文章编号:1000-4734(2005)04-0313-08

新矿物丁道衡矿的晶体结构

李国武1,杨光明2,马詰生1,施倪承1,熊明1,沈敢富3,范海福4

(1. 中国地质大学(北京)晶体结构实验室, 北京 100083; 2. 中国地质大学(武汉); 3. 成都地矿所; 4. 中国科学院物理研究所)

摘要:对产于内蒙白云鄂博品态富 Ti和 Fel+的硅钛铈矿族新矿物丁道领矿 Cc4Fel+(Ti, Fel+)2Ti,SiaO22进行了 晶体结构的精测,求得晶胞参数; a = 1.34656(15)nm, b = 0.57356(€)nm, c = 1.10977(12) nm, β = 100.636(2)°, 晶胞体积 V=0,84239 (16)nm³。单位晶胞中的分子量 2=2。晶体结构测定中分别用 P2/a 和 C2/m 空间群来 进行晶体结构解析,解析表明,两种结构模型最终得到的 R 因子分别为 0.026 和 0.021。两种结构精修后的原 子坐标、键长键角部完全合理。根据结构分析及衍射数据消光规律统计认为,丁道衡矿的空间群应该为 P2,1 a,而 C2/m 为顾对称空间群,结构属于具有 C2/m 圆对称的 P2₁/a 超结构,是一种超结构的新类型。

关键词:新矿物;丁道衡矿;空间群;晶体结构;超结构

中图分类号:P575;P579.951 文献标识码: Λ

作者简介:李国武,男,1964 年生,副数授,博士,研究方向:X 射线晶体学, Enzil; lignown@ 126.com, http://www. crystalstar. org.

丁道衡矿(Dingdaohengite-(Ce), 2005-014)是 国际新矿物命名委员会于2005年6月8日批准 的一种具有 C2/m 质对称的 P2,/a 超结构晶态 富 Ti 和 Fe2+的硅钛铈矿族新矿物。通常,一般称 谓的硅钛铈矿族矿物根据β为100°左右还是114° 左右可以细分成硅钛铈矿(chevkinite)亚族(β≈ 100°)和珀硅钛铈矿(perrierite)亚族(β≈114°)^[1]。 就目前所知,除传统的硅钛铈矿外,属于硅钛铈矿 亚族的成员只有 polykovite-(Ce)[2] 和牦牛坪矿-(Ce)(IMA CNMMN 2003-017 新矿物);属于珀硅钛 铈矿亚族的成员除珀硅钛铈矿外,还有 renjeite 和 matsubaraite。 至 于 锶 硅 钛 铈 矿 (strontiochevkinite),通常将其归于硅钛铈矿亚族,但后来 的研究表明,它的 B=114.3°,应属珀酰钛铈矿亚 族^[3]。

自然界产出的硅钛铈矿亚族矿物,常呈非晶 态(可能由于含有一定量的放射性元素 Th),以

攻琉日期:2005-10.08

基金项目:国家自然基金项目(批准号:40472030)

至于过去人们对该亚族矿物晶体结构的认识, 主要用合成产物——Mg-硅钛铈矿-(Nd)、Co-硅 钛铈矿-(Nd)---的结构精测结果来代表,或用 灼烧天然产物退火后的结构分析成果来表征。 从而造成对硅钛铈矿亚族乃至整个硅钛铈矿族 矿物的真空间群究竟是 C2/m,或是 P2,/α 有 不同的认识。

Cottardi(1960)[4]首次测定了珀硅钛铈矿的 晶体结构。1964年,彭志忠和潘兆格[5]借鉴珀 酷钛铈矿的晶体结构,以白云鄂博产天然晶质 "硅钛铈矿"构建了传统硅钛铈矿的结构模型。 鉴于当时的实验条件, 所解结构为二维结构模 型,未能计算出三维结构坐标,结构精修尚存在 疑问。

