6) . . ?
Al2 03 05 34.9(4) . . ?
Cal 03 05 123.9(5) 7 . ?
01 03 05 138.6(6) . . ?
08 03 05 125.6(6) . . ?
02 03 05 84.8(5) . . ?
07 03 05 62.7(4) . . ?
Si1 03 06 112.8(6) . . ?
Al2 03 06 31.1(4) . . ?
Cal 03 06 97.4(5) 7 . ?
01 03 06 95.1(6) . . ?
08 03 06 148.9(6) . . ?
02 03 06 93.6(5) . . ?
07 03 06 53.8(4) . . ?
05 03 06 61.4(4) . . ?
Sil 03 05 145.1(6) . 6 565 ?
Al2 03 05 81.7(5) . 6 565 ?
Cal 03 05 45.2(3) 7 6 565 ?
01 03 05 134.5(6) . 6_565 ?
08 03 05 110.0(5) . 6_565 ?
02 03 05 156.4(6) . 6_565 ?
07 03 05 46.8(4) . 6 565 ?
05 \ 03 \ 05 \ 85.5(4) . 6_{565}?
06 03 05 100.5(5) . 6 565 ?
Si1 03 04 77.4(5) . 6_556 ?
Al2 03 04 55.4(4) . 6 556 ?
Cal 03 04 138.6(5) 7 6 556 ?
01 03 04 81.0(5) . 6 556 ?
08 03 04 109.9(5) . 6_556 ?
02 03 04 50.4(4) . 6_556 ?
07 03 04 92.9(5) . 6_556 ?
05 03 04 58.2(4) . 6_556 ?
06 03 04 44.0(3) . 6 556 ?
05 03 04 137.0(5) 6 565 6 556 ?
Si1 03 Si2 170.3(6) . 4 ?
Al2 03 Si2 55.5(4) . 4 ?
Cal O3 Si2 60.4(3) 7 4 ?
01 03 Si2 147.9(6) . 4 ?
08 03 Si2 134.2(5) . 4 ?
O2 O3 Si2 148.4(5) . 4 ?
07 03 Si2 24.2(3) . 4 ?
O5 O3 Si2 64.1(4) . 4 ?
```

```
O6 O3 Si2 76.9(4) . 4 ?
O5 O3 Si2 26.2(2) 6 565 4 ?
O4 O3 Si2 110.8(4) 6 556 4 ?
Si2 04 All 159.0(9) 6 6 ?
Si2 04 06 37.4(5) 6 6 ?
All 04 06 134.6(7) 6 6 ?
Si2 04 05 35.9(4) 6 4_545 ?
All 04 05 162.6(8) 6 4 545 ?
06 04 05 62.3(5) 6 4 545 ?
Si2 04 01 130.5(8) 6 . ?
All 04 01 37.7(5) 6 . ?
06 04 01 142.3(7) 6 . ?
05 04 01 134.6(7) 4 545 . ?
Si2 04 07 32.9(4) 6 7 ?
All 04 07 129.8(7) 6 7 ?
06 04 07 60.5(5) 6 7 ?
05 04 07 57.9(5) 4 545 7 ?
01 04 07 97.7(6) . 7 ?
Si2 04 09 163.7(8) 6 4 545 ?
All 04 09 37.2(4) 6 4 545 ?
06 04 09 140.8(7) 6 4 545 ?
05 04 09 129.0(6) 4 545 4 545 ?
01 04 09 62.5(6) . 4_545 ?
07 04 09 158.3(7) 7 4 545 ?
Si2 04 02 130.9(7) 6 6 ?
All 04 02 35.0(4) 6 6 ?
06 04 02 99.6(5) 6 6 ?
05 04 02 161.1(6) 4 545 6 ?
01 04 02 63.0(5) . 6 ?
07 04 02 119.7(5) 7 6 ?
09 04 02 61.2(4) 4 545 6 ?
Si2 04 Al2 72.6(5) 6 6 ?
All 04 Al2 104.6(6) 6 6 ?
O6 O4 A12 35.6(3) 6 6 ?
O5 O4 Al2 89.2(5) 4 545 6 ?
O1 O4 Al2 133.3(6) . 6 ?
O7 O4 Al2 93.9(5) 7 6 ?
O9 O4 Al2 106.2(5) 4_545 6 ?
O2 O4 Al2 72.0(4) 6 6 ?
Si2 04 06 90.3(6) 6 4 545 ?
All 04 06 109.5(6) 6 4 545 ?
06 04 06 85.5(5) 6 4 545 ?
05 04 06 62.8(4) 4_545 4_545 ?
01 04 06 131.5(6) . 4_545 ?
07 04 06 120.1(6) 7 4_545 ?
09 04 06 73.7(5) 4 545 4 545 ?
02 04 06 113.1(6) 6 4 545 ?
Al2 04 06 76.8(4) 6 4 545 ?
Si2 O4 Al2 68.8(5) 6 4 545 ?
All 04 Al2 132.0(7) 6 4 545 ?
O6 O4 Al2 83.6(5) 6 4_545 ?
O5 O4 Al2 34.2(3) 4_545 4_545 ?
O1 O4 Al2 130.0(6) . 4_545 ?
07 04 Al2 91.2(4) 7 4_545 ?
O9 O4 Al2 95.3(5) 4 545 4 545 ?
```

```
O2 O4 Al2 146.4(5) 6 4_545 ?
Al2 O4 Al2 94.5(4) 6 4 545 ?
O6 O4 Al2 33.3(3) 4_545 4_545 ?
Si2 04 05 91.9(6) 6 6 ?
All 04 05 95.7(6) 6 6 ?
06 04 05 60.7(4) 6 6 ?
05 04 05 90.5(5) 4_545 6 ?
01 04 05 133.3(6) . 6 ?
07 04 05 120.9(6) 7 6 ?
09 04 05 80.7(5) 4 545 6 ?
02 04 05 74.8(4) 6 6 ?
Al2 04 05 31.9(3) 6 6 ?
06 04 05 50.3(4) 4_545 6 ?
Al2 04 05 78.0(4) 4 545 6 ?
Si2 O5 Al2 119.1(8) 7_556 . ?
Si2 O5 Cal 101.1(6) 7 556 4 ?
Al2 05 Cal 123.3(6) . 4 ?
Si2 05 07 38.1(4) 7_556 6_566 ?
Al2 05 07 147.4(7) . 6 566 ?
Cal 05 07 63.6(4) 4 6 566 ?
Si2 05 04 33.7(4) 7_556 4 ?
Al2 05 04 87.7(6) . 4 ?
Cal 05 04 113.1(6) 4 4 ?
07 05 04 62.8(5) 6_566 4 ?
Si2 O5 O6 34.8(4) 7_556 7_556 ?
Al2 05 06 116.4(7) . 7 556 ?
Cal 05 06 119.3(5) 4 7_556 ?
07 05 06 60.7(5) 6 566 7 556 ?
04 05 06 57.8(5) 4 7 556 ?
Si2 05 03 153.3(7) 7 556 . ?
Al2 05 03 34.9(4) . . ?
Cal 05 03 102.0(5) 4 . ?
07 05 03 164.3(6) 6_566 . ?
04 05 03 122.5(6) 4 . ?
06 05 03 135.0(6) 7 556 . ?
Si2 05 07 106.6(7) 7_556 . ?
Al2 05 07 34.4(4) . . ?
Cal 05 07 99.5(5) 4 . ?
07 05 07 117.5(6) 6 566 . ?
04 05 07 73.6(5) 4 . ?
06 05 07 126.0(6) 7 556 . ?
03 05 07 56.3(4) . . ?
Si2 05 06 93.5(6) 7_556 4 ?
Al2 05 06 87.0(6) . 4 ?
Cal 05 06 50.1(3) 4 4 ?
07 05 06 74.9(5) 6 566 4 ?
04 05 06 79.6(5) 4 4 ?
06 05 06 128.2(6) 7 556 4 ?
03 05 06 91.2(5) . 4 ?
07 05 06 54.1(4) . 4 ?
Si2 05 06 91.5(6) 7_556 . ?
Al2 05 06 31.6(4) . . ?
Cal 05 06 151.7(5) 4 . ?
07 05 06 127.9(6) 6 566 . ?
04 05 06 65.9(5) 4 . ?
```

```
O6 O5 O6 85.0(5) 7_556 . ?
03 05 06 62.0(4) . . ?
07 05 06 52.4(4) . . ?
06 05 06 104.4(4) 4 . ?
Si2 05 04 90.9(5) 7_556 6_556 ?
Al2 05 04 67.4(5) . 6_556 ?
Cal 05 04 154.2(5) 4 6_556 ?
07 05 04 122.0(5) 6 566 6 556 ?
04 05 04 89.5(5) 4 6 556 ?
06 05 04 61.5(4) 7 556 6 556 ?
03 05 04 73.6(4) . 6_556 ?
07 05 04 98.8(5) . 6_556 ?
06 05 04 152.6(6) 4 6_556 ?
O6 O5 O4 48.4(4) . 6_556 ?
Si2 05 03 82.2(5) 7_556 6_566 ?
Al2 05 03 158.4(7) . 6_566 ?
Cal 05 03 42.2(3) 4 6_566 ?
07 05 03 49.7(4) 6_566 6_566 ?
04 05 03 112.2(5) 4 6 566 ?
06 05 03 82.7(5) 7_556 6_566 ?
03 05 03 124.2(6) . 6_566 ?
07 05 03 141.4(5) . 6_566 ?
06 05 03 88.5(5) 4 6 566 ?
O6 O5 O3 166.0(5) . 6_566 ?
04 05 03 118.9(5) 6_556 6_566 ?
Si2 O6 Al2 121.5(8) . . ?
Si2 O6 Cal 134.1(7) . . ?
Al2 O6 Cal 102.8(6) . . ?
Si2 O6 O4 35.3(4) . 6 556 ?
Al2 06 04 86.7(6) . 6 556 ?
Cal 06 04 168.9(6) . 6_556 ?
Si2 06 07 161.4(8) . . ?
Al2 06 07 42.3(4) . . ?
Cal 06 07 60.5(4) . . ?
04 06 07 128.9(6) 6 556 . ?
Si2 06 07 35.8(4) . 4_545 ?
Al2 06 07 142.7(7) . 4_545 ?
Cal 06 07 110.3(5) . 4_545 ?
04 06 07 62.6(5) 6 556 4 545 ?
07 06 07 161.5(5) . 4 545 ?
Si2 06 05 35.0(4) . 7 556 ?
Al2 06 05 125.7(6) . 7_556 ?
Cal 06 05 109.3(6) . 7_556 ?
04 06 05 59.9(5) 6_556 7_556 ?
07 06 05 138.8(6) . 7_556 ?
07 06 05 57.9(4) 4_545 7_556 ?
Si2 06 05 96.1(6) . 4 545 ?
Al2 06 05 133.7(6) . 4 545 ?
Cal O6 O5 54.7(4) . 4_545 ?
04 06 05 121.9(6) 6 556 4 545 ?
07 06 05 102.4(5) . 4_545 ?
07 06 05 61.4(4) 4_545 4_545 ?
05 06 05 100.6(5) 7_556 4_545 ?
Si2 06 05 99.7(6) . . ?
Al2 06 05 31.0(4) . . ?
```

```
Cal 06 05 114.8(5) . . ?
04 06 05 70.9(5) 6 556 . ?
07 06 05 61.7(4) . . ?
07 06 05 133.2(5) 4 545 . ?
05 06 05 95.0(5) 7_556 . ?
05 06 05 163.5(5) 4 545 . ?
Si2 06 03 114.7(7) . . ?
Al2 06 03 30.5(4) . . ?
Cal 06 03 109.4(5) . . ?
04 06 03 81.6(5) 6 556 . ?
07 06 03 57.2(4) . . ?
07 06 03 118.1(5) 4 545 . ?
05 06 03 139.1(6) 7_556 . ?
05 06 03 112.2(5) 4_545 . ?
05 06 03 56.6(4) . . ?
Si2 06 04 97.5(6) . 4 ?
Al2 06 04 73.9(5) . 4 ?
Cal 06 04 83.0(4) . 4 ?
04 06 04 94.5(5) 6 556 4 ?
07 06 04 70.9(5) . 4 ?
07 06 04 125.9(6) 4 545 4 ?
05 06 04 68.2(4) 7_556 4 ?
05 06 04 130.8(6) 4 545 4 ?
05 06 04 51.3(4) . 4 ?
03 06 04 104.2(5) . 4 ?
Si2 O6 Al2 65.1(5) . 4_545 ?
Al2 O6 Al2 155.3(6) . 4_545 ?
Cal O6 Al2 79.9(4) . 4 545 ?
O4 O6 Al2 93.8(4) 6 556 4 545 ?
O7 O6 Al2 133.5(5) . 4 545 ?
07 06 Al2 31.3(3) 4 545 4 545 ?
O5 O6 Al2 74.5(4) 7_556 4 545 ?
O5 O6 Al2 31.1(3) 4_545 4_545 ?
O5 O6 Al2 164.5(5) . 4_545 ?
O3 O6 Al2 125.2(4) . 4 545 ?
O4 O6 Al2 130.6(5) 4 4_545 ?
Si2 07 Al2 127.7(8) 4 . ?
Si2 07 Cal 130.6(7) 4 . ?
Al2 07 Cal 97.5(6) . . ?
Si2 07 05 38.0(4) 4 6 565 ?
Al2 07 05 115.3(7) . 6 565 ?
Cal 07 05 141.3(5) . 6 565 ?
Si2 07 06 161.8(7) 4 . ?
Al2 07 06 42.6(4) . . ?
Cal 07 06 54.9(4) . . ?
05 07 06 152.1(6) 6 565 . ?
Si2 07 06 35.4(4) 4 4 ?
Al2 07 06 96.7(6) . 4 ?
Cal 07 06 137.2(6) . 4 ?
05 07 06 61.5(5) 6 565 4 ?
06 07 06 126.9(4) . 4 ?
Si2 07 Cal 94.2(5) 4 7 ?
Al2 07 Cal 89.6(5) . 7 ?
Cal 07 Cal 106.4(4) . 7 ?
O5 O7 Ca1 56.7(4) 6 565 7 ?
```

O6 O7 Cal 100.5(5) . 7 ? O6 O7 Cal 113.8(5) 4 7 ? Si2 07 03 113.3(7) 4 . ? Al2 07 03 38.8(4) . . ? Cal 07 03 114.9(5) . . ? 05 07 03 83.4(5) 6 565 . ? 06 07 03 69.0(5) . . ? 06 07 03 101.2(6) 4 . ? Cal 07 03 52.2(4) 7 . ? Si2 07 04 30.9(4) 4 7 ? Al2 07 04 153.2(7) . 7 ? Cal 07 04 99.7(5) . 7 ? 05 07 04 59.3(5) 6 565 7 ? 06 07 04 148.6(6) . 7 ? 06 07 04 57.0(5) 4 7 ? Cal 07 04 104.9(5) 7 7 ? 03 07 04 142.1(6) . 7 ? Si2 07 05 98.8(6) 4 . ? Al2 07 05 33.9(4) . . ? Cal 07 05 113.6(5) . . ? O5 O7 O5 105.1(5) 6_565 . ? 06 07 05 65.8(4) . . ? 06 07 05 64.4(4) 4 . ? Cal 07 05 111.5(5) 7 . ? 03 07 05 61.0(4) . . ? 04 07 05 119.4(6) 7 . ? Si2 07 07 125.9(7) 4 7 ? Al2 07 07 95.7(7) . 7 ? Cal 07 07 55.8(4) . 7 ? 05 07 07 98.9(6) 6 565 7 ? 06 07 07 72.2(5) . 7 ? 06 07 07 159.9(7) 4 7 ? Cal 07 07 50.5(3) 7 7 ? 03 07 07 79.0(5) . 7 ? 04 07 07 110.9(6) 7 7 ? 05 07 07 129.6(7) . 7 ? Si2 07 04 101.6(6) 4 4 ? Al2 07 04 67.2(5) . 4 ? Cal 07 04 75.9(4) . 4 ? 05 07 04 134.4(6) 6 565 4 ? 06 07 04 61.2(4) . 4 ? 06 07 04 72.9(4) 4 4 ? Cal 07 04 156.7(5) 7 4 ? 03 07 04 105.3(5) . 4 ? 04 07 04 97.4(5) 7 4 ? 05 07 04 49.6(4) . 4 ? 07 07 04 126.6(6) 7 4 ? Sil 08 Sil 121.1(10) . 2 ? Sil 08 01 89.6(7) . 2 ? Si1 08 01 35.7(5) 2 2 ? Si1 08 01 35.7(5) . . ? Sil 08 01 89.6(7) 2 . ? 01 08 01 67.4(9) 2 . ? Si1 08 03 146.4(7) . 2 ? Sil 08 03 36.6(3) 2 2 ?

```
01 08 03 59.1(5) 2 2 ?
01 08 03 124.4(7) . 2 ?
Sil 08 03 36.6(3) . . ?
Sil 08 03 146.4(7) 2 . ?
01 08 03 124.4(7) 2 . ?
01 08 03 59.1(5) . . ?
03 08 03 176.5(9) 2 . ?
Si1 08 02 118.3(7) . 2 ?
Si1 08 02 34.2(3) 2 2 ?
01 08 02 61.8(5) 2 2 ?
01 08 02 82.8(6) . 2 ?
03 08 02 60.1(4) 2 2 ?
03 08 02 121.3(4) . 2 ?
Sil 08 02 34.2(3) . . ?
Si1 08 02 118.3(7) 2 . ?
01 08 02 82.8(6) 2 . ?
01 08 02 61.8(5) . . ?
03 08 02 121.3(4) 2 . ?
03 08 02 60.1(4) . . ?
02 08 02 137.9(8) 2 . ?
Si1 08 09 85.8(3) . 8 456 ?
Si1 08 09 86.0(4) 2 8_456 ?
01 08 09 64.9(4) 2 8 456 ?
01 08 09 100.4(5) . 8_456 ?
03 08 09 70.5(3) 2 8_456 ?
03 08 09 110.0(3) . 8 456 ?
02 08 09 120.2(4) 2 8 456 ?
02 08 09 52.6(3) . 8 456 ?
Sil 08 09 86.0(4) . 7 ?
Si1 08 09 85.8(3) 2 7 ?
01 08 09 100.4(5) 2 7 ?
01 08 09 64.9(4) . 7 ?
03 08 09 110.0(3) 2 7 ?
03 08 09 70.5(3) . 7 ?
02 08 09 52.6(3) 2 7 ?
02 08 09 120.2(4) . 7 ?
09 08 09 163.2(7) 8_456 7 ?
Si1 08 Cal 119.7(3) . 8_456 ?
Sil 08 Cal 64.2(2) 2 8 456 ?
O1 O8 Ca1 63.0(4) 2 8 456 ?
O1 O8 Cal 123.8(6) . 8 456 ?
O3 O8 Ca1 37.5(3) 2 8 456 ?
O3 O8 Cal 142.1(3) . 8_456 ?
O2 O8 Cal 95.4(3) 2 8_456 ?
O2 O8 Cal 87.1(3) . 8_456 ?
09 08 Cal 34.5(2) 8 456 8 456 ?
O9 O8 Cal 147.3(2) 7 8 456 ?
Si1 08 Ca1 64.2(2) . 7 ?
Sil 08 Cal 119.7(3) 2 7 ?
O1 O8 Cal 123.8(6) 2 7 ?
O1 O8 Ca1 63.0(4) . 7 ?
O3 O8 Cal 142.1(3) 2 7 ?
O3 O8 Cal 37.5(3) . 7 ?
O2 O8 Cal 87.1(3) 2 7 ?
O2 O8 Cal 95.4(3) . 7 ?
```

```
O9 O8 Cal 147.3(2) 8 456 7 ?
09 08 Cal 34.5(2) 7 7 ?
Cal 08 Cal 173.0(5) 8 456 7 ?
All 09 Cal 126.8(8) 7 556 . ?
All 09 04 36.1(4) 7_556 4 ?
Cal 09 04 91.1(5) . 4 ?
Al1 09 01 33.6(5) 7_556 4 ?
Cal 09 01 126.9(7) . 4 ?
04 09 01 56.7(5) 4 4 ?
All 09 02 34.6(4) 7 556 7 556 ?
Cal 09 02 141.0(6) . 7 556 ?
04 09 02 60.0(4) 4 7_556 ?
01 09 02 60.6(4) 4 7 556 ?
All 09 02 108.4(7) 7 556 8 ?
Cal 09 02 119.1(5) . 8 ?
04 09 02 141.8(6) 4 8 ?
01 09 02 85.6(6) 4 8 ?
02 09 02 98.8(5) 7_556 8 ?
All 09 06 91.5(6) 7 556 . ?
Cal 09 06 41.0(3) . . ?
04 09 06 56.6(4) 4 . ?
01 09 06 110.3(5) 4 . ?
02 09 06 100.2(5) 7 556 . ?
02 09 06 159.6(5) 8 . ?
All 09 01 115.8(7) 7_556 7 ?
Cal 09 01 70.8(4) . 7 ?
04 09 01 112.7(6) 4 7 ?
01 09 01 83.7(4) 4 7 ?
02 09 01 141.8(6) 7 556 7 ?
02 09 01 63.0(4) 8 7 ?
06 09 01 104.8(5) . 7 ?
All O9 All 82.9(6) 7_556 8 ?
Cal 09 All 146.3(5) . 8 ?
O4 O9 All 118.6(5) 4 8 ?
O1 O9 Al1 67.6(5) 4 8 ?
O2 O9 Al1 72.2(4) 7_556 8 ?
O2 O9 Al1 27.3(3) 8 8 ?
O6 O9 All 172.3(4) . 8 ?
O1 O9 All 82.5(4) 7 8 ?
All 09 07 90.1(6) 7 556 . ?
Cal 09 07 40.8(3) . . ?
04 09 07 58.8(4) 4 . ?
01 09 07 86.8(5) 4 . ?
02 09 07 118.8(5) 7 556 . ?
02 09 07 130.9(6) 8 . ?
06 09 07 41.8(3) . . ?
01 09 07 68.0(4) 7 . ?
All 09 07 143.0(5) 8 . ?
All 09 09 75.7(5) 7_556 2_655 ?
Cal 09 09 155.9(5) . 2 655 ?
04 09 09 109.9(5) 4 2_655 ?
01 09 09 76.2(4) 4 2_655 ?
02 09 09 52.1(4) 7_556 2_655 ?
02 09 09 48.9(4) 8 2 655 ?
06 09 09 145.6(5) . 2 655 ?
```

```
01 09 09 109.6(5) 7 2_655 ?

