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Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment
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AbStrAct

Diamonds from Juina province, Brazil, and some others localities reveal the existence of a deep, 
Ca-rich carbonate-silicate source different from ultramafic and eclogite compositions. In this study, 
we describe the first observation of merwinite (Ca2.85Mg0.96Fe0.11Si2.04O8) in a diamond; it occurs as an 
inclusion in the central growth domain of a diamond from the São Luiz river alluvial deposits (Juina, 
Brazil). In addition, the diamond contains inclusions of walstromite-structured CaSiO3 in the core 
and (Mg0.86Fe0.14)2SiO4 olivine in the rim. According to available experimental data, under mantle 
conditions, merwinite can only be formed in a specific Ca-rich and Mg- and Si-depleted enviroment 
that differs from any known mantle lithology (peridotitic or eclogitic). We suggest that such chemi-
cal conditions can occur during the interaction of subduction-derived calcium carbonatite melt with 
peridotitic mantle. The partial reduction of the melt could cause the simultaneous crystallization of 
Ca-rich silicates (CaSiO3 and merwinite) and diamond at an early stage, and (Mg0.86Fe0.14)2SiO4 oliv-
ine and diamond at a later stage, after the Ca-Mg exchange between carbonatite melt and peridotite 
has ceased. This scenario is supported by the presence of calcite microinclusions within merwinite.
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introDuction

The São Luiz river alluvial deposits (Juina, Brazil) are a 
well-known source of sublithospheric diamonds as identified by 
their mineral inclusions (Harte et al. 1999; Hutchison et al. 2001; 
Kaminsky et al. 2001; Araujo et al. 2003; Hayman et al. 2005). 
The studies of mineral inclusions within diamonds from São Luiz 
and some others localities have revealed the existence of a deep, 
Ca-rich carbonate-silicate reservoir different from ultramafic and 
eclogite compositions, and the absence of several common mantle 
minerals, such as olivine, garnet, and low-Ca pyroxene (Brenker 
et al. 2005). The following polyphase inclusions have been re-
ported: CaSiO3 + CaSi2O5 ± Ca2SiO4, CaSiO3 + CaTiO3, CaSiO3 
+ CaCO3, CaMgSi2O6 + CaCO3 (Joswig et al. 1999; Stachel et al. 
2000; Kaminsky et al. 2001; Brenker et al. 2005, 2007; Hayman 
et al. 2005; Walter et al. 2008; Bulanova et al. 2010; Harte 2010; 
Zedgenizov et al. 2014). These inclusions suggest the presence of 
a chemically distinct reservoir in the sublithospheric, convecting 
mantle. Several aspects, e.g., the C-isotopic composition of the host 
diamonds (Bulanova et al. 2010; Walter et al. 2011; Zedgenizov et 
al. 2014) or Eu-anomalies of CaSiO3 (Harte et al. 1999; Stachel et 
al. 2000, 2005), link the Ca-rich lithology to subduction processes. 
Additionally, some of the Ca-rich inclusions originate from the 
transition zone and even the lower mantle (Joswig et al. 1999; 
Kaminsky et al. 2001; Walter et al. 2008). In this study, we provide 
the first report of a new Ca-rich inclusion in diamond, merwinite, 
from a diamond discovered in the São Luiz river alluvial deposits.

methoD
The morphology of the diamond crystal was studied using a LEO 1430 VPSEM 

scanning electron microscope (SEM). The diamond was subsequently polished to 
expose its mineral inclusions. The polished plate was carbon-coated and put into a 
JEOL JXA-8100 electron microprobe (EMP) at IGM SB RAS (Novosibirsk, Rus-
sia). The samples were imaged in the electron backscattered (EBS) mode, and the 
inclusions were analyzed using a quantitative EMP analyzer at 15 kV accelerating 
voltage, 20 nA sample current, and 2 mm beam diameter. The internal uncertainty 
of each EMP analysis did not exceed 5%.