新近,我们对产于白云鄂博原定名为"硅钛 铈矿"的天然晶质矿物重新做了较全面而系统 的矿物学研究。结果表明,在成分上,白云鄂博 "硅钛铈矿"实属传统硅钛铈矿的富 Ti 和 Fe2+ (或贫 Fe^{3+})的类似物;在结构上它具有 P21/a空间群。必须指出,这是迄今发现的首例具有 P2₁/a 空间群的天然晶质硅钛铈矿亚族成员。 因此,作为新的硅钛铈矿亚族新矿物向国际新

矿物命名委员会申报,并得到了确认。为了纪念我国已放的地质学家了道衡先生故定名为丁道衡矿。

1 实验

1.1 化学成分

本次有幸得到产于内蒙白云鄂博了区的完好单晶样品。5个测点的成分是在做过晶体结构精测的单晶上测获的。此次电子深针的测值与前人在上世纪60年代的湿法分析值之间基本相近,但Ti 含量较高, TiO_2 17.80%~18.64%,一般的硅钛铈矿在14%~16%之间。对 Fe 进行了穆斯堡尔谱 Fe³+和 Fe²+的含量比值分析,Fe²+大于 Fe³+,据此计算的矿物化学式为: $(Co_{2.13}$ La_{1.49} Ca_{4.48} Th_{0.01})_{4.11} Fe²+ $(Ti_{0.88}$ Fe³-ta Mg_{0.41} Fe³-ta Al_{0.01})_{2.03} $(Ti_{1.96}$ Nh_{0.04})_{2.00} Si₄ O₂₂。简化分子式为: Ce_4 Fe²+ $(Ti_1.96$ Nh_{0.04})_{2.00} Si₄ O₂₂。 简化分子式为: Ce_4 Fe²+ $(Ti_1.96$ Nh_{0.04})_{2.05} Fe³+)₂ Ti₂Si₄O₂₂或 Ce_4 Fe²-ta Ti₃Si₄O₂₂。

1.2 晶体结构测定

选取尺寸为0.2 mm×0.1 mm×0.1 mm 的晶 体,在BRUKER SMART CCD 单晶衍射仪上收集衍 射强度数据。实验条件为 Mo K。射线, 石墨单色 器,晶体与 CCD 的距离 50.17 mm,管压 50 kV,管 流 30 mA。 首先采用 Matrix 在 $20 = -25^\circ$, $\Phi = 0^\circ$, $\omega = -25^{\circ}; 2\theta = -25^{\circ}, \Phi = 90^{\circ}, \omega = -25^{\circ}; 2\theta =$ 25°, φ = 0°, ω = 25°三个方向作 ω 扫描(Δω = 0.3°)各 20 幅图,获得初始晶胞参数和定向矩阵, 最后用数据收集的2372个衍射点,通过最小二乘 修正最终得到的品胞参数: a=1.34656(15) nm, b= 0.57356(6) nm, c = 1.10977 (12) nm, $\beta =$ 100.636°(2)晶胞体积 V = 0.84239(16)nm³。 衍 射强度的收集采用 ω 扫描方式, 每帧爆光 10 s, 扫描步宽 $\Delta \omega = 0.3^{\circ}$, 扫描范围 $0^{\circ} \sim 180^{\circ}$, 总计摄 取图像 1265 帧,对倒易空间 h 为 = 14 14, k 为 -6 6, l 为 - 12 9 范围共收集到衍射数据 3784 个,对衍射强度数据进行了 PL 校正和经验吸收校 正(SADABS 程序)。将 $F_0 > 3\sigma F_0$ 的衍射视为可观 测点和数据合并以后, 共 1217[R(int) = 0.0229]个独立衍射用于晶体测定和修正,晶体学数据见 表1。

表 1 丁道衡矿的晶体学参数

Table 1. Structure refinement information on Dingdaohengite (Ce)

实验温度	296(2) K
液长	●.U71073 nm
品系	单斜晶系
空间群	P2!/a (pseudo-C2/m)
品胞参数	u = 1.34656(15) nm
	b = 0.57356(6) nm
	c = 1.10977(12) nm
	$\beta = 100.636(2)^{\circ}$
晶胞体积	0.84239(16) wu ³
Z	2
计算密度	4.858 g/cm ³
吸收系数	13.546 mm ⁻¹
晶体大小	●.1 mm × 0.1 mm × 0.2 mm
數据收集范围(20)	3.08° - 23.27°
指标范围	$-14 \le h \le 14$, $-6 \le k \le 6$, $-12 \le l \le 9$