Al1 09 09 27.5(2) 8 2_655 ?

07 09 09 163.0(3) . 2_655 ?

Al1 09 08 146.7(8) 7_556 7 ?

Cal 09 08 74.7(3) . 7 ?

04 09 08 152.9(6) 4 7 ?

01 09 08 114.1(6) 4 7 ?

02 09 08 142.0(5) 7_556 7 ?

02 09 08 44.4(3) 8 7 ?

06 09 08 115.4(4) . 7 ?

Ol 09 08 41.1(4) 7 7 ?

Al1 09 08 71.7(3) 8 7 ?

07 09 08 97.3(4) . 7 ?

09 09 08 90.0(4) 2_655 7 ?
```

_diffrn_measured_fraction_theta_max0.994_diffrn_reflns_theta_full20.52_diffrn_measured_fraction_theta_full0.994_refine_diff_density_max0.609_refine_diff_density_min-0.632_refine_diff_density_rms0.145

The following lines are used to test the character set of files sent by # network email or other means. They are not part of the CIF data set # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 # !@#\$%^&*()_+{}:"~<>?|\-=[];'`,./

END of CIF
##NAME=ParthÈite ##LOCALITY= Denezhkin Kamen, Urals, Russia ##CHEMISTRY= Ca2Al4Si4O15(OH)2 ◊ 4H2O ## unoriented sample, background corrected 112.8340, 110.5160 113.3060, 61.33920 113.7790, 96.78800 114.2510, 162.7370 114.7240, 210.1850 115.1960, 237.3840 115.6690, 269.9580 116.1410, 347.0320 116.6140, 496.7300 117.0860, 683.8040 117.5590, 854.5030 118.0310, 1022.080 118.5040, 1203.780 1450.350 118.9760, 119.4490, 1786.300 119.9210, 2094.620 120.3940, 2413.570 120.8660, 2651.770 121.3390, 2900.340 121.8110, 3043.170 122.2840, 3032.370 122.7560, 2996.060 123.2290, 2945.510 123.7010, 2766.960 124.1740, 2505.910 124.6460, 2397.110 125.1190, 2297.060 125.5910, 2269.380 126.0640, 2073.580 126.5360, 1857.280 1712.100 127.0090, 1479.930 127.4810, 127.9540, 1226.880 128.4260, 1062.320 128.8990, 914.2720 129.3710, 680.7210 524.0450 129.8440, 130.3160, 460.3690 130.7890, 415.8180 131.2610, 303.5160 131.7340, 197.7150 132.2060, 128.2880 132.6790, 100.1120 133.1510, 81.93590 133.6240, 73.88510 134.0960, 67.70860 134.5690, 14.15490 135.0410, 16.95960 135.5140, 31.26430

135.9860,

54.69400

136.4590,	71.87370
136.9310,	117.4290
137.4040,	183.4830
137.8760,	300.9130
138.3490,	416.7180
138.8210,	493.3970
139.2940.	571,7020
139.7660	672.3820
140 2390	840 5620
140.2350,	092 0010
140.7110,	1044 020
141.1040,	1044.920
141.0500,	1280.230
142.1290,	15/1.910
142.6010,	1859.590
143.0740,	2187.020
143.5460,	2565.690
144.0190,	2917.370
144.4910,	3169.800
144.9640,	3353.230
145.4360,	3218.290
145.9080,	3214.220
146.3810,	3041.270
146.8530.	2942.580
147.3260.	2740.760
147.7980.	2576.440
148 2710	2479 620
148 7430	2419.020
140.7450,	2410.330
149.2100,	2360.330
149.0000,	2300.700
150.1010,	2383.090
150.6330,	2453.890
151.1060,	2534.450
151.5780,	2656.000
152.0510,	2709.430
152.5230,	2812.230
152.9960,	2935.790
153.4680,	3113.090
153.9410,	3305.770
154.4130,	3470.700
154.8860,	3671.010
155.3580,	3777.690
155.8310,	3897.620
156.3030,	4054.300
156.7760,	4006.230
157.2480,	3970.780
157.7210.	3860.960
158 1930	3706 890
158.6660	3522 320
150 1380	3313 630
150 6110	3110 100
160 0020	2021 000
160 EECO	2921.990
100.5500,	2/49.920
161.0280,	2691.340
161.5010,	2651.770
161.9730,	2542.580

162.4460,	2485.510
162.9180,	2496.060
163.3910,	2508.120
163.8630,	2504.170
164.3360,	2521.730
164.8080.	2625.530
165.2810.	2833.710
165 7530	3025 270
166 2260	3334 570
166 6090	2670 250
167 1710	4170 010
167.1/10,	41/8.810
167.6430,	4805.240
168.1160,	5490.540
168.5880,	6121.850
169.0610,	6555.280
169.5330,	6681.830
170.0060,	6365.880
170.4780,	5566.560
170.9510,	4665.740
171.4230,	3813.800
171.8960,	2982.230
172.3680,	2461.160
172.8410.	2106.210
173.3130.	1791.270
173.7860	1539.200
174 2580	1367 130
174.2300,	1251 310
175 2020	1150 000
175.2030,	1150.990
175.0700,	1000.790
176.1480,	978.5960
1/6.6210,	9/8.0260
177.0930,	915.8310
177.5660,	862.7600
178.0380,	885.5650
178.5110,	923.6200
178.9830,	921.6740
179.4560,	939.9790
179.9280,	991.1590
180.4010,	1034.710
180.8730,	1065.890
181.3460,	1103.070
181.8180,	1111.750
182.2910.	1112.560
182.7630.	1111.740
183.2360.	1023.170
183 7080	915 2220
18/ 1810	834 6510
184 6530	791 2060
185 1960	712 0060
105.1200, 105.5000	142.0000
106 0710	
100.0/10,	509.0200
100.5430,	527.3000
187.0160,	459.6050
187.4880,	383.5350
187.9610,	329.4640

188.4330,	316.0190
188.9060,	254.8240
189.3780,	235.3790
189.8510,	212.8080
190.3230,	185.8630
190.7960.	192.0430
191.2680.	194.8480
191 7410	163 7770
192 2130	195 2070
102 6060	200 6270
192.0000,	200.0370
193.1580,	218.4420
193.6300,	2/3.9960
194.1030,	326.0510
194.5750,	301.9810
195.0480,	362.0350
195.5200,	442.5900
195.9930,	504.3950
196.4650,	593.0750
196.9380,	684.7540
197.4100,	733.0590
197.8830,	879.3640
198.3550,	956.7940
198.8280.	967.7230
199.3000.	1031.530
199.7730.	992,2080
200 2450	988 8870
200.2490,	900.0070
200.7100,	944.5170
201.1900,	765 9020
201.0030,	705.8020
202.1350,	754.6060
202.6080,	/51./860
203.0800,	687.9660
203.5530,	615.1460
204.0250,	594.4500
204.4980,	535.6300
204.9700,	503.3100
205.4430,	454.9890
205.9150,	440.6690
206.3880,	374.8490
206.8600,	330.2790
207.3330,	328.0830
207.8050,	304.3880
208.2780.	257.3180
208.7500.	245,2480
209.2230.	249.6770
209.2250	252 2320
209.0950,	236 5370
210 6400	230.3370
210.0400, 211 1120	223.3000
211.113U,	204.2/10
211.5050,	34/.2010
212.0580,	363.3810
212.5300,	410.1850
213.0030,	449.7400
213.4750,	475.9200
213.9480,	577.4750

214.4200,	684.2790
214.8930,	783.4590
215.3650,	879.0140
215.8380.	1093.820
216 3100	128/ 500
216.7020	1402 200
210.7030,	1402.300
217.2550,	1715.110
217.7280,	1971.660
218.2000,	2269.590
218.6730,	2493.150
219.1450,	2650.330
219.6180.	2823.760
220.0900.	2824.560
220.5630	2773 870
220.3030,	2773.070
221.0350,	26/4.800
221.5080,	2594.730
221.9800,	2292.150
222.4530,	1994.830
222.9250,	1793.640
223.3980,	1593.320
223.8700,	1415.750
224.3430.	1292.300
224 8150	1160 480
224.0130,	1008 200
225.2000,	1000.200
225.7000,	934.3430
220.2330,	840.0480
226./050,	/65.32/0
227.1780,	696.3820
227.6500,	678.5620
228.1230,	623.1170
228.5950,	625.2960
229.0680,	609.7260
229.5400,	619.9060
230.0130,	642.3350
230.4850,	661.7650
230.9580,	695.6950
231,4300,	728,0000
231.9030.	788.8040
232 3750	811 1090
232.3730,	865 2800
232.0400,	003.2090
233.3200,	924.2190
233.7930,	956.7730
234.2650,	912.7030
234.7380,	872.2580
235.2100,	786.1880
235.6830,	681.9920
236.1550,	602.1720
236.6280,	540.2270
237.1000,	482.2810
237.5730,	416.9610
, 238.0450.	360.1410
238.5180.	252,9460
238,9900	227.1250
230.7900,	203 5550
237.4030,	203.3330
∠39.933U,	T10.3000

240.4080,	151.5400
240.8800,	151.2190
241.3520,	162.1490
241.8250.	151,4540
242 2970	156 7580
242.2570	100 0120
242.7700,	100.0130
243.2420,	1//.3680
243.7150,	206.6730
244.1870,	178.7270
244.6600,	223.4070
245.1320,	248.3370
245.6050.	257.5170
, 246,0770,	295.5710
246 5500	327 3760
240.000,	222 0560
247.0220,	323.0500
247.4950,	341.4850
247.9670,	413.1650
248.4400,	453.3450
248.9120,	435.4000
249.3850,	477.9540
249.8570,	450.5090
250.3300.	523,6890
250.8020.	547.4940
251 2750	558 5480
251.2730,	562 4790
251.7470,	503.4780
252.2200,	581.6580
252.6920,	569.2130
253.1650,	566.0170
253.6370,	537.4470
254.1100,	503.5020
254.5820,	495.6810
255.0550,	473.1110
255.5270,	481.1660
256.0000,	467.3460
256.4720.	473,4000
256 9450	427 5800
257 /170	427.5000
257.4170,	477.0330
257.8900,	451.1900
258.3620,	465.4940
258.8350,	461.7990
259.3070,	504.2290
259.7800,	534.1590
260.2520,	530.4630
260.7250,	552.6430
261.1970,	564.3230
261.6700,	532.6270
262.1420.	482.1820
262.6150.	471.9870
263.0870	361 9170
263 5600	201.91/0
203.3000,	293.2210
$204 \cdot 0320$	JUZ . / / OU
204.5050,	205.9560
264.9770,	221.8850
265.4500,	182.0650
265.9220,	153.9950

266.3950,	133.3000
266.8670,	101.4800
267.3400,	73.28430
267.8120.	74,21410
268.2850.	31.71900
268 7570	91 76690
200.7570,	64.70080
269.2300,	08.814/0
269.7020,	83.86250
270.1750,	31.91040
270.6470,	35.33330
271.1200,	42.75600
271.5920,	73.92880
, , , , , , , , , , , , , , , , , , , ,	110.3520
272 5370	91 27450
272.0100	51 02240
273.0100,	31.02240
2/3.4820,	79.49520
273.9550,	124.2930
274.4270,	120.8410
274.9000,	149.1390
275.3720,	141.6870
275.8450,	156.6090
276.3170.	141,5320
276 7900	164 4550
270.7500,	250 0020
277.2020,	239.0030
277.7350,	2/1.0/00
278.2070,	251.3480
278.6800,	266.3960
279.1520,	285.5690
279.6250,	281.6170
280.0970,	289.4150
280.5700,	358.5880
281.0420,	357.5100
281.5150.	378.4330
281.9870.	419,9810
282 4600	438 6540
202.4000,	472 5770
202.9520,	472.J770
203.4030,	521.0250
283.8770,	555.6720
284.3500,	605.0950
284.8220,	649.0180
285.2950,	667.4410
285.7670,	713.4890
286.2400,	810.0360
286.7120,	879.8340
287.1850,	937.8820
287.6570.	969.8050
288.1300.	1026.350
288 6020	1007 900
200.0020	
203.0/40,	
209.34/0,	990.3/10
290.0190,	1006.290
290.4920,	1075.840
290.9640,	1031.390
291.4370,	997.9380
291.9090,	1007.240

292.3820,	1032.780
292.8540,	1026.460
293.3270,	1032.380
293.7990,	1015.180
294.2720,	1029.100
294.7440.	1093.770
295 2170	1113 200
205 6800	1151 270
295.0090,	1221 200
290.1020,	1221.290
296.6340,	1247.090
297.1070,	1292.260
297.5790,	1387.560
298.0520,	1473.610
298.5240,	1545.780
298.9970,	1660.200
299.4690,	1821.000
299.9420,	2019.920
300.4140,	2163.100
300.8870,	2359.640
301.3590.	2582.940
301 8320	2818 740
302 3040	3003 700
302.3040, 202.7770	3093.790
302.7770, 202.2400	2616 200
303.2490,	3010.380
303.7220,	3833.180
304.1940,	3985.980
304.6670,	4154.150
305.1390,	4311.820
305.6120,	4353.870
306.0840,	4409.920
306.5570,	4445.590
307.0290,	4451.770
307.5020,	4525.690
307.9740.	4471.610
308.4470.	4582.280
308 9190	4675 080
300 3020	4073.000
200 9640	4713.310
309.0040, 210.2270	4/90.100
310.3370,	4905.730
310.8090,	4954.400
311.2820,	4963.700
311.7540,	4916.620
312.2270,	4816.790
312.6990,	4731.590
313.1720,	4547.260
313.6440,	4391.690
314.1170,	4150.860
314.5890,	4081.660
315.0620.	3932.200
315,5340	3664.750
316.0070	3472 800
316.4790	3356 720
316 0520	3162 150
217 1210	JIUZ.IJU
317.4240,	2984.0/0
31/.89/0 ,	2003.120

318.3690,	2766.040
318.8420,	2653.840
319.3140,	2511.630
319.7870.	2409.810
320 2590	2321 860
220.2220	2152 150
320.7320,	2155.150
321.2040,	2135.200
321.6770,	2048.000
322.1490,	2007.420
322.6220,	1900.090
323.0940,	1737.140
323.5670.	1636.440
324 0390	1603 740
224.0370 ,	1574 540
324.J120,	1574.540
324.9840,	1512.330
325.4570,	1443.010
325.9290,	1412.430
326.4020,	1379.980
326.8740,	1256.530
327.3470,	1204.450
327.8190.	1186.870
328.2920.	1117.170
328 7640	1060 590
320.7040,	1000.590
329.2370,	1000.040
329./090,	911.18/0
330.1820,	910.7350
330.6540,	880.5330
331.1270,	843.2060
331.5990,	931.0040
332.0720,	910.6760
332.5440.	741.7240
333.0170.	684.3970
333 /890	682 9450
333.4000,	680 3680
333.9020,	655 7010
334.4340,	655.7910
334.90/0,	623.4630
335.3790,	609.3860
335.8520,	573.0590
336.3240,	548.2320
336.7970,	546.1550
337.2690,	515.9530
337.7410,	544.1250
338.2140.	544.4230
338.6860.	526.3460
339.1590.	506.3940
339 6310	475 8170
339.0310, 240.1040	4/3.01/0
340.1040,	404.1150
340.5/60,	4/2.28/0
341.0490,	466.0850
341.5210,	470.2580
341.9940,	431.4310
342.4660,	425.3540
342.9390,	378.9010
343.4110,	403.1990
343.8840,	418.1220

344.3560,	372.9200
344.8290,	388.2180
345.3010,	403.1410
345.7740,	404.1880
346.2460,	386.9860
346.7190,	375.6590
347,1910.	398,8320
347 6640	407 0050
348 1360	381 3030
240.1300,	402 0750
340.0090,	403.9750
349.0810,	430.7730
349.5540,	417.5710
350.0260,	462.4940
350.4990,	452.7920
350.9710,	451.4650
351.4440,	466.2620
351.9160,	457.9350
352.3890,	481.3580
352.8610,	519.4060
353.3340,	531.5790
353.8060,	535.6270
354.2790,	581.2990
354.7510.	612.0970
355.2240.	577.3950
355 6960	640 1930
356 1690	625 /010
256 6410	620 2000
350.0410, 257 1140	674 0610
357.1140,	674.9010
357.5860,	676.0090
358.0590,	6/5.05/0
358.5310,	683.6050
359.0040,	700.4030
359.4760,	756.0760
359.9490,	780.1230
360.4210,	789.1710
360.8940,	789.7190
361.3660,	785.6420
361.8390,	786.9400
362.3110,	811.6130
362.7840,	864.4100
363.2560,	834.3330
363.7290,	799.5060
364.2010.	855.8040
364.6740.	921.4770
365 1460	878 4000
365 6100	865 0480
303.0190, 266 0010	003.9400
366 5610	014.0100
300.304U,	0/2.2930
30/.0360,	881.2160
30/.5090,	893.0140
367.9810,	896.1870
368.4540,	867.8590
368.9260,	856.0320
369.3990,	859.3300
369.8710,	819.2530

370.3440,	790.6760
370.8160,	777.2240
371.2890,	710.8960
371.7610,	737.8190
372.2340,	686.8670
372.7060,	716.9150
373.1790,	674.4630
373.6510.	698,1360
374.1240.	649.5580
374.5960.	596.9810
375.0690.	565.1540
375 5410	529 3270
376 0140	521 6250
276 1960	522 0400
376.4000,	522.0480
376.9590,	467.9700
377.4310,	432.2680
3/7.9040,	402.5660
378.3760,	389.2390
378.8490,	363.5370
379.3210,	324.9600
379.7940,	273.7570
380.2660,	303.5550
380.7390,	258.8530
381.2110,	237.0260
381.6840,	246.1990
382.1560,	211.2470
382.6290,	201.5450
383.1010,	214.0920
383.5740,	245.1400
384.0460,	270.0630
384.5180,	268.9860
384.9910,	257.2840
385.4630,	279.7060
385.9360,	351.3790
386.4080,	392.5520
386.8810,	388.4750
387.3530,	402.0230
387.8260,	505.1960
388.2980,	549.1180
388.7710.	539.1660
389.2430.	579.5890
389.7160.	673.5120
390,1880,	656.4350
390.6610.	704.2330
391.1330	727.7800
391 6060	788 2030
392 0780	859 0010
392 5510	896 0/90
393 0230	916 9720
393.0230,	961 3050
303 0K00	106/ 100
301 1110	1083 620
394.4410, 30/ 0120	1005.020
394.9130,	1111 240
395.3860,	1111.340
393.050U,	1229.030

396.3310,	1281.810
396.8030,	1251.350
397.2760,	1345.150
397.7480,	1482.450
398.2210,	1456.750
398.6930.	1441,920
399.1660.	1483.220
399 6380	1516 270
<i>4</i> 00 1110	1523 0/0
400.1110,	1323.940
400.5850,	1493.490
401.0560,	1464.030
401.5280,	1447.580
402.0010,	1362.630
402.4730,	1231.300
402.9460,	1105.980
403.4180,	1072.020
403.8910,	1003.950
404.3630,	942.6200
404.8360,	806.9180
405.3080,	727.0900
405.7810,	699.5130
406.2530,	677.6860
406.7260.	653,9840
407,1980,	597.5320
407 6710	597 2050
107.07107	601 1270
400.1450,	577 0250
400.0100,	560 5090
409.0000,	566 6460
409.5010,	500.0400
410.0330,	5/4.0690
410.5060,	546.4920
410.9780,	526.0390
411.4510,	592.8370
411.9230,	636.7600
412.3960,	685.3080
412.8680,	681.2310
413.3410,	735.0290
413.8130,	768.0760
414.2860,	871.7490
414.7580,	925.1720
415.2310,	961.0950
415.7030,	999.0180
416.1760.	1029.190
416,6480,	1056.110
417.1210.	1098.160
<i>117</i> 5930	1164 330
417.J9J0, 118 0660	1104.550
118 5200	1100.010
410.0300,	930.303U
419.0110,	000.9/80
419.4830,	//0.1500
419.9560,	802.5730
420.4280,	/38.1210
420.9010,	704.1690
421.3730,	638.4670
421.8460,	648.5150

422.3180,	528.3120
422.7910,	546.3600
423.2630,	480.7830
423.7360,	458.8310
424.2080,	418.2540
424.6810,	387.1770
425.1530,	361.2240
425.6260,	351.7720
426.0980,	371.1950
426.5710.	339,1180
427.0430	270.2910
427 5160	273 8390
127 9880	295 2610
428 4610	287 5590
128 9330	251 9820
420.000	280 1550
429.4000, 429.8780	271 3280
429.0700,	271.3200
430.3310,	290.3730
430.0230,	202.0730
431.2900,	2/2.0400
431.7000,	249.5190
432.2410,	277.4420
432./130,	322.0130
433.1850,	295.4120
433.6580,	295.5850
434.1300,	341.8830
434.6030,	329.0560
435.0/50,	331.9790
435.5480,	377.7770
436.0200,	394.9490
436.4930,	407.6220
436.9650,	423.7950
437.4380,	467.0930
437.9100,	515.2660
438.3830,	534.3140
438.8550,	538.3620
439.3280,	639.5340
439.8000,	688.7070
440.2730,	758.8800
440.7450,	788.8030
441.2180,	827.3510
441.6900,	927.8990
442.1630,	1020.070
442.6350,	1122.240
443.1080,	1244.040
443.5800,	1324.840
444.0530,	1449.760
444.5250,	1591.560
444.9980,	1697.860
445.4700,	1826.660
445.9430,	1943.700
446.4150,	2075.000
446.8880,	2255.670
447.3600,	2219.600
447.8330,	2269.900

448.3050,	2266.190
448.7780,	2221.370
449.2500,	2014.540
449.7230,	1828.710
450.1950,	1745.630
450.6680,	1598.310
451,1400.	1451.860
451.6130.	1278.530
452 0850	1126 950
152.5580	1028 250
452.5500,	056 1720
453.0500,	930.1720
453.5050,	047.4090 744 1420
453.9750,	744.1420
454.4480,	693.3150
454.9200,	625.6130
455.3930,	546.4110
455.8650,	533.8330
456.3380,	494.0060
456.8100,	460.1790
457.2830,	502.1020
457.7550 ,	430.6500
458.2280,	373.6980
458.7000,	433.8700
459.1730,	371.7930
459.6450,	345.2160
460.1180,	342.6390
460.5900,	368.1870
461.0630,	375.1100
461.5350,	373.4070
462.0080,	357.4550
462.4800,	396.0030
462.9530,	439.8010
463.4250,	462.0990
463.8980,	449.5220
464.3700,	456.4440
464.8430,	508.9920
465.3150,	494.2900
465.7880,	497.9630
466.2600,	532.7610
466.7330,	555.1840
467.2050.	580.8560
467.6780.	630.7790
468.1500.	589.3270
468.6230.	650.3750
469.0950.	668.7980
469 5680	667 5960
400.0000,	662 8930
470.5130	706 4410
170 9850	701 1900
471 15Q0	711 0270
471 0200	705 5950
4/1.3300, 172 1020	662 1220
412.4030, 172 9750	600 6000 002.1330
412.0130,	000.0000 702 2520
4/3.340U,	103.3330
4/J.0200,	004.0010

474.2930,	697.0740
474.7650,	766.6220
475.2380,	885.7950
475.7100,	913.3430
476.1830,	908.5150
476.6550.	847.0630
<i>177</i> 1280	728 9860
477 6000	713 /090
477.0000,	608 4570
470.0730,	098.4570
478.5450,	6/6.8800
4/9.0180,	694.1//0
479.4900,	742.3500
479.9620,	740.7730
480.4350,	705.1960
480.9070,	725.9940
481.3800,	706.7920
481.8520,	739.4640
482.3250,	763.8870
482.7970.	757.3100
483.2700.	776.1080
483 7420	795 0310
403 . 7420 ,	824 8280
404.2130,	024.0200
484.08/0,	862.7510
485.1600,	86/.6/40
485.6320,	884.8470
486.1050,	922.6450
486.5770,	994.0680
487.0500,	1112.240
487.5220,	1085.660
487.9950 ,	1123.710
488.4670,	1249.760
488.9400,	1284.560
489.4120,	1307.980
489.8850,	1396.280
490.3570.	1461.200
490 8300	1590 000
490.0000,	1711 800
491.3020,	1711.000
491.7750,	1/40.9/0
492.2470,	1002.270
492.7200,	2067.060
493.1920,	2231.110
493.6650,	2394.910
494.1370,	2622.580
494.6100,	2900.130
495.0820,	3171.300
495.5550,	3410.350
496.0270,	3646.650
496.5000,	3942.320
496.9720.	4331.370
497,4450	4806.290
497.9170	5237 720
198 3000	5660 510
100 0600	6000.010
490.0020,	0090.940
499.3350,	0000.360
499.8070 ,	7051.910

500.2800,	7350.200
500.7520,	7567.630
501.2250,	7886.430
501.6970,	7673.600
502.1700,	7551.020
502.6420,	7311.070
503.1150.	6904.870
503.5870.	6525.540
504.0600.	6094.090
504 5320	5564 010
505 0050	5108 810
505.0050,	4720 610
505.4770 ,	4720.010
505.9500,	4327.400
506.4220,	3699.950
506.8950,	3518.620
507.3670,	3254.550
507.8400,	2985.470
508.3120,	2752.770
508.7850,	2562.070
509.2570,	2371.240
509.7300,	2284.660
510.2020,	2175.580
510.6750,	2019.010
511.1470,	1876.800
511.6200,	1765.730
512.0920,	1728.780
512.5650,	1666.820
513.0370,	1580.000
513.5100,	1474.790
513.9820,	1455.470
514.4550,	1444.010
514.9270,	1403.810
515.4000,	1335.360
515.8720,	1257.530
516.3450,	1244.580
516.8170.	1235.130
517.2900.	1191.800
517.7620.	1178.720
518.2350.	1159.770
518.7070.	1129.320
519 1800	1112 740
519.6520.	1036.290
520 1250	1026 960
520.5970	1039 140
520.5570 ,	961 0590
521.0700 ,	904.0590
521.5420	970.1070
522.01JU,	1015 000
522 · 40/0,	1013.000 063 1260
522 · 2000,	903.IZ00
523.4320,	929.349U
521 2770	990.4/1U
JZ4.J/U,	JJ4.0J4U
524.8500	930.4420
525.322U,	981./400
020./940,	990 . /880

526.7400,943.0080527.2120,993.6810527.6850,976.1040528.1570,976.1520528.6290,972.8250529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,2813.510549.4190,2851.430	26.7400,943.008027.2120,993.681027.6850,976.104028.1570,976.152028.6290,972.825029.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.8820,1205.38033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.8920,2848.10050.3640,<	526.2670,	968.0860	
527.2120,993.6810527.6850,976.1040528.1570,976.1520529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.8040,2177.010543.7490,2324.730544.2220,2342.780544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,2813.510549.4190,2851.430	27.2120,993.681027.6850,976.104028.1570,976.152028.6290,972.825029.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.4090,1279.08033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84045.9470,2813.51048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	526.7400,	943.0080	
527.6850,976.1040528.6290,972.8250529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2598.520547.0570,2631.940546.1120,2598.520547.0570,2631.940548.9470,2717.0580548.9470,2813.510549.4190,2851.430	27.6850,976.104028.1570,976.152028.6290,972.825029.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.4090,1279.08033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	527.2120,	993.6810	
528.1570,976.1520528.6290,972.8250529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.6620,1440.390537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,271.580548.9470,2813.510549.4190,2851.430	28.1570,976.152028.6290,972.825029.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.4090,1179.08032.8820,1205.38033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,<	527.6850,	976.1040	
528.6290,972.8250529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.0570,2631.940547.5290,2781.110548.9470,2813.510549.4190,2851.430	28.6290,972.825029.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.4090,1179.08032.8820,1205.38033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.8920,2848.10050.3640,2855.40050.8370,2808.320	528.1570,	976.1520	
529.1020,993.9980529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,2813.510548.9470,2813.510549.4190,2851.430	29.1020,993.998029.5740,1043.17030.0470,1073.59030.5190,1090.64030.9920,1104.69031.4640,1102.86031.9370,1106.91032.4090,1179.08032.8820,1205.38033.3540,1211.18033.8270,1220.73034.2990,1265.65034.7720,1319.45035.2440,1297.12035.7170,1392.17036.1890,1433.34036.6620,1440.39037.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.8920,2848.10050.3640,2855.40050.8370,2808.320	528.6290,	972.8250	