The internal structure of diamond was imaged using cathodoluminescence 
(CL) coupled with SEM. The carbon isotope composition of the different dia-
mond zones was determined using a CAMECA IMS 1270 secondary ion mass 
spectrometer (SIMS) at the University of Edinburgh (U.K.). The uncertainty of 
each internal carbon isotopic analysis did not exceed 0.2‰. Infrared absorption 
spectra of the studied diamonds were recorded on an FTIR Bruker VERTEX 70 
equipped with a HYPERION 2000 microscope. Local spectra with resolution 
of 4 cm–1 over the range the range 600–4500 cm–1, were recorded by averaging 
50 scans from an area of 50 × 50 mm. The contents of N-centers were calculated 
following a standard procedure (Mendelssohn and Milledge 1995). The intrinsic 
absorption of diamonds (12.3 at 2030 cm–1) was taken to be the internal standard 
(Zaitsev 2001). The decomposition of the spectrum from 1100 to 1350 cm–1 made 
it possible to determine the contribution of different N-defects with characteristic 
absorptions of specified shapes.

reSuLtS

The diamond (~1.7 mm in size) is a colorless, with rounded 
tetrahexahedroid morphology (Figs. 1a and 1b), whereas its internal 
structure, as visualized by the CL images, reveals octahedral growth 
zones (Fig. 1c). The CL images reveal a dark core and a brighter rim 
(Figs. 1c and 1d). The brighter rim shows parallel lines intersecting 
the octahedral growth zones (Figs. 1c and 1d). Generally this feature 
is considered as a sign of plastic deformation (Lang 1977), which is 
very common in Juina diamonds (Hutchison et al. 1999).
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The two growth domains differ in N content: the core is N-
free (type IIa) while the rim contains 20–25 ppm of N with a low 
aggregation state (21–30% IaB). In addition, an absorption band 
at 3107 cm–1 is evident in the infrared absorption spectrum of 
the N-bearing rim. This band is related to a C-H bond stretching 
mode (Woods and Collins 1983).

Four individual inclusions were exposed in different growth 
zones. Two inclusions of CaSiO3 and a single inclusion of 
Ca2.85Mg0.96Fe0.11Si2.04O8 are located in the central growth domain 
(Figs. 1c and 1d). A single inclusion of (Mg0.86Fe0.14)2SiO4 was 
observed in the outer growth domain (Fig. 1c). The size of the inclu-
sions ranges from 5 to 12 mm. The inclusions compositions are given 
in Table 1. The Raman spectra of the inclusions were consistent with 
those of walstromite (Brenker et al. 2007), merwinite (Piriou and 
McMillan 1983), and olivine (Chopelas 1991) (Fig. 2). The Raman 
spectrum of the merwinite-containing inclusion has additional peaks 
assignable to calcite (Fig. 2b). Although the specimen was heated 
to 300–400 °C during polishing, the Raman spectra of the mineral 
inclusions show no evidence of amorphization, as expected for 
high-pressure phases such as Mg-Si-perovskite.

The studied diamond has a relatively heavy carbon isotope 
composition d13C = –1.8 to –3.4 ‰, in comparison with the aver-
age mantle d13C ~ –5 ‰ (Harte 2010); the d13C values show no 
correlation to the growth zones.

DiScuSSion

It was pointed out that the heavier d13C values correspond 
well to those of marine carbonate sediments (Stachel et al. 2005; 
Tappert et al. 2005). Harte (2010) also argued that the formation 
of many superdeep diamonds was probably triggered by the 
dehydration of deeply subducted material. Walter et al. (2008) 
have provided experimental and geochemical evidence that Ca-
silicate mineral inclusions in some diamonds from Juina, Brazil, 
crystallized from primary and evolved carbonate melts in the mantle 

 

 

 

 

Figure 1. The external and internal morphology of diamond no. 88 
from São Luiz river alluvial deposits. (a) Optical photomicrograph and (b) 
BSE image of the diamond before polishing. (c, d) Cathodoluminescence 
images of both sides of a (110) diamond plate (~300 mm in thickness) 
mounted into epoxy (black). Wal = CaSiO3 walstromite, Mw+Cal = 
Ca2.85Mg0.96Fe0.11Si2.04O8 merwinite inclusion containing calcite, Ol = 
(Mg0.86Fe0.14)2SiO4 olivine.

transition zone. They suggest a process whereby subducted carbon-
ated oceanic crust undergoes low-degree partial melting to produce 
carbonate melts. Metasedimentary carbon in altered oceanic crust 
consists of a mixture of organic components (d13C ≈ –27‰) and 
marine carbonates (d13C ≈ 0‰) (Shilobreeva et al. 2011).