测定样品的空间群利用 SHELXTL 5.1FOR NT 晶体结构解析软件包中的 XPREP 统计得出,经过程序对消光规律的统计,程序建议的最佳空间群为 P2,Ia,我们将其空间群用于结构分析,结构用 SHELXLS 的直接法求得 Ce,Ti Si 及部分 0 的三维坐标,依据傅立叶合成和原子间的成键距离,得到了全部氧原子的坐标。利用 SHELXL 93 程序进行了原子坐标、占位度、各向同性及各向异性温度 医子的最小二乘修正,最终的 R 因子为 $R[F^2>2\sigma(F^2)]=0.0264$, $wR_2(F^2)=0.0705$,差值电子密度图中, $\Delta\rho_{max}/mm^{-3}=0.927\times 10^{-3}$, $\Delta\rho_{min}/mm^{-3}=-0.998\times 10^{-3}$ 。

在结构分析中我们也注意到,利用 XPREP 统计符射数据时,在判断格子类型的统计中,除 P 格子外,C 格子的消光判断因子也相对较低,如果忽略弱衍射点,而修改消光判别标准 1/8=8 届,程序判断空间群为 C2/m 列用 C2/m 空间群再次进行结构分析,经直接法和数论傅立叶合成后得到全部原子坐标,R 为 0.029,再经过占位度精修后 R 因子到 $R[F^2>2\sigma(F^2)]=0.0213$, $wR_2(F^2)=0.0559$,差值电子密度图中, $\Delta\rho_{min}/nm^{-3}=0.819\times10^{-3}$ 。意外的是用两种空间群都能得到相当好的结构参数,其两种结构模型的原子坐标及各向异性温度因子见表 2、3。

表 2 两种结构模型的原子坐标

Table 2. Atom coordinates and site occupancies for the $P2_1/a$ and C2/m models

	P2 ₁ /a 结构模!	FN.		C2/m 结构模型							
原子	Occ.	π	У	z	原子	●cc.	x	У	z		
Al Cel	0.89	●. 43027(3)	0.51328(7)	0.76028(4)	A1 Ce1	0.891	().43028(3)	1/2	●.76027(4)		
A2 Ce2	0.91	0.14386(3)	0.49202(7)	(1.76557(4)	A2 Ce2	0.908	0.14385(3)	1/2	0.76556(4)		
B Fe1	0.84	0	1/2	1/2	R Fel	0.852	0	1/2	1/2		
Cl Fe2	0.291	0.25198(7)	0.25110(16)	0.50003(9)	Cl Fc2	0.208	1/4	1/4	1/2		
C1 Ti3	D.71	0.25198(7)	0.25110(16)	0.50003(9)	C1 Ti3	0.79	1/4	1/4	1/2		
C2A Til	0.992	1/2	1/2	1/2	C2A Til	0.987	1/2	1/2	1/		
C2B Ti2	0.97	1/2	•	0	C2B Ti2	●.97	1/2	0	0		
Sil		0.29919(15)	0.0006(3)	0.76859(17)	Si1		0.29921(14)	0	0.76857(16)		
Si2		0.35776(15)	0.4998(3)	0.04651(18)	Si2		0.35775(15)	1/2	0.04647(18)		
01		0.5219(3)	0.2567(8)	0.6267(4)	01		0.5224(3)	0.7449(6)	0.6266(3)		
02		0.5228(3)	0.7466(\$)	0.6265(4)	● 2		0.4259(3)	0.2715(7)	0.0939(3)		
03		0.4212(4)	0.2544(8)	0.0943(4)	O 3		●.2720(3)	0.2 41(5)	0.6853(3)		
04		0.4307(4)	0.7208(9)	1.89 34(4)	04		0.3543(4)	1/2	0.5226(4)		
Q5		0.2753(4)	0.2357(7)	0.6850(4)	05		●.3138(4)	1/2	0.9033(4)		
06		0.2686(4)	0.7674(7)	0.6857(4)	06		0.1521(4)	1/2	0.5108(4)		
07		0.3543(4)	0.5036(7)	0.5226(4)	●7		0.2297(5)	0	0.8713(5)		
90		0.3137(4)	0.5035(7)	0.9033(5)	80		0.4152(4)	0	0.8281(5)		
09		0.1521(4)	0.4985(7)	0.510B(4)							
010		0.2296(5)	0.0184(9)	0.8713(5)							
OH		1.4152(4)	-0.0178(9)	0.8280(5)							