529.5740,1043.170530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.6070,1467.980538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,2710.580548.9470,2813.510549.4190,2851.430	29.5740, 1043.170 30.0470 , 1073.590 30.5190 , 1090.640 30.9920 , 1104.690 31.4640 , 1102.860 31.9370 , 1106.910 32.4090 , 1179.080 32.8820 , 1205.380 33.3540 , 1211.180 33.8270 , 1220.730 34.2990 , 1265.650 34.7720 , 1319.450 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.9470 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 45.5640 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2855.400 50.3640 , 2855.400 50.3640 , 2855.400 50.8370 , 2808.320	529.1020,	993.9980	
530.0470,1073.590530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.0570,2631.940547.0570,2631.940548.9470,271.70.580548.9470,2813.510549.4190,2851.430	30.0470, 1073.590 30.5190 , 1090.640 30.9920 , 1104.690 31.4640 , 1102.860 31.9370 , 1106.910 32.4090 , 1179.080 32.4090 , 1205.380 33.3540 , 1211.180 33.8270 , 1220.730 34.2990 , 1265.650 34.7720 , 1319.450 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 45.6390 , 2602.300 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.9470 , 2871.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	529.5740.	1043.170	
530.5190,1090.640530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.9470,2813.510548.9470,2813.510549.4190,2851.430	30.5190, 1090.640 30.9920 , 1104.690 31.4640 , 1102.860 31.9370 , 1106.910 32.4090 , 1179.080 32.8820 , 1205.380 33.3540 , 1211.180 33.8270 , 1220.730 34.2990 , 1265.650 34.7720 , 1319.450 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	530.0470,	1073.590	
530.9920,1104.690531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.9470,2813.510549.4190,2851.430	30.9920, 1104.690 31.4640, 1102.860 31.9370, 1106.910 32.4090, 1179.080 32.8820, 1205.380 33.3540, 1211.180 33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.2440, 1297.120 35.7170, 1392.170 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.320, 282.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.5840	530.5190.	1090.640	
531.4640,1102.860531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	31.4640, 1102.860 31.9370, 1106.910 32.4090, 1179.080 32.8820, 1205.380 33.3540, 1211.180 33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.2440, 1297.120 35.7170, 1392.170 36.1890, 1433.340 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.320, 282.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.5840	530.9920.	1104.690	
531.9370,1106.910532.4090,1179.080532.8820,1205.380533.3540,1211.180533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2774.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	31.9370, 1106.910 32.4090, 1179.080 32.8820, 1205.380 33.3540, 1211.180 33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.2440, 1297.120 35.7170, 1392.170 36.1890, 1433.340 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.320, 282.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.5840, 2598.520 47.0570	531 4640	1102 860	
532.4090,1179.080532.8820,1205.380533.3540,1211.180533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	32.4090, 1179.080 32.8820, 1205.380 33.3540, 1211.180 33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.2440, 1297.120 35.7170, 1392.170 36.1890, 1433.340 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.5840, 2598.520 47.0570, 2631.940 47.529	531 9370	1106 910	
532.4050,1175.000532.8820,1205.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.77490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.9470,2813.510549.4190,2851.430	32.4090, 1179.000 32.8820, 1205.380 33.3540, 1211.180 33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.2440, 1297.120 35.7170, 1392.170 36.1890, 1433.340 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 45.6390, 2602.300 45.1670, 2598.520 47.05	532 /000	1170 080	
532.8820,1203.380533.3540,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	32.8820, 1203.380 33.3540 , 1211.180 33.8270 , 1220.730 34.2990 , 1265.650 34.7720 , 1319.450 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	522 9920	1205 280	
533.8340,1211.180533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	33.8270, 1220.730 34.2990, 1265.650 34.7720, 1319.450 35.240, 1297.120 35.7170, 1392.170 36.1890, 1433.340 36.6620, 1440.390 37.1340, 1398.560 37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.4740, 2770.580 48.947	522.0020,	1211 190	
533.8270,1220.730534.2990,1265.650534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	$\begin{array}{c} 34.2990, & 1265.650\\ 34.7720, & 1319.450\\ 35.2440, & 1297.120\\ 35.7170, & 1392.170\\ 36.1890, & 1433.340\\ 36.6620, & 1440.390\\ 37.1340, & 1398.560\\ 37.6070, & 1467.980\\ 38.0790, & 1545.410\\ 38.5520, & 1651.450\\ 39.0240, & 1727.750\\ 39.4970, & 1731.920\\ 39.9690, & 1791.470\\ 40.4420, & 1909.270\\ 40.9140, & 1976.690\\ 41.3870, & 2034.790\\ 42.3320, & 2082.210\\ 42.8040, & 2177.010\\ 43.2770, & 2264.930\\ 43.7490, & 2324.730\\ 44.2220, & 2342.780\\ 44.6940, & 2399.330\\ 45.1670, & 2599.620\\ 45.6390, & 2602.300\\ 45.6390, & 2602.300\\ 46.1120, & 2597.840\\ 46.5840, & 2598.520\\ 47.0570, & 2631.940\\ 47.5290, & 2781.110\\ 48.0020, & 2794.790\\ 48.4740, & 2770.580\\ 48.9470, & 2813.510\\ 49.4190, & 2851.430\\ 49.8920, & 2848.100\\ 50.3640, & 2855.400\\ 50.8370, & 2808.320\\ \end{array}$	533.5540,	1211.100	
534.2990,1203.030534.7720,1319.450535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	34.2990, 1203.030 34.7720 , 1319.450 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.2220 , 2342.780 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	53.0270,	1220.730	
534.7720,1319.430535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	34.7720, 1319.430 35.2440 , 1297.120 35.7170 , 1392.170 36.1890 , 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	534.2990	1203.030	
535.2440,1297.120535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	35.2440, $1297.12035.7170$, $1392.17036.1890$, $1433.34036.6620$, $1440.39037.1340$, $1398.56037.6070$, $1467.98038.0790$, $1545.41038.5520$, $1651.45039.0240$, $1727.75039.4970$, $1731.92039.9690$, $1791.47040.4420$, $1909.27040.9140$, $1976.69041.3870$, $2021.74041.8590$, $2034.79042.3320$, $2082.21042.8040$, $2177.01043.2770$, $2264.93043.7490$, $2324.73044.6940$, $2399.33045.1670$, $2509.62045.6390$, $2602.30046.1120$, $2597.84046.5840$, $2598.52047.0570$, $2631.94047.5290$, $2781.11048.0020$, $2794.79048.4740$, $2770.58048.9470$, $2813.51049.8920$, $2848.10050.3640$, 2855.400	534.7720,	1319.450	
535.7170,1392.170536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	$\begin{array}{c} 35.7170, & 1392.170\\ 36.1890, & 1433.340\\ 36.6620, & 1440.390\\ 37.1340, & 1398.560\\ 37.6070, & 1467.980\\ 38.0790, & 1545.410\\ 38.5520, & 1651.450\\ 39.0240, & 1727.750\\ 39.0240, & 1727.750\\ 39.4970, & 1731.920\\ 39.9690, & 1791.470\\ 40.4420, & 1909.270\\ 40.9140, & 1976.690\\ 41.3870, & 2021.740\\ 41.8590, & 2034.790\\ 42.3320, & 2082.210\\ 42.8040, & 2177.010\\ 43.2770, & 2264.930\\ 43.7490, & 2324.730\\ 44.2220, & 2342.780\\ 44.6940, & 2399.330\\ 45.1670, & 2509.620\\ 45.6390, & 2602.300\\ 46.1120, & 2597.840\\ 46.5840, & 2598.520\\ 47.0570, & 2631.940\\ 47.5290, & 2781.110\\ 48.0020, & 2794.790\\ 48.4740, & 2770.580\\ 48.9470, & 2813.510\\ 49.4190, & 2851.430\\ 49.8920, & 2848.100\\ 50.3640, & 2855.400\\ 50.8370, & 2808.320\\ \end{array}$	535.2440,	1297.120	
536.1890,1433.340536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	36.1890, 1433.340 36.6620 , 1440.390 37.1340 , 1398.560 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.0240 , 1727.750 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.2220 , 2342.780 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	535./1/0,	1392.170	
536.6620,1440.390537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	36.6620, 1440.390 37.1340 , 1398.560 37.6070 , 1467.980 38.0790 , 1545.410 38.5520 , 1651.450 39.0240 , 1727.750 39.0240 , 1727.750 39.4970 , 1731.920 39.9690 , 1791.470 40.4420 , 1909.270 40.9140 , 1976.690 41.3870 , 2021.740 41.8590 , 2034.790 42.3320 , 2082.210 42.8040 , 2177.010 43.2770 , 2264.930 43.7490 , 2324.730 44.6940 , 2399.330 45.1670 , 2509.620 45.6390 , 2602.300 46.1120 , 2597.840 46.5840 , 2598.520 47.0570 , 2631.940 47.5290 , 2781.110 48.0020 , 2794.790 48.4740 , 2770.580 48.9470 , 2851.430 49.8920 , 2848.100 50.3640 , 2855.400 50.8370 , 2808.320	536.1890,	1433.340	
537.1340,1398.560537.6070,1467.980538.0790,1545.410538.5520,1651.450539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	37.1340,1398.56037.6070,1467.98038.0790,1545.41038.5520,1651.45039.0240,1727.75039.4970,1731.92039.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	536.6620,	1440.390	
537.6070,1467.980538.0790,1545.410538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.9470,2813.510549.4190,2851.430	37.6070, 1467.980 38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 45.6390, 2602.300 46.1120, 2597.840 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.9470, 2813.510 49.4190, 2851.430 49.8920, 2808.320	537.1340,	1398.560	
538.0790,1545.410538.5520,1651.450539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	38.0790, 1545.410 38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.1120, 2597.840 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.4740, 2770.580 48.9470, 2813.510 49.4190, 2851.430 49.8920, 2848.100 50.3640, 2855.400 50.8370, 2808.320	537.6070,	1467.980	
538.5520,1651.450539.0240,1727.750539.0240,1727.750539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	38.5520, 1651.450 39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.2220, 2342.780 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.1120, 2597.840 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.4740, 2770.580 48.9470, 2813.510 49.8920, 2848.100 50.3640, 2855.400 50.8370, 2808.320	538.0790,	1545.410	
539.0240,1727.750539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.0020,2794.790548.4740,2770.580549.4190,2851.430	39.0240, 1727.750 39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.1120, 2597.840 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.4740, 2770.580 48.9470, 2813.510 49.8920, 2848.100 50.3640, 2855.400 50.8370, 2808.320	538.5520,	1651.450	
539.4970,1731.920539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	39.4970, 1731.920 39.9690, 1791.470 40.4420, 1909.270 40.9140, 1976.690 41.3870, 2021.740 41.8590, 2034.790 42.3320, 2082.210 42.8040, 2177.010 43.2770, 2264.930 43.7490, 2324.730 44.6940, 2399.330 45.1670, 2509.620 45.6390, 2602.300 46.1120, 2597.840 46.5840, 2598.520 47.0570, 2631.940 47.5290, 2781.110 48.0020, 2794.790 48.4740, 2770.580 48.9470, 2813.510 49.8920, 2848.100 50.3640, 2855.400 50.8370, 2808.320	539.0240,	1727.750	
539.9690,1791.470540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	39.9690,1791.47040.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	539.4970,	1731.920	
540.4420,1909.270540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	40.4420,1909.27040.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	539.9690,	1791.470	
540.9140,1976.690541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	40.9140,1976.69041.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	540.4420,	1909.270	
541.3870,2021.740541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	41.3870,2021.74041.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	540.9140,	1976.690	
541.8590,2034.790542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	41.8590,2034.79042.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	541.3870,	2021.740	
542.3320,2082.210542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.0020,2794.790548.4740,2770.580549.4190,2851.430	42.3320,2082.21042.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	541.8590,	2034.790	
542.8040,2177.010543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.0020,2794.790548.4740,2770.580549.4190,2851.430	42.8040,2177.01043.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	542.3320,	2082.210	
543.2770,2264.930543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940548.0020,2794.790548.4740,2770.580549.4190,2851.430	43.2770,2264.93043.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	542.8040,	2177.010	
543.7490,2324.730544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	43.7490,2324.73044.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	543.2770,	2264.930	
544.2220,2342.780544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580549.4190,2851.430	44.2220,2342.78044.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	543.7490,	2324.730	
544.6940,2399.330545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	44.6940,2399.33045.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	544.2220,	2342.780	
545.1670,2509.620545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	45.1670,2509.62045.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	544.6940,	2399.330	
545.6390,2602.300546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	45.6390,2602.30046.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	545.1670,	2509.620	
546.1120,2597.840546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	46.1120,2597.84046.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	545.6390,	2602.300	
546.5840,2598.520547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	46.5840,2598.52047.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	546.1120,	2597.840	
547.0570,2631.940547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	47.0570,2631.94047.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	546.5840,	2598.520	
547.5290,2781.110548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	47.5290,2781.11048.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	547.0570,	2631.940	
548.0020,2794.790548.4740,2770.580548.9470,2813.510549.4190,2851.430	48.0020,2794.79048.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	547.5290,	2781.110	
548.4740, 2770.580 548.9470, 2813.510 549.4190, 2851.430	48.4740,2770.58048.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	548.0020,	2794.790	
548.9470, 2813.510 549.4190, 2851.430	48.9470,2813.51049.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	548.4740,	2770.580	
549.4190, 2851.430	49.4190,2851.43049.8920,2848.10050.3640,2855.40050.8370,2808.320	548.9470,	2813.510	
	49.8920,2848.10050.3640,2855.40050.8370,2808.320	549.4190,	2851.430	
549.8920, 2848.100	50.3640,2855.40050.8370,2808.320	549.8920,	2848.100	
550.3640, 2855.400	50.8370, 2808.320	550.3640,	2855.400	
550.8370, 2808.320		550.8370,	2808.320	
551.3090, 2733.370	51.3090, 2733.370	551.3090,	2733.370	
•	51.7820, 2668.790	551.7820,	2668.790	

552.2540,	2726.220
552.7270,	2552.390
553.1990.	2506.560
552 6720	2500.500
553.0720,	2314.730
554.1440,	24/3.410
554.6170,	2380.460
555.0890,	2281.250
555.5620,	2167.180
556.0340.	2109.970
556 5070	2001 400
550.5070,	2091.400
556.9790,	2024.440
557.4520,	1905.990
557.9240,	1789.920
558.3970,	1755.960
558.8690,	1718.890
559.3420.	1681.680
550 91/0	1547 110
559.0140,	1.174 7.00
560.2870,	14/4./80
560.7590,	1416.700
561.2320,	1338.630
561.7040,	1325.920
562.1770,	1260.350
562.6490.	1213,640
563 1220	1211 570
563 E040	1150 110
563.5940,	1159.110
564.0670,	1114.910
564.5390,	1021.210
565.0120,	911.6330
565.4840,	874.3060
565.9570,	858.9790
566.4290.	864.5260
566 9020	788 6990
500.5020,	700.0550
567.3740,	701.7470
56/.84/0,	/48.5450
568.3190,	716.2180
568.7920,	667.2660
569.2640,	641.5630
569.7370.	645.7360
570 2090	652 5340
570 6820	631 0820
570.0020, 571 1540	602 2000
5/1.1540,	602.3800
571.6270,	576.6770
572.0990,	579.7250
572.5720,	591.6480
573.0440,	561.3210
573.5170	527.1190
573,9890	471 6670
571 1610	151 0000
J/4.4010,	401.0090
5/4.9340,	469.6370
575.4060,	451.1850
575.8790 ,	414.1080
576.3520,	437.7810
576.8240,	433.9540
577.2960	385.3760
577 7600	305 67/0
JII. 1090	595.0740

578.2410,	431.0970
578.7140,	399.3950
579.1860.	371.1930
579.6590.	389.7410
580 1310	35/ 2880
500.1510,	227 2110
560.6040,	337.2110
581.0760,	344.1340
581.5490,	365.9320
582.0210,	357.2300
582.4940,	375.1530
582.9660,	337.0750
583.4390,	312.1230
583.9110.	339.6710
584.3840.	338.0940
584 8560	323 7670
505 2200	200 6000
505.5290,	308.0900
585.8010,	306.2380
586.2740,	317.7850
586.7460,	307.7080
587.2190,	277.0060
587.6910,	272.8040
588.1640,	276.3520
588.6360,	285.1500
589.1090,	321.6970
589.5810.	313.6200
590.0540.	279.4180
590 5260	296 7160
500.0200,	265 2640
501 1710	203.2040
591.4710, 501.0440	299.4370
591.9440,	200.1090
592.4160,	285.9070
592.8890,	285.8300
593.3610,	282.7530
593.8340,	302.6760
594.3060,	281.2240
594.7790,	254.0210
595.2510,	299.3190
595.7240,	309.1170
596.1960,	273.4150
596.6690.	278.9630
597.1410.	279.0100
597.6140.	281,1830
508 0860	277 0910
598.0000,	277.9010
598.5590,	247.9040
599.0310,	254.9520
599.5040,	248.5000
599.9760,	274.6720
600.4490,	274.5950
600.9210,	283.2680
601.3940,	271.8160
601.8660,	254.6140
602.3390,	262.6620
602.8110.	254.0840
603.2840.	270.5070
603.7560	286,6800

604.2290,	297.9780
604.7010,	302.6510
605.1740,	279.1990
605.6460,	296.8710
606.1190,	289.5440
606.5910,	339.3420
607.0640,	312.7650
607.5360,	311.1880
608.0090.	315,4860
608.4810.	342.5330
608.9540.	315.5810
609 4260	340 6290
609 8990	375 4270
610 3710	361 3500
610 8440	340 7730
611 2160	399.7730
611 7000	271 7420
612 2610	200 0410
612.2010,	390.0410 422 9200
012.7340, (12.20C0	425.0390
613.2000,	433.0070
613.0790	403.3100
614.1510,	400.9820
614.6240,	441.0300
615.0960,	467.2030
615.5690,	449.1260
616.0410,	453.6740
616.5140,	499.7220
616.9860,	482.1440
617.4590,	485.8170
617.9310,	460.4900
618.4040,	484.0380
618.8/60,	530.8360
619.3490,	534.5090
619.8210,	4/3.5560
620.2940,	559.2290
620.7660,	549.1520
621.2390,	533.8250
621.7110,	596.6230
622.1840,	585.0460
622.6560,	606.0930
623.1280,	598.7660
623.6010,	642.9390
624.0730,	642.4870
624.5460,	625.0350
625.0180,	650.7080
625.4910,	698.6300
625.9630,	719.3030
626.4360,	737.8510
626.9080,	728.1490
627.3810,	735.1970
627.8530,	763.3700
628.3260,	766.6670
628.7980,	807.5900
629.2710,	790.3880
629.7430,	810.8110

630,2160,	862.8590
	057 4070
630.6880,	85/.40/0
631.1610,	872.3290
631.6330,	893.1270
632 1060	968 4250
032.1000,	900.4230
632.5780,	941.9730
633.0510,	964.5210
633.5230.	980.6940
622 0060	011 1160
033.9900,	911.1100
634.4680,	980.5390
634.9410,	1007.840
635.4130	997.2600
625 0060	1004 600
033.0000,	1004.000
636.3580,	971.4810
636.8310,	1004.400
637.3030.	943.3260
627 7760	022 2740
037.7700,	923.3740
638.2480,	895.5470
638.7210,	873.9700
639,1930.	856,2680
630 6660	954 3150
039.0000,	004.0100
640.1380,	829.6130
640.6110,	796.5360
641.0830.	789.2090
641 5560	824 0070
642.0200	024.0070
042.0200,	808.8030
642.5010,	738.6020
642.9730,	726.1500
643.4460,	676.5730
6/13 9180	647 6210
(44.2010)	647.0210
644.3910,	641.4190
644.8630,	598.9670
645.3360,	576.8890
645.8080,	535.0620
646 2810	536 2350
646 7520	530.2330 E47 7020
040.7550,	547.7830
647.2260,	504.5810
647.6980,	495.1290
648.1710,	493.0510
648.6430.	418,9740
640 1160	157 2720
049.1100,	457.2720
649.5880,	400.1950
650.0610,	407.6180
650.5330,	390.9160
651.0060.	392,9630
CE1 4700	352.5030
651.4780 ,	300.0110
651.9510 ,	359.3090
652.4230,	293.9820
652.8960.	325.2800
653.3680	311.7030
652 0410	202 2500
053.0410,	302.2300
654.3130 ,	298.5480
654.7860,	320.3460
655.2580,	301.2690
655.7310.	256.8170

656 2030	248 1150
030.2030,	240.1130
656.6760,	260.0370
(FF 1400 [']	
65/.1480,	256.5850
657 6210	230 7580
057.0210,	239.7500
658.0930.	222.8060
	010 0540
658.5660,	210.8540
659 0380	20/ 1520
055.0500,	204.1520
659.5110,	203.9490
650 0920	220 0720
659.9630,	220.0720
660.4560.	183,6700
	100.0700
660.9280,	218.9680
661 4010	180 3010
001.4010,	109.5910
661.8730,	186.6890
662 2460	150 7270
002.3400 ,	158./3/0
662 8180	133 5340
002.0100,	155.5540
663.2910,	128.7070
662 7620	171 2550
003./030,	TIT.2000
664.2360.	185.3030
661 7000	100 0510
004./080,	133.3510
665 1810	156 5240
	140 4010
665.6530,	143.1960
666 1260	150 /0/0
000.1200,	130.4940
666.5980,	120.0420
667 0710	120 5000
667.0710,	130.5900
667.5430.	144,1380
	1
668.0160,	155.0610
668 4880	127 7330
000.4000,	127:7550
668.9610,	129.2810
660 1330	102 8200
009.4330,	102.0290
669.9060.	131.1270
(70, 2700)	150 4050
6/0.3/80 ,	158.4250
670.8510.	137,2230
0,0.0010,	107.2200
671.3230,	132.6450
671 7950	152 8180
0/1.//50,	152.0100
672.2680,	121.4910
672 7400	75 53990
0/2./400,	/3.33880
673.2130,	95.21170
(72 (050)	126 6250
6/3.6850 ,	130.0350
674.1580.	143.3070
674 6200	126 0200
6/4.6300 ,	136.2300
675 1030	126 6530
075.1050,	120.0550
675.5750,	118.4510
676 0190	124 0000
070.0400,	134.9990
676.5200,	146.7970
676 0020	127 2440
0/0.9930,	13/.3440
677.4650	139.5170
C77 0000	100 0050
0//.9380 ,	120.0050
678.4100	163.1130
570.1100/	100.1100
678.8830 <i>,</i>	165.2860
670 3550	162 8330
,000,000	TOT . 0220
679.8280,	180.3810
680 2000	125 2040
000.3000,	123.3040
680.7730 <i>,</i>	124.9770
601 0450	170 6500
001.2450,	T/0.0200
681,7180	179,9480
~~~ <i>.</i> , <u>+</u> ~~,	_, > • > 100