The internal texture of the studied diamond exhibits a primary 
octahedral growth morphology (Fig. 1c); this is reminiscent 
of experiments performed at 6 GPa in which diamonds were 
grown from hydrous carbonatite melts upon gradual reduction 
by hydrogen-containing fluids (Pal’yanov et al. 2002). The 
external shape of the studied crystal exhibits a rounded dissolu-
tion morphology, similar to the rounded tetrahexahedroid. This 
habit suggests that the original octahedron lost about 50% of 
its initial weight as a result of dissolution in the water-bearing 
CaCO3 or kimberlite melt (Khokhryakov and Pal’yanov 2007, 
2010). The CaSiO3 inclusions found in the same growth zone 
as the merwinite inclusion can be interpreted as former Ca-Si 
perovskite, i.e., a mineral of the transition zone or the lower 

Table 1.  Composition (EMP-analysis) of inclusions in diamond 88 
from São Luiz river alluvial deposits

 Walstromite Merwinite Olivine
 wt% mol% wt% mol% wt% mol%
SiO2 51.6 50.3 36.8 34.2 39.8 33.4
TiO2  0.04 0.03 0.02 0.01 0.0 0.0
Al2O3 0.01 0.01 0.10 0.05 0.0 0.0
Cr2O3 0.0 0.0 0.02 0.01 0.09 0.03
FeO 0.31 0.26 2.32 1.80 13.6 9.62
MnO 0.00 0.00 0.04 0.03 0.04 0.03
MgO 0.00 0.00 11.7 16.1 45.4 56.8
CaO 47.3 49.4 47.9 47.6 0.12 0.10
Na2O 0.03 0.03 0.24 0.22 0.0 0.0
K2O 0.00 0.00 0.01 0.00 0.0 0.0
NiO n.d. n.d. n.d. n.d. 0.25 0.17
 Total 99.3 100.0 99.1 100.0 99.3 100.0

  

 

 

Figure 2. Raman spectra of mineral inclusions in diamond no. 88 
from São Luiz river alluvial deposits: (Mg0.86Fe0.14)2SiO4 olivine (a), 
Ca2.85Mg0.96Fe0.11Si2.04O8 merwinite and calcite (b), and CaSiO3 walstromite (c).



ZEDGENIZOV ET AL.: MERWINITE IN DIAMOND FROM SAO LUIS, BRAZIL 549

mantle (Harte 2010). Yet, under mantle conditions, merwinite 
is unusual and can be only formed in specific Ca-rich and Mg- 
and Si-depleted environments (Yoder 1968; Sharp et al. 1986; 
Moriyama et al. 1992; Safonov et al. 2007; Luth 2009), which 
differs from any known mantle lithology (peridotitic, eclogitic, 
or pelitic). Such chemical conditions can occur during interaction 
of subduction-derived, calcio-carbonatite melt with peridotitic 
mantle. Carbonatite melts are very mobile and rapidly infiltrate 
peridotite wall-rock by a dissolution-precipitation mechanism 
(Hammouda and Laporte 2000), because the dihedral angle at 
the contacts between silicate minerals and melt is lower than 
60° (Hunter and McKenzie 1989; Minarik and Watson 1995), and 
because the diffusivity of silicate solute in the carbonatite melt is 
high (Shatskiy et al. 2013b). According to the experimental studies 
of Hammouda (2003) and Grassi and Schmidt (2011), partial melting 
of the uppermost part of the subducted slab (i.e., carbonated eclogite 
and pelite) yields a CaCO3-rich carbonatite melt. This melt differs 
from the magnesio-dolomitic carbonatite melt that can coexist with 
the peridotitic mantle (Dasgupta and Hirschmann 2007; Brey et al. 
2008). Therefore, subduction-derived calcio-carbonatite melt must 
react with overlying host mantle to form Ca-bearing silicates and 
a Ca-dolomite carbonatite melt. The following reactions between 
alkali-bearing CaCO3 melt and peridotite were experimentally 
established at 6.5 GPa (Sharygin et al. 2012):

4Mg2Si2O6(OPx) + 8CaCO3(Liq) = 
Mg2SiO4(Ol) + CaMgSi2O6(CPx) + Ca3MgSi2O8(Mw) 
+ 3SiO2(Liq) + 4CaMg(CO3)2(Liq) (1)

2Mg2SiO4(Ol) + 6CaCO3(Liq) = Ca3MgSi2O8(Mw)
+ 3CaMg(CO3)2(Liq) (2)

In short (<6 h) experiments, merwinite was found at the melt-
olivine interface at 1400 °C, and at the melt-orthopyroxene inter-
face at 1300 °C. However, once the infiltrated melt approaches an 
equilibrium (Ca-dolomitic) composition during re-equilibration 
with peridotite mantle, merwinite crystallization terminates and 
CPx replaces merwinite. At higher temperatures, the merwinite-
forming reactions do not occur, and the interaction of CaCO3 melt 
with the OPx + Ol assemblage yields direct formation of the CPx 
+ Ol assemblage (Sharygin et al. 2012). That is, the finding of 
a merwinite inclusion in diamond is consistent with the above 
experimental evidence, and indicates its crystallization from a 
CaCO3-rich carbonatite melt infiltrated into peridotite mantle.