注: Occ.表示原子的占位度.

表 3 两种模型的热振动参数

Table 3. Anisetropic displacement parameters

 10^5 nm^2

						•	•		A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		N 24000 B		
P2 ₁ /a 结构模型						C2/m 结构模型							
原子	U^{11}	U ²² .	U^{23}	U^{33}	U^{13}	U^{12}	原子	U ¹ⁱ	U^{22}	U ³⁵	U^{23}	U^{13}	U^{12}
A1	14(1)	28(1)	15(1)	1(1)	3(1)	0(1)	A 1	I4(1)	36(1)	15(1)	0	3(1)	•
A2	18(1)	16(1)	17(1)	- 1(1)	3(1)	0(1)	A2	18(1)	18(1)	18(1)	0	3(1)	0
\boldsymbol{B}	17(1)	13(1)	14(1)	0(1)	0(1)	0(1)	В	17(1)	14(1)	14(1)	0	0(1)	0
C 1	15(1)	12(1)	13(1)	0(1)	2(1)	0(1)	C 1	16(1)	13(1)	13(1)	0(1)	2(1)	0(1)
C2A	15(1)	14(1)	14(1)	0(1)	4(1)	0(1)	C2A	16(1)	14(1)	14(1)	0	4(1)	0
C2B	25(1)	15(1)	12(1)	0(1)	3(1)	0(1)	C2B	26(1)	15(1)	12(1)	0	4(1)	0
Si1	16(1)	10(1)	14(1)	(1(1)	3(1)	1(1)	Si1	17(1)	11(1)	14(1)	0	3(1)	0
Si2	17(1)	14(1)	12(1)	•(1)	3(1)	0(1)	Si2	18(1)	15(1)	13(1)	0	3(1)	0
OI	16(3)	21(3)	18(3)	3(2)	5(2)	3(2)	01	17(2)	21(2)	19(2)	(3(2)	5(2)	(4(1)
02	16(3)	21(3)	20(3)	(2(2)	6(2)	(4(2)	02	33(2)	28(2)	23(2)	3(2)	0(2)	12(2)
O3	27(3)	23(3)	24(3)	3(2)	2(2)	7(2)	03	30(2)	14(2)	15(2)	1(2)	4(2)	1(2)
04	30(3)	27(3)	21(3)	(3(2)	(1(2)	(11(2)	04	17(3)	16(3)	18(3)	0	5(2)	0
OS	27(3)	12(2)	14(2)	(2)	4(2)	1(2)	05	26(3)	18(2)	16(3)	•	3(2)	O
06	26(3)	13(2)	15(2)	(1(2)	3(2)	0(2)	06	18(3)	14(3)	20(3)	O	1(2)	0
07	17(3)	14(3)	17(3)	1(2)	5(2)	0(2)	07	40(4)	65(4)	27(3)	0	19(3)	0
O8	25(3)	17(3)	16(3)	1(2)	3(2)	0(2)	●8	20(3)	62(4)	24(3)	•	1(2)	0
09	17(3)	13(3)	20(3)	0(2)	4(2)	2(2)							
010	39(4)	51(4)	26(3)	(3(2)	19(3)	-5(3)							
011	19(3)	51(4)	23(3)	1(2)	1(2)	0(2)				(O) Date Service			

1.3 丁道衡矿晶体结构描述

对于两种结构模型,其结构形式完全一样(图 1,2),在 C2/m 结构模型中,01,02,03 位置在

图 1 P2₄/a模型结构图

Fig. 1. The crystal structure of $P2_1/a$ model.