682.1900,	182.7450
682.6630,	176.0430
683.1350,	120.2160
683.6080,	269.6390
684.0800,	149.1870
684.5530,	201.3600
685.0250.	171,5320
685.4980.	194.3300
685 9700	222 1280
696 1120	100 5510
696 0150	190.5510
666.9150,	208.5990
687.3880,	233.2720
687.8600,	256.6940
688.3330,	248.2420
688.8050,	228.6650
689.2780,	267.8380
689.7500,	273.6360
690.2230,	259.5580
690.6950,	265.7310
691.1680,	269.5290
691.6400,	293.2020
692.1130,	304.3750
, 692,5850,	298.1730
693.0580.	315,2200
693.5300.	336.3930
694 0030	351 6910
604 4750	346 6140
604 0490	252 0120
605 4200	200 2250
695.4200,	380.3350
695.8930,	384.8830
696.3650,	411.5550
696.8380,	432.2280
697.3100,	444.6510
697.7830,	476.8240
698.2550,	435.7470
698.7280,	473.4200
699.2000,	461.9670
699.6730,	494.5150
700.1450,	509.1880
700.6180,	509.8610
701.0900,	538.2840
701.5630,	546.4570
702.0350.	642.7540
702.5080.	579.4270
702 9800	600 3500
702.2000,	651 2720
703.4330,	621 5710
703.3230,	600 0040
104.3980,	090.9940 714 0010
/04.8/00,	/14.2910
/05.3430,	/20.4640
/05.8150,	/97.0120
706.2880,	809.1850
706.7600,	859.1080
707.2330,	861.4060
707.7050,	946.4530

708.1780,	964.0010
708.6500,	1016.170
709.1230,	1091.970
709.5950,	1171.640
710.0680,	1242.940
710.5400.	1338,990
711.0130.	1376.160
711 4850	1447 710
711 0580	15/0 760
712,4200	1609 420
712.4300,	1600.430
712.9030,	1000.000
/13.3/50,	1/60.900
713.8480,	1842.450
714.3200,	1895.120
714.7930,	1922.300
715.2650,	1941.470
715.7380,	1895.140
716.2100,	1876.810
716.6820,	1821.740
717.1550,	1754.410
717.6280,	1725.710
718.1000,	1650.760
718.5730,	1552.680
719.0450.	1431.730
719.5180.	1366.650
719 9900	1335 820
720 4620	1233 740
720.4020,	1121 170
720.9550,	1078 590
721.4070,	1015 140
721.0000,	1013.140
722.3520,	913.1860
722.8250,	920.6090
/23.29/0,	8/0.65/0
/23.//00,	890.3300
724.2420,	820.8770
724.7150,	763.0500
725.1870,	783.9730
725.6600,	708.1460
726.1320,	714.4440
726.6050,	723.6170
727.0770,	666.4140
727.5500,	703.9620
728.0220,	677.1350
728.4950,	655.3080
728.9670,	661.3560
729.4400,	638.9040
729.9120,	635.3260
730.3850,	660.9990
730.8570,	612.0470
731.3300.	640.3450
731.8020.	608.3930
732.2750.	621.5660
732.7470	665.3640
733.2200	692.0360
733.6920	669.4590

734.1650,	672.1320
734.6370,	661.3050
735.1100,	661.6030
735.5820,	665.7760
736.0550,	690.6980
736.5270.	720.4960
737.0000.	735.6690
737 4720	738 2170
737 0/50	725 5150
737.9430,	723.3130
730.4170,	713.0120
738.8900,	720.8000
/39.3620,	/53.1580
/39.8350,	/62.2060
740.3070,	762.8790
740.7800,	740.4270
741.2520,	733.3490
741.7250,	783.1470
742.1970,	774.9450
742.6700,	739.3680
743.1420,	736.0410
743.6150,	727.3390
744.0870,	740.7610
744.5600.	713,3090
745.0320.	699.1070
745 5050	673 7800
745.9000,	677 5780
745.9770,	695 2510
740.4300,	610 5490
740.9220,	594 4710
747.3950,	564.4710
747.8670,	5/5./690
748.3400,	5/4.81/0
748.8120,	547.6150
749.2850,	532.1630
749.7570,	539.7100
750.2300,	517.6330
750.7020,	489.6810
751.1750,	511.3540
751.6470,	498.9020
752.1200,	454.2000
752.5920,	490.6220
753.0650,	496.9200
753.5370,	441.0930
754.0100.	449.0160
754.4820.	485,1890
754.9550.	490.7370
755 4270	112 1090
755 9000	38/ 9570
756 3720	130 1300
756 0450	439.1300
/ 30.8430,	440.0030
/ J / . J / U ,	410.9/60
/5/./900,	39/.5240
/58.2620,	451.8210
758.7350,	438.6190
759.2070,	458.6670
759.6800,	461.4650