Diamond formation requires a continuous carbon supply to 
the growing crystals, i.e., supersaturation of the solution with 
carbon (e.g., as with a carbonatite melt; Pal’yanov et al. 1999a). 
It requires continuous reduction of carbonatite melt (Pal’yanov 
et al. 2002), which should inevitably occur during its interac-
tion with reduced surrounding mantle (Frost and McCammon 
2008). The partial reduction of CaCO3-rich, SiO2-bearing melt 
should cause precipitation of silicate solutes simultaneously with 
diamond crystallization. Therefore, at the early stage, the diamond 
entraps the Ca-rich silicates: CaSiO3 (walstromite or perovskite) 
and Ca3MgSi2O8 (merwinite), as we found in the central growth 
domain of this specimen. This scenario is supported by the pres-
ence of calcite as microinclusions within the merwinite inclusion, 
as is evident from the Raman spectra (Fig. 2b). At a later stage, the 
carbonatite melt becomes a Ca-dolomitic in composition due to 

Ca-Mg exchange with peridotitic mantle. The reduction of this melt 
could also cause precipitation of (Mg0.86Fe0.14)2SiO4, which has been 
found as an inclusion in the outer growth domain. The relatively 
high Fe-content in this inclusion may suggest an Fe enrichment of 
the parental carbonatite melt. Indeed, subduction-derived carbonatite 
melts formed as a result of partial melting of carbonated eclogite 
or pelite are Fe-rich (Hammouda 2003; Grassi and Schmidt 2011).

Alternatively, the carbonatite melt can be partially reduced, 
and continuous carbon supply could occur via carbonate-silicate 
reactions, which proceed slightly below the CCO (C + O2 = CO2) 
oxygen buffer (Ogasawara et al. 1997; Palyanov et al. 2005). 
One of these reactions, previously suggested by Luth (1993), 
has been experimentally established at 6.5 GPa and 1400 °C in 
a long-duration experiment (16 h) (Sharygin et al. 2012):

3Mg2Si2O6(OPx) + 2CaCO3(Liq) = 2Mg2SiO4(Ol)
+ 2CaMgSi2O6(CPx) + 2C + 2O2 (3)

Based on the available experimental data on the merwinite-
forming carbonate-silicate reactions (Sharygin et al. 2012), 
kinetics of diamond crystallization in the carbonatite melt 
(Pal’yanov et al. 1999b, 2002), and melting phase relations in 
the carbonate and carbonate-silicate systems (Hammouda 2003; 
Grassi and Schmidt 2011; Litasov et al. 2013; Shatskiy et al. 
2013a, 2013c, 2013d), the most probable growth conditions of 
the studied diamond are 1150–1400 °C and pressures exceed-
ing 6 GPa. According to the phase relations in the CaO-SiO2 
system, the CaSiO3 compounds can stabilize as walstromite in 
the pressure range of 4–10 GPa, and as perovskite above 12–14 
GPa (Huang and Wyllie 1975; Gasparik et al. 1994; Akaogi et 
al. 2004). Merwinite has been found to be a stable phase at least 
up to 16 GPa and 2000 °C (Moriyama et al. 1992). Thus, we 
can conclude that the inner growth zone of the studied diamond 
could form either under the upper mantle conditions (6 < P < 10 
GPa) or in the transition zone (14 < P ≤ 16 GPa). Depending on 
the upper-pressure limit of the merwinite stability field (which 
is unknown), this pressure range may extend to that of the lower 
mantle. The outer, olivine-hosting zone could crystallize at a 
later time at the same or shallower depth in the upper mantle.

The presence of merwinite in the studied diamond from the 
São Luiz river alluvial deposits suggests a process whereby sub-
duction-derived Ca-carbonatite melt reacts with host peridotitic 
mantle to form Ca-rich silicates (CaSiO3 and merwinite) to cause 
diamond formation. Under mantle conditions, merwinite can only 
be formed in a specific Ca-rich and Mg- and Si-depleted enviro-
ment that differs from any known mantle lithology (peridotitic 
or eclogitic). Thus, merwinite could be an apparent evidence of 
Ca-carbonatite metasomatism in the deep mantle.
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