760.1520.	443.0130
700.15207	115.0150
760.6250,	522.6860
761.0970.	483,9830
701.0570,	405.5050
761.5700,	468.5310
762 0420	521 1510
/02.0420,	524.4540
762.5150,	502.6270
762 0970	401 0500
102.9010,	491.0500
763.4600,	471.5980
762 0220	100 6150
103.9320,	400.0450
764.4050,	546.8180
761 0770	522 6160
/04.0//0,	522.0100
765.3490,	521.4140
765 0220	570 9270
105.0220,	570.0570
766.2940,	606.8850
766 7670	507 4220
/00./0/0,	597.4520
767.2400,	553.7300
767 7120	
/6/./120,	582.0280
768.1840.	616.9510
768 6570	606 4000
/00.05/0,	606.4990
769.1290.	634.4220
760 6020	671 0600
/09.0020,	6/4.9690
770.0740,	681.7670
770 5470	
//0.54/0,	080.3030
771.0190,	718.7380
771 4020	770 1610
//1.4920,	//0.1010
771.9640,	746.3340
, , , , , , , , , , , , , , , , , , , ,	722 0060
112.4310,	/33.0000
772.9090,	802.0540
773 3820	850 7270
113.3020	830.7270
773.8540,	856.1500
	925 0720
114.3210,	825.0750
774.7990,	852.2460
775 2720	000 1690
115.2120,	900.1080
775.7440,	901.0910
776 2170	867 8890
110.2110,	007.0090
776.6890,	858.4370
777 1620	841 4850
	041.4050
777.6340,	851.6580
778 1070	845 0800
770.1070,	045.0000
778.5790,	785.7530
779.0520.	796.5510
779.03207	790.3910
779.5240,	798.0990
779 9970	730 5220
773.35707	730.3220
780.4690,	704.0700
780,9420	649.3670
/81.4140,	658.6650
781.8870	602,9630
702 250707	E70 1000
/82.3590 <b>,</b>	0/0.1300
782.8320-	573.1840
702 2040	E10 7000
/03.3040 <b>,</b>	510./320
783.7770.	487.1540
701 2100	E20 2020
/84.2490 <b>,</b>	528.2020
784.7220.	622.6250
705 1040	201 0220
/85.1940,	381.9230
785.6670,	343.9710

786.1390,	340.6440
786.6120,	326.6910
787.0840,	351.7390
787.5570.	296.9120
788.0290.	297.3350
799 5020	217 6330
700.5020,	217.0330
/88.9/40,	262.4310
789.4470,	243.7290
789.9190,	148.5260
790.3920,	206.9490
790.8640,	219.4970
791.3370,	209.5450
791.8090.	191,7180
792 2820	167 1410
702 7540	120 5620
792.7540,	150.5050
793.2270,	154.6110
793.6990,	146.6590
794.1720,	137.0820
794.6440,	123.3800
795.1170,	121.6770
795.5890,	131.4750
796.0620,	97.64820
796.5340.	131,4460
797.0070.	136,1190
797 1790	65 /1660
707 0520	71 71450
797.9520,	/1./14J0
790.4240,	120 6050
798.8970,	130.6850
799.3690,	149.6080
799.8420,	50.15590
800.3140,	69.95360
800.7870,	76.00150
801.2590,	78.04930
801.7320,	28.09720
802.2040,	28.77000
802.6770,	91.69290
803.1490,	87.11560
803.6220.	95.53850
804 0940	91 33630
804 5670	11 63420
004.J070,	60 10200
005.0390,	25 10400
805.5120,	35.10490
805.9840,	/9.2///0
806.4570,	62.20040
806.9290,	74.49830
807.4020,	77.04610
807.8740,	102.7190
808.3470,	75.51680
808.8190,	51.81470
809.2920,	80.23740
809.7640.	44.37610
810.2370.	53.37480
810.7090	44,99850
811 1820	57 87230
911 6540	21 7/600
011.0040	JI./4000

812.1270,	78.74480
812.5990,	66.36840
813.0720,	43.99220
813.5440,	43.11580
814.0160,	46.61450
814.4890,	58.73830
814.9610,	41.48690
815.4340,	35.98570
815.9060,	65.48450
816.3790,	30.98320
816.8510,	34.73180
817.3240.	38,98060
817.7960.	51.60420
818.2690.	30.85300
818.7410.	16.85170
819.2140.	29.22530
819 6860	15 97410
820 1590	10 47280
820 6310	10 22160
821 1040	38 72030
821 5760	<i>A</i> 7 71900
822 0/90	41 84270
822 5210	66 091/0
822 00/0	66 46510
823 4660	00.40510
823.4000,	110 0200
$923 \cdot 9390$	00 08620
924.4110,	90.08020
825 3560	99 20870
825 8290	86 957/0
826 3010	71 83120
826 7740	60 82080
827 2460	73 05350
827.7100,	55 82730
929 1010	58 20000
828.6640	58.20090 68.47300
920 1360	60 00060
029.1300, 020.6000	44 60120
029.0090, 020.0010	44.00120
030.0010, 020 5540	34.00280
030.5540 <b>,</b>	44.4/940
831.0200,	64 35750
031.4990, 031.0710	64.35750
031.9/10,	62 26070
032.4440,	62.36070
032.9100,	50.11230
033.3090,	26 61550
037 3340	ZU.UIJJU
034.3340,	40.9921U
034.0000,	53.493/U
033.2/90, 025 7510	$JI \cdot IZUZU$
032.1210,	12.4900U
030.2240,	20./4040
030.0900,	
δ3/.1690,	45.00160
oj/.0410,	00.3/820

838.1140,	75.00480
838.5860,	35.88130
839.0590,	40.13290
839.5310,	60.38450
840.0040,	45.51110
840.4760,	51.38770
840,9490,	73,63930
841.4210.	54.01590
841 8940	17 51750
842 3660	12 76900
942.3000, 942.9300	42.70900 86 80560
042.0390,	102 1470
043.3110,	102.1470
043.7040,	77.52370
844.2560,	52.15030
844.7290,	72.90190
845.2010,	50.77840
845.6740,	54.40500
846.1460,	58.78160
846.6190,	43.90820
847.0910,	67.65980
847.5640,	77.32750
848.0360,	41.97970
848.5090,	46.75700
848.9810,	68.65920
849.4540,	58.93640
849.9260,	62.33870
850.3990,	60.11580
850.8710,	39.01810
851.3440,	84.17040
851.8160,	93.44760
852.2890,	35.84970
852.7610,	44.50210
853.2340,	88.40430
853.7060,	73.93140
854.1790.	78.33370
854.6510,	88.61100
855.1240,	98.13820
855,5960,	94,91540
856.0690.	83.44260
856.5410.	75.71980
857.0140.	98.49710
857.4860.	84.39930
857 9590	64 17650
858 4310	87 95370
858 9040	62 60600
850 3760	58 25460
850 8100,	74 52220
860 3210	65 52080
860 7040	0J.J3900 75 55710
961 9660	102 2250
961 7200	102.3230
001./390, 962 2110	92.40/4U 90 /0500
002.2110,	09.400UU
002.0030,	11.0//00
803.1560,	01.//000
003.0280,	00.41200

864.1010.	42.55530
061 5720	16 22200
004.0700	40.32200
865.0460,	55.09030
865.5180,	189.6080
865.9910,	119.7500
866.4630,	55.31340
866.9360,	25.91980
867.4080.	39,65120
867.8810.	39.38270
868 3530	69 73010
000.3330,	00.73910
000.0200,	84.09560
869.2980,	106.9520
869.7710,	89.68330
870.2430,	66.41480
870.7160,	85.89620
871.1880,	62.37770
871.6610,	40.60910
872,1330,	48,46560
872 6060	71 32190
072.0000	50 17020
073.0700, 073 EE10	50.17050
073.0010,	52.05980
8/4.0230,	61.64120
874.4960,	60.87270
874.9680,	48.72910
875.4410,	93.21060
875.9130,	62.19200
876.3860,	49.17330
876.8580,	65.15480
877.3310.	68,26120
877 8030	79 74270
878 2760	37 50010
070.2700, 070.7400	13 58060
070.7400,	43.30000 FF (0700
879.2210,	55.68/00
8/9.6930,	41.00850
880.1660,	62.77480
880.6380,	69.92700
881.1110,	53.85310
881.5830,	60.77930
882.0560,	82.33060
882.5280,	125.6320
883.0010,	82.55790
883,4730,	93.35900
883 9460	91 66020
88/ /180	81 83640
004.4100,	50 62760
004.0910,	105 (000
885.383U,	TO2.08A0
885.8360,	90.98990
886.3080,	71.66610
886.7810,	46.46730
887.2530,	84.51840
887.7260,	82.44460
888.1980,	58.12070
888.6710.	56.42200
889.1430.	76.09810
889.6160	63,52430
	22.22.120

890.0880,	53.57540
890.5610,	43.50170
891.0330,	59.30290
891.5060.	92.82450
891 9780	104 9130
001 <b>1</b> 510	70 62710
092.4510,	150 2410
892.9230,	152.3410
893.3960,	45.67980
893.8680,	98.89370
894.3410,	114.7330
894.8130,	27.57140
895.2860.	18.66030
895.7580.	100.8740
896 2310	29 58800
090.2310, 006 7020	29.30000
090.7030,	40.17090
897.1760,	/2.515/0
897.6480,	63.85450
898.1210,	85.06850
898.5930,	50.53220
899.0660,	77.37110
899.5380,	99.71010
900.0110,	106.2990
900.4830.	66.38770
900 9560	79 47670
001 1280	72 44040
901.4200, 001.0010	67 00420
901.9010,	07.90430
902.3730,	57.61820
902.8460,	29.95690
903.3180,	46.67090
903.7910,	80.32200
904.2630,	49.72610
904.7360,	49.13010
905.2080,	46.90910
905.6810,	98.56310
906.1530,	107.2170
906.6260,	86.99620
907.0980.	20.52530
907.5700.	88.42920
908 0430	96 33330
908 5160	77 98730
000.0100,	73 26640
900.9000,	73.20040
909.4010,	92.79550
909.9330,	85.5/430
910.4060,	86.72840
910.8780,	98.25740
911.3500,	71.53640
911.8230,	90.94040
912.2950,	101.0940
912.7680,	93.74850
913.2400,	102.2770
913.7130.	108.1820
914.1850.	139.4610
914.6580	136,9900
915 1300	122 0100
015 6020	122.0190
JTJ.0030,	120.1/30

916.0750,	148.4520
916.5480,	126.7310
917.0200,	137.0100
917.4930,	143.9140
917.9650,	119.1930
918.4380,	160.4720
, 918,9100,	193.7510
919.3830.	262,1550
919.8550.	255.5590
920.3280.	232,2130
920 8000	238 6170
921 2730	247 8960
921•2750 <b>,</b> 921 7450	272 3000
022 2180	296 7040
922.2100,	290.7040
922.0900,	252 0120
923.1030,	202 0160
923.0350,	200 4450
924.1080,	399.4450
924.5800,	405.5990
925.0530,	509.8780
925.5250,	616.0320
925.9980,	6/3.5610
926.4/00,	742.3400
926.9430,	831.7440
927.4150,	929.3980
927.8880,	991.8020
928.3600,	1098.580
928.8330,	1211.240
929.3050,	1373.010
929.7780,	1455.790
930.2500,	1493.070
930.7230,	1541.480
931.1950,	1494.880
931.6680,	1460.910
932.1400,	1333.190
932.6130,	1195.220
933.0850,	1120.620
933.5580,	998.5250
934.0300,	886.0540
934.5030,	789.0830
934.9750,	670.3620
935.4480,	620.1410
935.9200,	547.6710
936.3930,	484.8240
936.8650,	452.8540
937.3380,	414.2580
937.8100,	418.4120
938.2830,	391.3160
938.7550,	330.2200
939.2280,	321.8740
939.7000,	272.9030
940.1730,	250.4320
940.6450,	236.9610
941.1180,	219.4900
941.5900,	182.0190

942.0630,	166.2980
942.5350,	203.3270
943.0080,	224.9810
943.4800,	209.6350
943.9530,	199.5390
944.4250,	211.6930
944.8980.	229.5970
945.3700.	215.7510
945 8430	202 9050
946 3150	216 9340
046 7990	210.9340
940.7000,	220.7130
947.2000,	220.3070
947.7330,	238.1460
948.2050,	241.4250
948.6780,	250.0790
949.1500,	256.9830
949.6230,	284.3870
950.0950,	284.6660
950.5680,	290.3200
951.0400,	314.7240
951.5130,	326.2530
951.9850,	336.7820
952.4580,	382.4360
952.9300,	426.8400
953.4030,	472.6190
953.8750 <b>,</b>	496.0230
954.3480,	548.4270
954.8200,	627.2060
955.2930,	715.7350
955.7650 <b>,</b>	769.2640
956.2370,	778.7930
956.7100,	888.6980
957.1820,	1022.850
957.6550,	1134.130
958.1280,	1181.660
958.6000,	1199.560
959.0720,	1223.090
959.5450,	1287.370
960.0170,	1295.400
960.4900,	1232.550
960.9620 <i>.</i>	1132.210
961.4350,	1123.860
, 961,9070,	1072.520
962.3800,	1014.050
, 962.8520,	926.9500
963.3250.	912.6040
963.7970.	843.0080
964.2700	743.5370
964.7420	689.4410
965.2150	577.3450
965.6870	593 12/0
966.1600	646.5280
966 6320	536 9320
967 1050	504 3360
967 5770	183 0000
JUI • JIIU	100.000

968.0500,	515.7690
968.5220,	512.9230
968.9950,	490.9520
969.4670,	511.8560
969.9400,	540.2600
970.4120.	533.4140
970.8850.	555.4430
971 3570	508 0720
971 8300	674 6260
072 2020	777 6550
972.3020,	723.0550
972.7750,	738.0590
9/3.24/0,	/46./130
9/3./200,	848.11/0
974.1920,	1007.020
974.6650,	1072.930
975.1370,	1118.450
975.6100,	1223.480
976.0820,	1284.510
976.5550 <b>,</b>	1333.670
977.0270,	1423.450
977.5000,	1469.350
977.9720,	1473.500
978.4450.	1469.660
978,9170,	1547.810
979.3900.	1604.720
979 8620	1567 870
980 3350	1/08 000
900.3330, 000.0070	1490.900
900.0070, 001 2000	1439.300
901.2000,	1445.550
981.7520,	1468.240
982.2250,	1407.260
982.6970,	1295.540
983.1700,	1228.700
983.6420,	1172.480
984.1150,	1165.010
984.5870,	992.5350
985.0600,	943.0640
985.5320,	945.7180
986.0050,	899.3720
986.4770,	896.0260
986.9500,	783.3050
987.4220,	740.8340
987.8950.	691.9880
988.3670.	740.8920
988.8400.	702.7960
989 3120	658 4500
909.5120, 989.7850	613 7200
000 2570	607 7590
000 7200	601 /100
990./300, 001.2020	
991.2020,	594.6910
991.6750,	552.5950
992.1470,	546.9990
992.6200,	540.9030
993.0920,	563.8070
993.5650,	524.7110

994.0370,	503.3650
994.5100,	479.5190
994.9820,	511.9230
995.4550,	520.2020
995.9270,	476.1060
996.4000,	457.1350
996.8720,	418.4140
997.3450.	438.3180
997.8170.	458.7220
998.2900.	430.3760
998.7620	412.6560
999 2350	327 6850
999 7070	35/ 8390
1000 180	302 1180
1000.100,	212 2720
1001 120	210 1260
1001.120,	249.4200
1001.000,	230.3300
1002.070,	243.0090
1002.040,	200.7030
1003.010,	220.4170
1003.490,	211.0710
1003.960,	221.9750
1004.430,	191.6290
1004.900,	184.7830
1005.380,	111.5620
1005.850,	145.9660
1006.320,	160.2450
1006./90,	189.0240
1007.270,	165.5530
1007.740,	159.4570
1008.210,	184.3610
1008.680,	160.2650
1009.160,	151.7940
1009.630,	124.6980
1010.100,	153.6020
1010.570,	167.7560
1011.050,	208.9100
1011.520,	195.6890
1011.990,	157.0930
1012.460,	145.4970
1012.940,	183.1510
1013.410,	203.8050
1013.880,	178.0840
1014.350,	113.8630
1014.830,	133.2670
1015.300,	165.2960
1015.770,	183.4500
1016.240,	166.9790
1016.720,	151.0090
1017.190,	154.5370
1017.660,	162.9420
1018.130,	184.5960
1018.610,	218.6250
1019.080,	187.9040
1019.550,	180.8080

1020.020,	198.0870
1020.500,	187.4910
1020.970,	179.0200
1021.440,	224.7990
1021.910,	192.3280
1022.390.	172.8570
1022.860.	228.0110
1023 330	190 1650
1023 800	200 3100
1023.000,	201.2220
1024.200,	204.2230
1024.750,	232.6270
1025.220,	229.1560
1025.690,	220.1850
1026.170,	226.2140
1026.640,	235.8680
1027.110,	235.3970
1027.580,	252.1760
1028.060,	259.2050
1028.530,	245.4840
1029.000,	261.0130
1029.470,	280.9170
1029.950,	301.0710
1030.420.	309,2250
1030.890.	319,0040
1031 360	334 0330
1031 840	372 0620
1031.040,	105 0010
1032.310,	403.0910
1032.700,	422.2450
1033.250,	440.0990
1033./30,	4/1.0/80
1034.200,	527.4570
1034.670,	540.6110
1035.140,	555.0150
1035.620,	564.9190
1036.090,	599.1980
1036.560,	678.8520
1037.030,	670.1310
1037.510,	685.2850
1037.980,	675.9390
1038.450,	694.4680
1038.920,	708.8720
1039.400,	711.4010
1039.870.	723.0560
1040.340.	711.4590
1040.810.	723.3640
10/1 200	757 1430
1041.290,	78/ 0/70
1041.700,	753 3260
1042.230,	911 1000
1042 · /UU,	014.40UU
1043.180,	0/0.5090
1043.650,	919.1630
1044.120,	915.4420
1044.590,	952.2210
1045.070,	1012.000
1045.540,	1061.780
1046.010,	1038.310
-----------	----------------------
1046.480,	1090.340
1046.960,	1084.990
1047.430,	1028.770
1047.900.	999.1740
1048.370.	994.3280
1048 850	926 4820
1040 320	89/ 0110
1049.320,	853 2000
1049.790,	000.2900
1050.200,	808.6940 745.0000
1050.740,	/45.0980
1051.210,	682.6270
1051.680,	645.9060
1052.150,	590.0600
1052.630,	587.4640
1053.100,	559.4930
1053.570,	519.8970
1054.040,	475.3010
1054.520,	421.9550
1054.990,	408.8590
1055.460,	380.8880
1055.930,	364.1670
1056.410.	331,9460
1056.880.	291.2250
1057 350	276 6290
1057 820	252 0080
1057.020,	292.9000
1050.300,	209.3120
1050.770,	227.4000
1059.240,	199.1210
1059./10,	222.6490
1060.190,	256.3030
1060.660,	243.3330
1061.130,	204.9870
1061.600,	173.0160
1062.080,	197.2950
1062.550,	141.1990
1063.020,	180.6030
1063.490,	188.7570
1063.970,	175.1610
1064.440,	170.6900
1064.910,	152.5940
1065.380,	122.6230
1065.860.	219.0270
1066.330.	128.6810
1066 800	147 0850
1067 270	113 6140
1067 750	120 5190
1069 220	120.0100
1060.220,	110 4510
1068.690,	119.4510
1069.160,	110.9800
1069.640,	112.0090
1070.110,	120.9130
1070.580,	119.5670
1071.050,	133.0960
1071.530,	104.0000

1072.000,	103.9040
1072.470,	105.9330
1072.940,	103.5870
1073.420.	114,2410
1073 890	103 1450
1074 260	110 6740
1074.300,	119.0740
10/4.830,	119.3280
1075.310,	87.85730
1075.780,	71.26140
1076.250,	100.1650
1076.720,	120.4440
1077.200,	110.7230
1077.670.	121.7520
1078.140.	133,5310
1078 610	106 6860
1070.010,	100.0000
1079.090,	105.4040
10/9.560,	101./440
1080.030,	101.2730
1080.500,	99.80160
1080.980,	127.2060
1081.450,	133.2350
1081.920,	94.38870
1082.390.	119.6680
1082.870.	128.6970
1083 340	115 3510
1003.340,	106 6200
1003.010,	170.0240
1004.200,	170.0340
1084./60,	95.93770
1085.230,	112.0920
1085.700,	113.2460
1086.170,	101.7750
1086.650,	108.8040
1087.120,	108.9580
1087.590,	106.4870
1088.060,	87.26600
1088.540,	123.4200
1089.010.	134.1990
1089.480.	138,1030
1089 950	129 2570
1000 /30	1/9 6610
1000.400,	147 0150
1001 270	147.0130
1091.370,	152.5940
1091.840,	168.6230
1092.320,	171.4020
1092.790,	163.4310
1093.260,	178.7100
1093.730,	174.4890
1094.210,	170.2680
1094.680,	228.0470
1095.150,	264.3260
, 1095.620.	228.2300
1096.100.	233.2590
1096.570	264.4130
1007 040	307 5670
1007 510	212 2210
T021.0T0	JIZ • ZZ IU

1097.990,	347.0000
1098.460,	351.7790
1098.930,	367.9330
1099.400,	330.9620
1099.880,	383.1160
1100.350.	365.2700
1100.820.	381.7990
1101 290	368 3280
1101.770	347 3580
1102 240	260 5110
1102.240,	300.5110
1102.710,	306.1000
1103.180,	316.9450
1103.660,	291.2240
1104.130,	303.3780
1104.600,	243.6570
1105.070,	243.8110
1105.550,	217.3400
1106.020,	216.3690
1106.490,	192.0230
1106.960,	173.1770
1107.440.	164.4560
1107.910.	152.8600
1108 380	144 5140
1108 850	168 7030
1100.000,	151 0470
1109.330,	101.9470
1109.800,	121.7260
1110.270,	102.6300
1110.740,	97.15910
1111.220,	100.8130
1111.690,	121.7170
1112.160,	109.2460
1112.630,	91.90010
1113.110,	104.8040
1113.580,	113.2080
1114.050,	129.6120
1114.520,	64.14120
1115.000.	58.17030
1115.470.	82.57420
1115 940	108 1030
1116 /10	168 2570
1116 900	106 4110
1117 260	100.4110
1117.300,	105.9400
111/.830,	85.96940
1118.300,	8/./4840
1118.780,	86.15250
1119.250,	70.18150
1119.720,	76.21040
1120.190,	77.23950
1120.670,	82.89360
1121.140,	75.79750
1121.610,	69.82650
1122.080,	67.85560
1122.560.	67.63460
1123.030.	76.41360
1123.500.	83,56760
	20.00700

1123.970,	49.47170
1124.450,	51.50070
1124.920,	98.40480
1125.390.	93.55870
1125.860.	64.71280
1126 340	42 00180
1120.340,	42.99100
1126.810,	33.52090
1127.280,	52.92480
1127.750,	54.07890
1128.230,	60.48290
1128.700,	91.76200
1129.170.	57.41590
1129.640.	73.31990
1130 120	48 97400
1120 500	50 20250
1130.390,	59.20250
1131.000,	89.10050
1131.530,	97.49840
1132.010,	75.89640
1132.480,	49.16930
1132.950,	56.44230
1133.420,	58.09020
1133.900,	55.98820
1134.370.	55.51110
1134.840	61.03410
1135 310	36 18200
1125 700	43 20500
1126 260	43.20300
1130.200,	59.85290
1130.730,	83.00090
1137.200,	92.52380
1137.680,	64.29680
1138.150,	54.31960
1138.620,	42.21750
1139.090,	73.74050
1139.570,	37.76340
1140.040,	59.16140
1140.510,	63.05930
1140.980,	88.45730
, 1141, 460,	90.85520
1141 930	37 50320
11/2 /00	61 15110
1142.400,	57 54010
1142.070,	20 10700
1143.350,	29.19/00
1143.820,	53.84480
1144.290,	63.24290
1144.760,	58.51590
1145.240,	56.28870
1145.710,	74.18660
1146.180,	68.95960
1146.650,	71.23250
1147.130,	66.25550
	55.52840
1148.070.	55.92640
1148.540	65.32430
1149 020	63 09730
11/0 /00	62 71020
1149.490 <b>,</b>	03.11920

1149.960.	61.77880
1150 420	71 02000
1150.430,	/1.03000
1150.910,	86.64730
1151.380,	84.08180
1151.850,	83.14110
1152.320.	64.07530
1152 800	12 50000
1152.000,	42.00990
1153.270,	03.81910
1153.740,	56.62840
1154.210,	33.81290
1154.690,	48.74720
1155.160,	71.30650
1155.630.	67.24100
1156 100	60 55020
1150.100,	00.55020
1156.580,	97.85950
1157.050,	95.54390
1157.520,	84.97830
1157.990,	79.53760
1158,470,	76.59700
1158 0/0	52 15640
1150.940, 1150.410	JZ • IJ040
1159.410,	53./1500
1159.880,	50.39990
1160.360,	58.83440
1160.830,	58.26870
1161.300,	57.95290
1161.770,	77.51250
1162,250,	73,19670
1162 720	52 00600
1162.720,	117 0650
1103.190,	11/.0050
1163.660,	73.12480
1164.140,	108.5590
1164.610,	58.61850
1165.080,	34.30290
1165.550,	58.36210
1166.030.	80.79660
1166 500	30 35580
1166 070	50.55500 E1 66E20
1100.970,	51.00520
116/.440,	61.09960
1167.920,	64.36170
1168.390,	66.58700
1168.860,	46.81230
1169.330,	61.28760
1169.810.	67.63780
1170 280	67 36300
1170.200,	71 71340
1171 000	71.71340
11/1.220,	/9.43860
1171.700,	72.66380
1172.170,	49.63920
1172.640,	65.23940
1173.110,	71.83960
1173.590	95.18990
1174.060	71,79020
1174 520	55 51510
1175 000	55.51540
11/5.000,	58.49070
1175.480,	47.46590

1175.950,	77.19130
1176.420,	73.41650
1176.890.	94.14170
1177 370	54 99210
1177 010	10 50220
11//.040,	40.59230
1178.310,	75.31760
1178.780,	85.54280
1179.260,	65.01810
1179.730,	33.61840
1180.200.	79.84360
1180 670	67 56900
1100.070,	77 20420
1181.150,	//.29420
1181.620,	85.64440
1182.090,	88.24480
1182.560,	75.97000
1183.040,	66.44520
1183.510.	89.04550
1183 080	62 64580
1103.900,	60 24600
1104.450,	00.24000
1184.930,	79.09630
1185.400,	68.69650
1185.870,	80.67180
1186.340,	66.77210
1186.820.	42.62230
1187 290	103 3900
1107.760	106 5060
1107.700,	100.5900
1188.230,	56.6//10
1188.710,	53.38290
1189.180,	112.4640
1189.650,	63.16970
1190.120,	52.87550
1190,600.	35.33120
1101 070	58 66220
1101 540	17 26900
1191.540,.	.47.30800
1192.010,.	./5.198/0
1192.480,	101.2800
1192.960,	75.36060
1193.430,	48.44140
1193.900,	49.64750
1194.380.	22.35310
110/ 850	62 05900
1105 220	02.03900
1195.320,	/1.64000
1195.790,	68.22070
1196.270,	27.42650
1196.740,	51.38220
1197.210,	70.21330
, 1197,680,	67.45590
1198 160	51 33000
1100 620	51.55090
1190.030,	04.93590
1199.100,	62.83090
1199.570,	55.83090
1200.040,	76.70610
1200.520,	70.33110
, 1200, 990,	68.33110
1201 /60	60 15610
TTOT • 4001	07.42010

1201.930,	70.58110
1202.410,	81.33110
1202.880,	62.70620
1203.350.	50.45620
1203 820	54 83110
1203.020,	54.05110
1204.300,	58.08120
1204.770,	46.70620
1205.240,	53.45620
1205.710,	14.70630
1206.190,	76.83120
1206.660.	88,95620
1207 130	76 70630
1207.600	10.00120
1207.000,	40.00130
1208.080,	54.20630
1208.550,	55.08130
1209.020,	65.33130
1209.490,	38.08130
1209.970,	42.58130
1210.440.	64.33140
1210 910	61 08140
1210.010,	101 0210
1211.300,	101.0310
1211.860,	158.9560
1212.330,	61.95640
1212.800,	72.42190
1213.270,	51.43250
1213.750,	95.44350
1214.220.	73.32930
1214.690	58.84000
1215 160	57 47600
1215.100,	77 11100
1215.040,	//.11180
1216.110,	80.12240
1216.580,	103.7580
1217.050,	59.14430
1217.530,	90.65490
1218.000,	52.54080
1218.470.	58,05180
1218.940	52.43740
1210./20	72 0/920
1219.420,	70 02410
1219.890,	79.83410
1220.360,	/8.46980
1220.830,	34.35570
1221.310,	56.61660
1221.780,	95.25260
1222.250,	82.76320
1222.720.	76.14900
1223 200	48 16000
1223.200,	54 70570
1221 140	60 001E0
1224.140,	02.93150
1224.610,	59.44240
1225.090,	72.66140
1225.560,	85.03860
1226.030,	76.41590
1226.500,	97.91820
1226.980	57.04550
1227 150	107 0/80
122/•4JU <b>/</b>	101.0400

1227.920,	81.17500
1228.390,	68.17740
1228.870,	94.42960
1229.340,	76.05700
1229.810.	68,43420
1230 280	63 18650
1230 760	66 56380
1221 220	00.0000
1231.230,	86.44120
1231.700,	/6.56840
1232.170,	91.57070
1232.650,	87.44800
1233.120,	56.57520
1233.590,	6.202510
1234.060,	106.8300
1234.540.	65.08220
1235 010	89 45940
1225.010,	69.43940
1235.460,	09.56660
1235.950,	/8.96400
1236.430,	108.0910
1236.900,	89.09360
1237.370,	92.59580
1237.840,	80.84810
1238.320,	62.60050
1238.790,	70.35280
1239.260.	86.85500
1239.730	70.60740
1240 210	50 73460
1240.210,	91 23600
1240.000,	52 86430
1241.130,	52.00450
1241.020,	31.99160
1242.100,	98.11880
1242.570,	56.74610
1243.040,	51.74840
1243.510,	65.25060
1243.990,	47.12810
1244.460,	71.88020
1244.930,	84.00760
1245.400,	65.13480
1245.880,	73.38720
1246.350.	70.63940
1246.820.	85.01670
1247.290	58.51900
1247.230	44 02120
1247.770,	44.02120
1240.240,	95.02300
1248./10,	87.40090
1249.180,	87.52820
1249.660,	66.90540
1250.130,	68.03280
1250.600,	94.41000
1251.070,	100.7870
1251.550,	39.03970
1252.020,	80.16690
1252.490,	79.79420
, 1252,960,	67.42150
1253.440	56,54880
	20.01000

1253 910	44 42600
1255.510,	11.12000
1254.380,	//.1/850
1254.850,	84.68070
1255.330	62.05800
1255.550,	62.03000
1255.800,	60.31030
1256.270,	50.68760
1256 740	76 19090
1230.740,	70.10900
1257.220,	53.31710
1257.690,	56.94450
1258 160	80 82170
1250.100,	00.02170
1258.630,	64.32400
1259.110,	78.82630
1259.580.	76.32860
1200.050	100 2000
1260.050,	109.2060
1260.520,	81.70830
1261.000.	84,71040
1201.0007	0( 22700
1201.470,	80.33/80
1261.940,	63.84010
1262.410.	58,09230
1262,110,	76 12620
1202.090,	/0.13020
1263.360,	65.64030
1263.830,	54.26920
1264 300	63 52310
1204.300,	61 00000
1204./80,	61.90220
1265.250,	57.53110
1265.720.	34.91000
1266 100	51 01/10
1200.190,	51.91410
1266.670,	76.54300
1267.140,	55.79690
1267.610.	47.30100
1269 000	70 05400
1200.000,	79.05490
1268.560,	90.05880
1269.030,	68.56290
1269.500.	69.69180
1209.000	
1209.970,	11.09570
1270.450,	59.19960
1270.920,	58.32870
1271 300	71 58260
1271.000	10.00100
12/1.860,	48.96150
1272.340,	72.71560
1272.810.	75,96950
1273 280	15 8/8/0
1273.200,	43.04040
1273.750,	52.85250
1274.230,	64.23140
1274.700.	79,86040
1075 170	06 61110
12/5.1/0,	80.01440
1275.640,	82.24330
1276.120.	47.87220
1276 590	86.00130
1077 000	16 00500
12//.000,	12.00220
1277.530,	79.63420
1278.010,	93.63820
1278.480	44.76710
1070 050	62 20600
12/8.950,	02.39600
1279.420,	57.52510

1279.900,	58.52910
1280.370,	69.65800
1280.840,	50.53700
1281.310,	63.31290
1281.790,	79.00120
1282.260.	71.18950
1282.730,	90.12780
1283.200,	62.44100
1283.680,	55.75440
1284.150,	40.44260
1284.620,	67.38100
1285.090,	58.69420
1285.570,	86.88260
1286.040,	80.69580
1286.510.	57.25920
1286.980.	56.44740
1287.460.	79,51070
1287.930.	175,6990
1288.400.	102.2620
1288.870.	69,70060
1289.350.	73.51390
1289.820,	50.20210
1290.290,	77.64050
1290.760,	108.4540
1291.240,	89.64210
1291.710,	85.83030
1292.180.	69.64370
1292.650,	102.7070
1293.130,	110.0200
1293.600,	79.70850
1294.070,	91.77170
1294.540,	84.83510
1295.020,	72.02340
1295.490,	101.5870
1295.960,	72.65000
1296.430,	118.9630
1296.910,	104.9010
1297.380,	113.4650
1297.850,	47.52820
1298.320,	109.7160
1298.800,	101.7800
1299.270,	67.34300
1299.740.	55.90640
1300.210.	77.09470
1300.690,	94.78280
•	

```
data partheite 150C
data publication text
_publ_requested_journal
                            'American Mineralogist'
_publ_contact_author_name
                            'Biljana Lazic'
_publ_contact_author_address
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
;
publ_contact_author_email biljana.lazic@krist.unibe.ch
loop
_publ_author_name
_publ_author_address
'Lazic, Biljana '
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Armbruster, Thomas'
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Liebich, Bernard W.'
;Via Saleggi 9
6612 Ascona
Switzerland
'Perfler, Lukas'
;Institute of Mineralogy and Petrography
University of Innsbruck
Innrain 52
6020 Innsbruck
Austria
;
UNIT CELL INFORMATION
#
#-----#
_chemical_formula_sum 'H6 Al
_chemical_formula_weight 610.46
                             'H6 Al4 Ca2 O19 Si4'
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M
                             'C 1 2/c 1'
```

#

loop _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' 'x+1/2, y+1/2, z' 'x+1/2, -y+1/2, z+1/2' '-x, -y, -z' '-x, y, -z-1/2''-x+1/2, -y+1/2, -z''-x+1/2, y+1/2, -z-1/2' _cell_length_a 21.524(7)_cell_length b 8.667(3) _cell_length_c 9.292(3) _cell_angle_alpha 90.00 91.067(5) _cell_angle_beta _cell_angle_gamma 90.00 cell volume 1733.1(10)_cell_formula_units_Z 4 cell_measurement_temperature 443(2) _cell_measurement_theta_min 2.53 _cell_measurement_theta_max 28.45 # # CRYSTAL INFORMATION #_____ --# 'plate' exptl crystal description 'transparent' exptl crystal colour _exptl_crystal_size_max 0.01 _exptl_crystal_size_mid 0.05 _exptl_crystal_size_min 0.1 _exptl_crystal_density_diffrn 2.478 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1304 _exptl_absorpt_coefficient mu 1.252 _exptl_absorpt_correction_type 'multi-scan' _exptl_absorpt_correction_T_min 0.5937 exptl absorpt correction T max 0.7457 'SADABS' exptl absorpt process details # # DATA COLLECTION #-----_diffrn_ambient_temperature 443(2) diffrn radiation wavelength 0.71073 _diffrn_radiation_type MoK\a diffrn radiation source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Apex II Smart' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ?

```
_diffrn_standards_interval_count
                               ?
_diffrn_standards_interval_time
                               ?
diffrn standards decay %
                               ?
diffrn reflns number
                               8183
diffrn_reflns_av_R_equivalents
                               0.1299
diffrn reflns av sigmaI/netI
                               0.1401
_diffrn_reflns_limit_h_min
                               -28
_diffrn_reflns_limit_h_max
                               25
diffrn reflns limit k min
                               -11
diffrn reflns limit k max
                               11
diffrn reflns limit 1 min
                               -12
_diffrn_reflns_limit_l_max
                               12
_diffrn_reflns_theta_min
                              1.89
diffrn reflns theta max
                              28.45
reflns number total
                               2182
_reflns_number_gt
                               1234
_reflns_threshold_expression
                               >2\s(I)
                                    ______
#_____
#
                 COMPUTER PROGRAMS USED
                                                                      #
#-----
                                                                    ___#
               _____
_computing_data_collection
                               ?
computing cell refinement
                               ?
_computing_data_reduction
                               ?
_computing_structure_solution
                                    'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement
                                    'SHELXL-97 (Sheldrick, 1997)'
#______
#
                                                                      #
                  REFINEMENT INFORMATION
                                                                     --#
_refine_special_details
;
Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and
 goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2 > 2 (F^2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F<sup>2</sup> are statistically about twice as large as those based on F, and R-
 factors based on ALL data will be even larger.
;
refine ls structure factor coef
                               Fsqd
refine ls matrix type
                               full
refine 1s weighting scheme
                               calc
_refine_ls_weighting_details
 'calc w=1/[\s^2^(Fo^2^)+(0.0254P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3'
atom sites solution primary
                               direct
atom sites solution secondary
                               difmap
_atom_sites_solution_hydrogens
                               geom
_refine_ls_hydrogen_treatment
                               mixed
_refine_ls_extinction method
                               none
_refine_ls_number reflns
                               2182
refine ls number parameters
                               153
```

_refine_ls_number_restraints 3 _refine_ls_R_factor_all 0.1173 refine ls R factor gt 0.0536 refine ls wR factor ref 0.1148 _refine_ls_wR_factor_gt 0.0953 _refine_ls_goodness_of_fit_ref 0.964 _refine_ls_restrained S all 0.963 _refine_ls_shift/su max 2.332 refine ls shift/su mean 0.015 #_____ # ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS # #______ loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion real atom type scat dispersion imag atom type scat source H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Al Al 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ca Ca 0.2262 0.3064 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 0 0 0.0106 0.006 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Si Si 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop _atom_site_label atom site type symbol atom site fract x _atom_site_fract y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type atom site occupancy _atom_site_symmetry_multiplicity _atom_site_calc flag _atom_site_refinement_flags atom site disorder assembly atom site disorder group Sil Si 0.06687(6) 0.18563(17) 0.28767(15) 0.0154(3) Uani 1 1 d . . . Si2 Si 0.24008(6) 0.01065(16) 0.46284(15) 0.0139(3) Uani 1 1 d . . . All Al 0.11439(7) 0.09085(18) 0.60152(16) 0.0149(4) Uani 1 1 d . . . Al2 Al 0.19875(7) 0.31896(18) 0.28582(15) 0.0139(4) Uani 1 1 d . . . Cal Ca 0.35172(5) 0.21062(13) 0.04383(11) 0.0213(3) Uani 1 1 d . . . 01 0 0.06940(16) 0.0181(4) 0.2143(4) 0.0202(9) Uani 1 1 d . . . 02 0 0.07327(16) 0.1748(4) 0.4609(3) 0.0208(9) Uani 1 1 d . . O3 O 0.12215(15) 0.2932(4) 0.2225(3) 0.0178(8) Uani 1 1 d . . . 04 0 0.17264(15) 0.0304(4) 0.0293(3) 0.0161(8) Uani 1 1 d . . . 05 0 0.20593(15) 0.4691(4) 0.4126(3) 0.0165(8) Uani 1 1 d . . . 06 0 0.23476(16) 0.1580(4) 0.3608(3) 0.0184(8) Uani 1 1 d . . . 07 0 0.23635(15) 0.3586(4) 0.1232(3) 0.0163(8) Uani 1 1 d . . . 08 0 0.0000 0.2671(6) 0.2500 0.0185(12) Uani 1 2 d S . . 09 0 0.35323(18) 0.2632(5) 0.2884(4) 0.0256(14) Uani 1.000(11) 1 d D . . O11A O 0.0402(12) 0.333(9) -0.078(3) 0.092(17) Uani 0.27(3) 1 d P . .

```
O11B O 0.4544(4) 0.2796(18) 0.0813(8) 0.037(4) Uani 0.73(3) 1 d PD . .
H1 H 0.492(2) 0.266(11) 0.033(8) 0.050 Uiso 0.73(3) 1 d PD . .
H2 H 0.467(4) 0.368(6) 0.132(8) 0.050 Uiso 0.73(3) 1 d PD . .
H3 H 0.3168(18) 0.224(7) 0.330(6) 0.05(2) Uiso 1 1 d D . .
loop
_atom_site_aniso_label
_atom_site_aniso U 11
atom site aniso U 22
 atom site aniso U 33
 _atom_site_aniso U_23
_atom_site_aniso_U_13
 atom site aniso U 12
Sil 0.0105(7) 0.0203(8) 0.0154(7) -0.0012(7) -0.0014(6) 0.0010(6)
Si2 0.0120(7) 0.0164(7) 0.0133(7) -0.0006(6) -0.0006(6) 0.0007(6)
All 0.0118(8) 0.0185(8) 0.0144(8) 0.0006(7) -0.0006(7) 0.0007(7)
Al2 0.0142(8) 0.0156(8) 0.0119(8) -0.0008(7) -0.0013(6) 0.0000(7)
Cal 0.0248(6) 0.0222(6) 0.0168(6) 0.0010(5) -0.0038(5) -0.0051(5)
01 \ 0.0141(19) \ 0.022(2) \ 0.025(2) \ -0.0071(18) \ 0.0065(16) \ -0.0023(16)
02 \ 0.022(2) \ 0.029(2) \ 0.0117(18) \ 0.0025(17) \ -0.0016(16) \ 0.0065(17)
03 0.0097(18) 0.025(2) 0.0186(18) 0.0004(17) 0.0000(15) -0.0046(16)
04 \ 0.0111(18) \ 0.020(2) \ 0.0176(18) \ -0.0005(16) \ 0.0045(15) \ -0.0040(15)
05 \ 0.0163(19) \ 0.017(2) \ 0.0163(19) \ -0.0031(15) \ -0.0045(15) \ 0.0015(15)
06 0.022(2) 0.0161(19) 0.0173(18) 0.0038(16) 0.0000(16) 0.0027(15)
07 \ 0.015(2) \ 0.0190(19) \ 0.0147(18) \ 0.0024(15) \ -0.0005(15) \ -0.0006(15)
08 0.015(3) 0.019(3) 0.022(3) 0.000 -0.002(2) 0.000
09 \ 0.021(2) \ 0.033(3) \ 0.022(2) \ -0.0036(18) \ -0.0001(18) \ -0.0074(18)
O11A 0.039(14) 0.15(5) 0.082(18) 0.04(2) 0.033(13) 0.037(19)
O11B \ 0.017(4) \ 0.065(8) \ 0.030(4) \ -0.014(4) \ 0.008(3) \ -0.008(4)
#------#
                                                                            #
#
                   MOLECULAR GEOMETRY
#------#
_geom_special_details
All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell s.u.'s are taken
into account individually in the estimation of s.u.'s in distances, angles
and torsion angles; correlations between s.u.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
;
loop
 geom bond atom site label 1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry 2
 geom bond publ flag
Sil 01 1.605(4) . ?
Sil 02 1.616(3) . ?
Si1 08 1.635(3) . ?
Si1 03 1.637(4) . ?
Si2 O6 1.594(4) . ?
```

Si2 07 1.627(4) 8 546 ? Si2 04 1.628(3) 2 ? Si2 05 1.634(3) 7 556 ? Si2 Cal 3.1543(19) 2 ? Si2 Cal 3.266(2) 8_546 ? All 01 1.722(4) 2 ? All 02 1.726(4) . ? All 09 1.762(4) 7 556 ? All 04 1.777(4) 2 ? All Cal 3.640(2) 8 546 ? Al2 06 1.735(4) . ? Al2 03 1.754(4) . ? Al2 05 1.761(4) . ? Al2 07 1.761(3) . ? Al2 Ca1 3.241(2) 7 ? Cal OllB 2.309(7) . ? Cal 09 2.317(4) . ? Cal OllA 2.37(2) 7 ? Cal 04 2.400(4) 7 ? Cal 05 2.470(4) 8 546 ? Cal 07 2.501(3) 7 ? Cal 03 2.549(3) 7 ? Cal 07 2.902(4) . ? Cal Si2 3.1543(19) 2 554 ? Cal Al2 3.241(2) 7 ? Cal Si2 3.266(2) 8_556 ? Cal All 3.640(2) 8_556 ? Cal H3 2.78(5) . ? O1 All 1.722(4) 2 554 ? O3 Cal 2.548(3) 7 ? O4 Si2 1.628(3) 2 554 ? 04 All 1.777(4) 2_554 ? O4 Cal 2.400(4) 7 ? O5 Si2 1.634(3) 7_556 ? O5 Cal 2.470(4) 8_556 ? O7 Si2 1.627(4) 8_556 ? O7 Cal 2.501(3) 7 ? O8 Sil 1.635(3) 6_556 ? O9 All 1.762(4) 7 556 ? O9 H3 0.95(2) . ? O11A O11B 0.98(7) 7 ? 011A Cal 2.37(2) 7 ? O11B O11A 0.98(7) 7 ? O11B H1 0.94(2) . ? O11B H2 0.94(2) . ? loop _geom_angle_atom_site_label_1 _geom_angle_atom_site_label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 01 Sil 02 lll.6(2) . . ?

```
O1 Si1 O8 109.6(2) . . ?
O2 Sil O8 107.25(15) . . ?
01 Sil 03 109.13(19) . . ?
O2 Si1 O3 110.63(19) . . ?
O8 Sil O3 108.54(19) . . ?
O6 Si2 O7 112.09(18) . 8_546 ?
O6 Si2 O4 110.26(19) . 2 ?
O7 Si2 O4 107.33(19) 8 546 2 ?
O6 Si2 O5 112.19(19) . 7 556 ?
O7 Si2 O5 102.18(18) 8 546 7 556 ?
O4 Si2 O5 112.47(18) 2 7 556 ?
O6 Si2 Cal 132.47(14) . 2 ?
O7 Si2 Cal 51.83(12) 8 546 2 ?
O4 Si2 Cal 117.22(14) 2 2 ?
O5 Si2 Ca1 50.79(12) 7_556 2 ?
O6 Si2 Cal 126.16(14) . 8_546 ?
O7 Si2 Cal 62.61(13) 8_546 8_546 ?
O4 Si2 Cal 44.73(12) 2 8_546 ?
O5 Si2 Cal 121.40(14) 7 556 8 546 ?
Cal Si2 Cal 88.76(5) 2 8 546 ?
O1 All O2 113.94(18) 2 . ?
O1 All O9 105.12(19) 2 7 556 ?
O2 All O9 109.2(2) . 7 556 ?
O1 All O4 108.32(18) 2 2 ?
O2 All O4 108.62(17) . 2 ?
O9 All O4 111.68(18) 7 556 2 ?
O1 All Cal 81.28(13) 2 8 546 ?
O2 All Cal 101.80(13) . 8 546 ?
O9 All Cal 141.75(15) 7 556 8 546 ?
O4 All Cal 34.61(12) 2 8 546 ?
O6 Al2 O3 116.26(18) . . ?
O6 Al2 O5 107.00(17) . . ?
O3 Al2 O5 112.87(18) . . ?
O6 Al2 O7 106.99(17) . . ?
O3 Al2 O7 100.44(16) . . ?
O5 Al2 O7 113.21(17) . . ?
O6 Al2 Cal 117.07(13) . 7 ?
O3 Al2 Ca1 51.45(11) . 7 ?
O5 Al2 Cal 135.63(13) . 7 ?
O7 Al2 Cal 49.90(11) . 7 ?
O11B Cal O9 78.8(2) . . ?
O11B Cal O11A 24.2(16) . 7 ?
O9 Cal OllA 84.4(10) . 7 ?
O11B Cal O4 90.2(4) . 7 ?
O9 Cal O4 95.33(13) . 7 ?
O11A Cal O4 113.3(18) 7 7 ?
O11B Cal O5 132.6(4) . 8_546 ?
O9 Cal O5 90.23(13) . 8 546 ?
O11A Cal O5 109.7(18) 7 8 546 ?
O4 Cal O5 136.97(12) 7 8 546 ?
O11B Cal 07 150.2(2) . 7 ?
O9 Cal O7 130.74(13) . 7 ?
O11A Ca1 O7 140.9(15) 7 7 ?
O4 Cal O7 83.66(12) 7 7 ?
O5 Cal O7 61.39(11) 8 546 7 ?
```

```
O11B Cal O3 85.5(2) . 7 ?
O9 Cal O3 162.86(13) . 7 ?
O11A Cal O3 84.0(7) 7 7 ?
O4 Cal O3 77.77(12) 7 7 ?
O5 Cal O3 105.57(11) 8_546 7 ?
O7 Cal O3 64.69(11) 7 7 ?
O11B Cal 07 131.9(3) . . ?
09 Cal 07 70.14(12) . . ?
O11A Cal 07 151.3(16) 7 . ?
O4 Cal O7 58.36(10) 7 . ?
O5 Cal O7 84.15(11) 8 546 . ?
O7 Cal O7 67.76(12) 7 . ?
O3 Cal O7 117.26(10) 7 . ?
OllB Cal Si2 156.3(4) . 2 554 ?
09 Cal Si2 110.50(11) . 2 554 ?
OllA Cal Si2 133(2) 7 2 554 ?
O4 Cal Si2 109.85(9) 7 2 554 ?
O5 Cal Si2 30.83(8) 8_546 2_554 ?
O7 Cal Si2 30.77(8) 7 2 554 ?
O3 Cal Si2 86.63(8) 7 2 554 ?
07 Cal Si2 71.20(8) . 2 554 ?
O11B Cal Al2 117.8(2) . 7 ?
O9 Cal Al2 160.17(11) . 7 ?
O11A Cal Al2 115.2(9) 7 7 ?
O4 Cal Al2 74.85(9) 7 7 ?
O5 Cal Al2 85.83(8) 8 546 7 ?
O7 Cal Al2 32.60(8) 7 7 ?
O3 Ca1 Al2 32.57(8) 7 7 ?
O7 Cal Al2 90.11(7) . 7 ?
Si2 Cal Al2 59.07(4) 2 554 7 ?
O11B Cal Si2 111.9(4) . 8_556 ?
O9 Cal Si2 81.92(11) . 8_556 ?
O11A Cal Si2 136(2) 7 8_556 ?
O4 Cal Si2 28.50(8) 7 8_556 ?
O5 Cal Si2 111.85(9) 8 546 8 556 ?
O7 Cal Si2 74.21(9) 7 8_556 ?
O3 Cal Si2 97.84(9) 7 8 556 ?
O7 Cal Si2 29.86(7) . 8_556 ?
Si2 Cal Si2 91.24(5) 2 554 8 556 ?
Al2 Cal Si2 81.55(4) 7 8 556 ?
O11B Cal All 67.9(4) . 8 556 ?
O9 Cal All 100.75(11) . 8 556 ?
O11A Ca1 Al1 89.5(17) 7 8_556 ?
O4 Cal All 24.86(8) 7 8 556 ?
O5 Cal All 158.82(9) 8 546 8 556 ?
O7 Cal All 98.15(9) 7 8 556 ?
O3 Cal All 66.56(9) 7 8 556 ?
O7 Cal All 82.68(7) . 8 556 ?
Si2 Cal All 128.23(5) 2 554 8 556 ?
Al2 Ca1 Al1 77.70(4) 7 8 556 ?
Si2 Cal All 52.95(4) 8_556 8_556 ?
O11B Ca1 H3 96.9(9) . . ?
O9 Cal H3 18.7(8) . . ?
O11A Cal H3 99.1(13) 7 . ?
O4 Cal H3 99.9(13) 7 . ?
```

```
O5 Cal H3 74.5(10) 8 546 . ?
O7 Cal H3 112.9(9) 7 . ?
O3 Cal H3 176.7(12) 7 . ?
O7 Cal H3 59.4(12) . . ?
Si2 Cal H3 92.0(9) 2_554 . ?
Al2 Ca1 H3 144.7(9) 7 . ?
Si2 Cal H3 79.2(13) 8_556 . ?
All Cal H3 112.2(12) 8 556 . ?
Si1 O1 Al1 141.1(2) . 2 554 ?
Si1 02 Al1 144.3(2) . . ?
Si1 03 Al2 129.3(2) . . ?
Si1 O3 Ca1 121.79(17) . 7 ?
Al2 O3 Cal 95.99(14) . 7 ?
Si2 O4 All 130.9(2) 2 554 2 554 ?
Si2 O4 Cal 106.77(16) 2 554 7 ?
All 04 Cal 120.53(17) 2_554 7 ?
Si2 O5 Al2 127.3(2) 7 556 . ?
Si2 O5 Cal 98.38(16) 7_556 8_556 ?
Al2 O5 Cal 134.25(18) . 8_556 ?
Si2 O6 Al2 155.5(2) . . ?
Si2 07 Al2 137.1(2) 8 556 . ?
Si2 07 Cal 97.40(15) 8_556 7 ?
Al2 07 Cal 97.50(15) . 7 ?
Si2 07 Cal 87.53(14) 8 556 . ?
Al2 07 Cal 122.75(16) . . ?
Cal 07 Cal 112.24(12) 7 . ?
Si1 08 Si1 128.9(3) . 6_556 ?
All 09 Cal 135.1(2) 7 556 . ?
All O9 H3 110(4) 7 556 . ?
Cal 09 H3 110(4) . . ?
O11B O11A Ca1 74.3(16) 7 7 ?
O11A O11B Cal 82(2) 7 . ?
O11A O11B H1 76(6) 7 . ?
Cal OllB H1 136(5) . . ?
O11A O11B H2 143(6) 7 . ?
Cal OllB H2 124(5) . . ?
H1 O11B H2 96(7) . . ?
loop
 geom hbond atom site label D
 _geom_hbond_atom_site_label_H
 _geom_hbond_atom_site_label A
 _geom_hbond_distance_DH
 _geom_hbond_distance_HA
 _geom_hbond_distance DA
 _geom_hbond_angle_DHA
  geom hbond site symmetry A
O11B H2 O1 0.94(2) 2.09(6) 2.859(12) 138(7) 8_556
O11B H1 O2 0.94(2) 1.95(4) 2.839(8) 156(8) 4_554
O9 H3 O6 0.95(2) 1.88(3) 2.802(5) 163(5) .
_diffrn_measured_fraction_theta_max
                                        0.995
_diffrn_reflns_theta_full
                                        28.45
_diffrn_measured_fraction_theta_full
                                        0.995
refine diff density max
                            0.759
```

_refine_diff_density_min -0.558 _refine_diff_density_rms 0.153

# The following lines are used to test the character set of files sent by # network email or other means. They are not part of the CIF data set # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 # !@#\$%^&*()_+{}:"~<>?|\-=[];'`,./

# END of CIF

```
data publication text
_publ_requested_journal
                             'American Mineralogist'
_publ_contact_author_name
                             'Biljana Lazic'
_publ_contact_author address
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
;
_publ_contact_author_email biljana.lazic@krist.unibe.ch
loop_
_publ_author_name
_publ_author_address
'Lazic, Biljana'
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Armbruster, Thomas'
;Mineralogical Crystallography
Institute of Geological Sciences
University of Bern
Freiestr. 3
CH-3012 Bern
Switzerland
'Liebich, Bernard W.'
;Via Saleggi 9
6612 Ascona
Switzerland
'Perfler, Lukas'
;Institute of Mineralogy and Petrography
University of Innsbruck
Innrain 52
6020 Innsbruck
Austria
data_partheite_rt
chemical formula sum
                                   'H10 Al4 Ca2 O21 Si4'
_chemical_formula_weight
                                   646.52
#------#
                                                                    #
#
                UNIT CELL INFORMATION
#------#
                                  monoclinic
_symmetry_cell_setting
_symmetry_space_group_name_H-M
                                  'C 1 2/c 1'
loop
```

```
symmetry equiv pos as xyz
'x, y, z'
'x, -y, z+1/2'
'x+1/2, y+1/2, z'
'x+1/2, -y+1/2, z+1/2'
'-x, -y, -z'
'-x, y, -z-1/2'
'-x+1/2, -y+1/2, -z'
'-x+1/2, y+1/2, -z-1/2'
_cell_length_a
                                    21.5474(4)
_cell_length_b
                                    8.75638(15)
_cell_length_c
                                    9.30578(16)
_cell_angle_alpha
                                    90
cell angle beta
                                    91.5524(18)
_cell_angle_gamma
                                    90
_cell_volume
                                    1755.15(5)
_cell_formula_units Z
                                    4
cell measurement temperature
                                   293(2)
cell measurement theta min
                                    1.8871
_cell_measurement_theta_max
                                    29.7259
#______
#
                                                                      #
                 CRYSTAL INFORMATION
#______
_exptl_crystal_size_max
                                    0.0762
_exptl_crystal_size_mid
                                    0.0296
_exptl_crystal_size_min
                                   0.0199
exptl crystal density diffrn
                                   2.447
_exptl_crystal_density_method
                                    'not measured'
                                    1304
exptl_crystal_F_000
loop_
   _exptl_crystal_face_index_h
   _exptl_crystal_face index k
   _exptl_crystal_face_index_l
    exptl crystal face perp dist
0 0 1 0.0378
0 0 -1 0.0378
1 0 0 0.01
-1 0 0 0.01
-1 -1 0 0.01
1 1 0 0.01
_exptl_absorpt_coefficient_mu
                                   1.236
exptl absorpt correction type
                                    multi-scan
_exptl_absorpt_process_details
;
       CrysAlisPro, Agilent Technologies,
       Version 1.171.35.10 (release 06-04-2011 CrysAlis171 .NET)
       (compiled Apr 6 2011,09:17:13)
       Empirical absorption correction using spherical harmonics,
 implemented in SCALE3 ABSPACK scaling algorithm.
;
exptl absorpt correction T min
                                    0.99033
```

_exptl_absorpt_correction_T_max

# # DATA COLLECTION #_____ ___# _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 diffrn radiation type MoK\a diffrn radiation monochromator graphite 16.0965 diffrn detector area resol mean _diffrn_orient_matrix_ub_11 0.0057791 _diffrn_orient_matrix_ub_12 0.0105423 _diffrn_orient_matrix_ub 13 -0.0740279 _diffrn_orient_matrix_ub_21 0.0049326 _diffrn_orient_matrix_ub 22 0.0790635 _diffrn_orient_matrix_ub_23 0.0123083 _diffrn_orient_matrix_ub_31 0.0320409 diffrn orient matrix ub 32 -0.014069 diffrn_orient_matrix_ub_33 0.0135584 _diffrn_measurement_device_type 'SuperNova, Single source at offset), Eos' _diffrn_measurement_method 'phi-omega scans' _diffrn_reflns_av_R_equivalents 0.0489 _diffrn_reflns_av_unetI/netI 0.0495 _diffrn_reflns_number 10172 _diffrn_reflns_limit_h_min -29 _diffrn_reflns_limit_h_max 29 diffrn reflns limit k min -12 diffrn reflns limit k max 12 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 1.89 _diffrn_reflns_theta_max 29.79 diffrn reflns theta full 29.79 _diffrn_measured_fraction_theta_full 0.946 _diffrn_measured_fraction_theta_max 0.946 _reflns_number_total 2375 reflns number gt 1897 _reflns_threshold_expression >2sigma(I) #______ # COMPUTER PROGRAMS USED # #_____ _computing_data_collection ; CrysAlisPro, Agilent Technologies, Version 1.171.35.10 (release 06-04-2011 CrysAlis171 .NET) (compiled Apr 6 2011,09:17:13) _computing_cell_refinement

1

```
CrysAlisPro, Agilent Technologies,
       Version 1.171.35.10 (release 06-04-2011 CrysAlis171 .NET)
       (compiled Apr 6 2011,09:17:13)
;
_computing_data_reduction
;
       CrysAlisPro, Agilent Technologies,
       Version 1.171.35.10 (release 06-04-2011 CrysAlis171 .NET)
       (compiled Apr 6 2011,09:17:13)
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
#------#
#
                STRUCTURE SOLUTION
#_____#
_atom_sites_solution_primary
                                   direct
atom sites solution secondary
                                  difmap
atom sites solution hydrogens
                                  qeom
#______
#
                                                                    #
                REFINEMENT INFORMATION
_refine_special_details
Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2. The threshold expression of
F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
 factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef
                                   Fsqd
_refine_ls_matrix type
                                   full
_refine_ls_weighting_scheme
                                   calc
_refine_ls_weighting_details
        'calc w=1/[\s^2(Fo^2)+(0.0250P)^2+3.5267P] where P=(Fo^2+2Fc^2)/3'
_refine_ls_hydrogen treatment
                                  mixed
_refine_ls_extinction_method
                                   none
_refine_ls_number_reflns
                                   2375
_refine_ls_number_parameters
                                  162
refine ls number restraints
                                  5
refine ls R factor all
                                  0.0522
_refine_ls_R_factor_gt
                                   0.0346
_refine_ls_wR_factor_ref
                                   0.0732
refine_ls_wR_factor_gt
                                  0.0683
refine ls goodness of fit ref
                                  1.039
_refine_ls_restrained S all
                                  1.04
_refine_ls_shift/su_max
                                  0
_refine_ls_shift/su_mean
                                   0
_refine_diff_density max
                                  0.51
refine diff density min
                                   -0.397
```

_refine_diff_density_rms

0.107

#					_#
<i>π</i>					- <i>π</i>
# A	ATOMIC TYPES,	COORDINATES AND	D THERMAL	PARAMETERS	#
#					#
π					• 777

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Al Al 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ca Ca 0.2262 0.3064 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O 0 0.0106 0.006 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Si Si 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

```
loop
```

atom site label _atom_site_type_symbol _atom_site_fract x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag atom site refinement flags _atom_site_disorder_assembly atom site disorder group Sil Si 0.06721(3) 0.18348(8) 0.28940(7) 0.00653(15) Uani 1 1 d . . . Si2 Si 0.23984(3) 0.00789(8) 0.46198(7) 0.00596(15) Uani 1 1 d . . . All Al 0.11617(4) 0.08403(9) 0.60078(8) 0.00693(17) Uani 1 1 d . . . Al2 Al 0.19981(4) 0.31654(9) 0.28577(8) 0.00626(16) Uani 1 1 d . . . Cal Ca 0.35596(3) 0.19896(6) 0.04443(6) 0.01130(13) Uani 1 1 d . 01 0 0.06952(8) 0.0168(2) 0.21617(19) 0.0098(4) Uani 1 1 d . . . 02 0 0.07252(8) 0.1721(2) 0.46320(19) 0.0100(4) Uani 1 1 d . . . O3 O 0.12242(8) 0.2886(2) 0.22936(19) 0.0094(4) Uani 1 1 d . . . 04 0 0.17245(8) 0.0354(2) 0.02491(19) 0.0093(4) Uani 1 1 d . . . O5 O 0.20795(8) 0.46651(19) 0.40976(19) 0.0090(4) Uani 1 1 d . . . 06 0 0.23450(9) 0.1559(2) 0.36083(19) 0.0109(4) Uani 1 1 d . . . 07 0 0.23371(8) 0.3601(2) 0.12194(18) 0.0084(4) Uani 1 1 d . . . 08 0 0 0.2627(3) 0.25 0.0082(5) Uani 1 2 d S . . 09 0 0.35277(9) 0.2676(2) 0.2914(2) 0.0125(4) Uani 1 1 d D . . 010 0 0.07184(11) 0.5030(3) 0.0158(3) 0.0342(6) Uani 1 1 d D . . 011 0 0.45417(10) 0.3049(3) 0.0797(2) 0.0212(5) Uani 1 1 d D . . H1 H 0.4552(17) 0.387(3) 0.141(3) 0.038(11) Uiso 1 1 d D . . H2 H 0.4911(12) 0.312(5) 0.033(4) 0.051(13) Uiso 1 1 d D . . H3 H 0.3205(12) 0.216(4) 0.327(4) 0.034(10) Uiso 1 1 d D . . H4 H 0.051(3) 0.466(8) 0.095(5) 0.18(3) Uiso 1 1 d D . . H5 H 0.0772(19) 0.609(2) 0.014(5) 0.060(14) Uiso 1 1 d D . .

loop_

```
_atom_site_aniso_label
   _atom_site_aniso U 11
   _atom_site_aniso U 22
   _atom_site_aniso U 33
   _atom_site_aniso_U_23
   _atom_site_aniso_U_13
    _atom_site_aniso_U_12
Sil 0.0059(3) 0.0079(3) 0.0059(3) 0.0002(3) 0.0005(3) 0.0000(3)
Si2 0.0062(3) 0.0061(3) 0.0057(3) -0.0003(3) 0.0007(3) 0.0009(3)
All 0.0072(4) 0.0079(4) 0.0058(4) 0.0013(3) 0.0010(3) 0.0005(3)
Al2 0.0068(4) 0.0064(4) 0.0055(3) 0.0004(3) 0.0001(3) -0.0009(3)
Cal 0.0126(3) 0.0107(3) 0.0105(3) 0.0002(2) -0.0020(2) -0.0031(2)
01 \ 0.0094(9) \ 0.0107(9) \ 0.0095(9) \ -0.0017(7) \ 0.0044(8) \ -0.0003(7)
02 0.0106(9) 0.0117(9) 0.0076(9) 0.0008(7) 0.0004(8) 0.0026(7)
03 \ 0.0075(9) \ 0.0110(9) \ 0.0096(9) \ 0.0012(7) \ 0.0000(7) \ -0.0020(7)
04 0.0065(9) 0.0097(9) 0.0119(9) -0.0005(7) 0.0037(7) 0.0004(7)
05 0.0101(9) 0.0085(9) 0.0084(9) -0.0011(7) -0.0016(7) 0.0004(7)
06 0.0139(10) 0.0090(9) 0.0099(9) 0.0045(7) -0.0002(8) 0.0012(7)
07 \ 0.0112(9) \ 0.0089(9) \ 0.0053(8) \ 0.0003(7) \ 0.0023(7) \ -0.0031(7)
08 0.0046(12) 0.0088(12) 0.0112(12) 0 -0.0006(10) 0
09 \ 0.0123(10) \ 0.0139(10) \ 0.0114(9) \ -0.0023(8) \ 0.0011(8) \ -0.0051(8)
010 0.0301(14) 0.0124(12) 0.0604(18) 0.0054(12) 0.0062(13) 0.0015(10)
0.011 \ 0.0145(11) \ 0.0265(12) \ 0.0231(12) \ -0.0139(10) \ 0.0081(9) \ -0.0073(9)
#_____
                       #
                                                                           #
                  MOLECULAR GEOMETRY
#_____
                                                                      ____#
_geom_special details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
 are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
loop
   geom bond atom site label 1
   _geom_bond_atom_site label 2
   _geom_bond_distance
   _geom_bond_site_symmetry_2
    geom bond publ flag
Sil 01 1.6122(19) . ?
Si1 03 1.6155(19) . ?
Sil 02 1.6214(18) . ?
Sil 08 1.6384(12) . ?
Si2 O6 1.6040(18) . ?
Si2 07 1.6227(18) 8 546 ?
Si2 04 1.6251(19) 2 ?
Si2 05 1.6333(18) 7 556 ?
Si2 Cal 3.1664(9) 2 ?
```

```
Si2 Cal 3.4024(9) 8_546 ?
All 01 1.7325(19) 2 ?
```

```
All 02 1.7475(18) . ?
All 09 1.762(2) 7_556 ?
All 04 1.7632(19) 2 ?
All Cal 3.6877(9) 8 546 ?
Al2 06 1.7312(19) . ?
Al2 07 1.7503(19) . ?
Al2 03 1.7519(19) . ?
Al2 05 1.7537(19) . ?
Al2 Ca1 3.2718(9) 7 ?
Cal 011 2.326(2) . ?
Cal 09 2.3785(19) . ?
Cal 010 2.431(3) 7 ?
Cal 04 2.4863(18) 7 ?
Cal 07 2.4972(18) 7 ?
Cal 05 2.5005(18) 8 546 ?
Cal O3 2.6048(19) 7 ?
Cal 07 3.0909(19) . ?
Cal Si2 3.1664(9) 2_554 ?
Cal Al2 3.2718(9) 7 ?
Cal Si2 3.4023(9) 8 556 ?
Cal All 3.6878(9) 8_556 ?
Cal H3 2.76(3) . ?
O1 Al1 1.7323(19) 2_554 ?
O3 Cal 2.6048(19) 7 ?
O4 Si2 1.6251(19) 2_554 ?
O4 All 1.7632(19) 2 554 ?
O4 Cal 2.4862(18) 7 ?
O5 Si2 1.6334(18) 7_556 ?
O5 Cal 2.5006(18) 8 556 ?
O7 Si2 1.6228(18) 8 556 ?
O7 Cal 2.4972(18) 7 ?
O8 Si1 1.6384(12) 6 556 ?
O9 All 1.762(2) 7_556 ?
O9 H3 0.899(18) . ?
O10 Cal 2.431(3) 7 ?
O10 H4 0.94(2) . ?
O10 H5 0.936(19) . ?
O11 H1 0.917(18) . ?
O11 H2 0.919(19) . ?
loop_
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry 1
    _geom_angle_site_symmetry 3
    _geom_angle_publ_flag
O1 Si1 O3 109.75(10) . . ?
01 Sil 02 111.35(10) . . ?
O3 Si1 O2 110.31(10) . . ?
O1 Si1 O8 109.03(10) . . ?
O3 Si1 O8 109.64(10) . . ?
O2 Si1 O8 106.69(7) . . ?
O6 Si2 O7 112.49(10) . 8_546 ?
```

```
O6 Si2 O4 110.44(10) . 2 ?
O7 Si2 O4 108.44(10) 8_546 2 ?
O6 Si2 O5 110.79(10) . 7_556 ?
O7 Si2 O5 102.54(9) 8 546 7 556 ?
O4 Si2 O5 111.91(10) 2 7_556 ?
O6 Si2 Cal 130.40(8) . 2 ?
O7 Si2 Cal 51.31(6) 8_546 2 ?
O4 Si2 Cal 119.16(7) 2 2 ?
O5 Si2 Cal 51.49(6) 7 556 2 ?
O6 Si2 Cal 126.74(7) . 8 546 ?
07 Si2 Cal 65.06(7) 8 546 8 546 ?
O4 Si2 Cal 43.39(7) 2 8_546 ?
O5 Si2 Cal 121.84(7) 7 556 8 546 ?
Cal Si2 Cal 91.41(2) 2 8 546 ?
O1 All O2 111.67(9) 2 . ?
O1 All O9 103.92(9) 2 7_556 ?
O2 All O9 106.27(9) . 7 556 ?
O1 Al1 O4 111.28(9) 2 2 ?
O2 All O4 109.32(9) . 2 ?
O9 All O4 114.22(9) 7_556 2 ?
O1 All Cal 82.19(7) 2 8 546 ?
O2 All Cal 103.00(6) . 8 546 ?
O9 All Cal 145.03(7) 7 556 8 546 ?
O4 All Cal 35.96(6) 2 8_546 ?
O6 Al2 O7 110.04(10) . . ?
O6 Al2 O3 113.85(9) . . ?
O7 Al2 O3 100.71(9) . . ?
O6 Al2 O5 107.97(9) . . ?
O7 Al2 O5 111.91(9) . . ?
O3 Al2 O5 112.29(9) . . ?
O6 Al2 Cal 119.26(7) . 7 ?
O7 Al2 Cal 48.88(6) . 7 ?
O3 Al2 Ca1 52.44(6) . 7 ?
O5 Al2 Cal 132.58(7) . 7 ?
011 Cal 09 79.22(7) . . ?
O11 Cal O10 74.75(8) . 7 ?
09 Cal 010 116.23(9) . 7 ?
O11 Cal O4 83.12(7) . 7 ?
O9 Cal O4 90.05(6) . 7 ?
O10 Cal O4 140.86(8) 7 7 ?
O11 Cal O7 148.86(7) . 7 ?
09 Cal 07 127.54(7) . 7 ?
O10 Cal 07 101.29(8) 7 7 ?
O4 Cal O7 81.48(6) 7 7 ?
O11 Cal O5 143.49(7) . 8 546 ?
O9 Cal O5 90.60(6) . 8 546 ?
010 Cal 05 78.81(7) 7 8 546 ?
O4 Cal O5 132.30(6) 7 8_546 ?
O7 Cal O5 61.10(6) 7 8 546 ?
O11 Cal O3 86.27(7) . 7 ?
O9 Cal O3 160.94(6) . 7 ?
O10 Cal O3 70.89(8) 7 7 ?
O4 Cal O3 75.89(6) 7 7 ?
O7 Cal O3 63.78(6) 7 7 ?
O5 Cal O3 108.35(6) 8 546 7 ?
```

```
O11 Cal 07 124.27(7) . . ?
09 Cal 07 67.17(6) . . ?
O10 Cal 07 160.18(7) 7 . ?
O4 Cal O7 55.11(5) 7 . ?
O7 Cal O7 65.74(6) 7 . ?
O5 Cal O7 81.67(5) 8 546 . ?
O3 Cal O7 112.66(5) 7 . ?
O11 Cal Si2 166.50(6) . 2_554 ?
O9 Cal Si2 109.60(5) . 2 554 ?
O10 Cal Si2 91.98(6) 7 2 554 ?
04 Cal Si2 106.55(4) 7 2 554 ?
O7 Cal Si2 30.48(4) 7 2_554 ?
O5 Cal Si2 30.74(4) 8 546 2 554 ?
O3 Cal Si2 87.03(4) 7 2 554 ?
O7 Cal Si2 69.20(4) . 2 554 ?
O11 Cal Al2 117.30(6) . 7 ?
O9 Cal Al2 153.96(5) . 7 ?
O10 Cal Al2 88.54(7) 7 7 ?
O4 Cal Al2 73.35(4) 7 7 ?
O7 Cal Al2 31.87(4) 7 7 ?
O5 Cal Al2 86.35(4) 8 546 7 ?
O3 Cal Al2 32.22(4) 7 7 ?
O7 Cal Al2 86.82(4) . 7 ?
Si2 Cal Al2 58.73(2) 2 554 7 ?
O11 Cal Si2 103.58(6) . 8_556 ?
O9 Cal Si2 77.44(5) . 8 556 ?
010 Cal Si2 165.06(7) 7 8 556 ?
O4 Cal Si2 26.68(4) 7 8 556 ?
O7 Cal Si2 72.24(4) 7 8_556 ?
O5 Cal Si2 108.27(5) 8 546 8 556 ?
O3 Cal Si2 94.25(4) 7 8 556 ?
O7 Cal Si2 28.43(3) . 8_556 ?
Si2 Cal Si2 88.59(2) 2_554 8_556 ?
Al2 Cal Si2 79.01(2) 7 8_556 ?
Oll Cal All 62.00(6) . 8 556 ?
O9 Cal All 97.60(5) . 8 556 ?
O10 Cal All 117.98(7) 7 8 556 ?
O4 Cal All 24.61(4) 7 8_556 ?
O7 Cal All 95.34(4) 7 8_556 ?
O5 Cal All 154.50(5) 8 546 8 556 ?
O3 Cal All 64.41(4) 7 8 556 ?
O7 Cal All 79.42(4) . 8 556 ?
Si2 Cal All 124.73(2) 2_554 8_556 ?
Al2 Cal Al1 75.71(2) 7 8 556 ?
Si2 Cal All 51.051(19) 8_556 8_556 ?
O11 Ca1 H3 96.8(5) . . ?
O9 Cal H3 18.3(5) . . ?
O10 Cal H3 117.0(7) 7 . ?
O4 Ca1 H3 97.1(7) 7 . ?
O7 Cal H3 111.8(6) 7 . ?
O5 Cal H3 73.4(6) 8_546 . ?
O3 Cal H3 172.0(7) 7 . ?
O7 Cal H3 59.5(7) . . ?
Si2 Cal H3 91.4(5) 2 554 . ?
Al2 Ca1 H3 142.4(6) 7 . ?
```

```
Si2 Cal H3 77.9(7) 8 556 . ?
All Cal H3 110.5(7) 8 556 . ?
Sil Ol All 138.46(12) . 2_554 ?
Sil 02 All 141.25(12) . . ?
Si1 03 Al2 132.84(11) . . ?
Si1 03 Ca1 121.00(9) . 7 ?
Al2 O3 Cal 95.35(8) . 7 ?
Si2 04 Al1 129.57(11) 2 554 2 554 ?
Si2 O4 Cal 109.92(9) 2 554 7 ?
All 04 Cal 119.44(9) 2 554 7 ?
Si2 O5 Al2 129.66(11) 7 556 . ?
Si2 O5 Cal 97.78(8) 7_556 8_556 ?
Al2 O5 Cal 132.53(9) . 8_556 ?
Si2 O6 Al2 156.44(13) . . ?
Si2 07 Al2 138.87(12) 8_556 . ?
Si2 07 Cal 98.21(8) 8_556 7 ?
Al2 07 Cal 99.25(8) . 7 ?
Si2 07 Cal 86.51(8) 8_556 . ?
Al2 07 Cal 118.83(8) . . ?
Cal 07 Cal 114.25(6) 7 . ?
Si1 08 Si1 129.88(16) 6_556 . ?
All 09 Cal 135.72(11) 7 556 . ?
All 09 H3 117(2) 7 556 . ?
Cal 09 H3 106(2) . . ?
Cal Ol0 H4 105(5) 7 . ?
Cal Ol0 H5 130(3) 7 . ?
H4 O10 H5 115(5) . . ?
Cal Oll H1 114(2) . . ?
Cal Oll H2 139(3) . . ?
H1 O11 H2 104(3) . . ?
loop
    _geom_hbond_atom_site_label_D
    _geom_hbond_atom_site_label_H
    _geom_hbond_atom_site_label_A
    _geom_hbond_distance_DH
    _geom_hbond_distance_HA
    _geom_hbond_distance_DA
    _geom_hbond_angle_DHA
    geom hbond site symmetry A
O10 H4 O8 0.94(2) 2.55(4) 3.429(3) 156(6) .
O11 H1 O1 0.917(18) 1.84(2) 2.714(3) 159(3) 8 556
O11 H2 O2 0.919(19) 1.89(2) 2.805(3) 172(4) 4_554
O10 H5 O2 0.936(19) 1.98(2) 2.887(3) 164(4) 2_564
O9 H3 O6 0.899(18) 1.96(2) 2.821(3) 160(3) .
# The following lines are used to test the character set of files sent by
# network email or other means. They are not part of the CIF data set
# abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
# !@#$%^&*()_+{}:"~<>?|\-=[];'`,./
```

# END of CIF