与其它难钛铈矿族矿物的晶体结构类似,丁 道衡的结构由两个单元层构成(图 3,4),一层是 SiO_{α} 双四面体和在 B 位的 FeO_{α} 八面体共同组成的 网层,平行(O•1)面排列,另一个由 Fe•6共顶角组成的层,两个层面平行于 a, b 平面,两层交替沿 c 轴形成三维的网层,稀土大阳离子位于两个网层的空穴中。

结构中八面体有三种位置,用 B, C1, C2 来表示(图 3,4), B 位的八面体为 Fe-O 八面体,以 Fe²+为主。Fe³+位于八面体 C1 位,结构中的 C2

图 3 FeOc和 TiOc八面体层

Fig. 3. The layer of FeO6 and TiO6 ectahedra.

 $P2_1/a$ 结构模型中被 a 滑移面分裂为 b 坐标分别为 + y 和 - y, 而 x, z 相同的两个位置,即 O1O2, O3O4, •5O6•

图 2 C2/m 模型结构■

Fig. 2. The crystal structure of C2/m model.

Ti-O 八面体有两个位置: C2A Til-O 八面体的平均键长为 0.19877 nm; 而 C2B Ti2-O 八面体的平均键长为 0.21547 nm(表 4)。Ti 在两个位置上的占位度在 98%以上。Fe-O 八面体也有两个位置: 一个位于 B 位全部以 Fe-O 共棱连接成八面体链 平行于 b 轴延伸, 另一个位置位于 Ti2-O 八面体间, 与 Ti2-O 八面体共同组成八面体链,以 Fe³⁺和 Ti 为主。硅氧四面体的键角 Sil-O7-Si2 在 P2₁/a 结构模型中为 167.0(4)°, C2/m 结构模型中为 169.3(5)°(表 5)。

图 4 硅氧四面体和 TiOs组成的图层 Fig. 4. The layer of SiO₄ tetrahedra and TiO₆ octahedra.

 $10^{-1} \, \mathrm{nm}$

衰 4 两种结构模型键长对比表

Table 4. Interatomic distances

表 5 两种结构模型四面体、八面体键角对比表 Table 5. Selected bond angles(*)

P2 ₁ /a 结构模道			C2/m 结构模型			P2 ₁ /a 4		C2/m 结构模型			
A1 - 08	:MINOWI	2.430(5)	A1 – 05	1.504	2.429(5)	(2 - B - 0)	×2	86.71(19)	01 - <i>R</i> - • •1		86.72(19)
						02 - B - 01	×2	93.29(19)	Ol – <i>B</i> – ● 1	× 2	
A1 - 02		2.496(4)	A1 – 01	×2	2.528(3)	02 – B – 09	×2	86.54(17)	01 - 8 - 06	× 2	85.54(13)
A1 - Q1		2.562(4)	A1 - O3	×2	2.628(4)	()2 – H = 09	×2	93,46(17)	01 - B - 06	x 2	
A1 - 04		2.612(5)	A1 - U2	× 2	2.633(4)	01 - B - 😝	ת	93.46(17)	01 – B – 05	x 2	
A1 - 05		2.624(5)	A1 - 01		2.647(5)	0 1 − <i>B</i> − 09 0 − <i>B</i> − 0	× 2	86.54(17) 180.0(3)	$0 - B - 06$ $0 - B - \Phi$	х 2	86.54(13) 18 0 .0
A1 – Q5		2.635(5)	A1 - O8	×2	2.9812(16)	~		100.0(3)	0 D T		100.0
						09 # 5 - C1 - 07		86.15(19)	06 - C1 - O1	× 2	86.13(15)
A1 - 07		2.648(5)	A2 – O1	×2	2.503(3)	09 # 9 = C1 - 07 # 7		86.12(13)	06 - C1 - 👫	ж 2	93 .37(15)
A1 - 03		2.653(5)	A2 - 02	×2	2.506(4)	09 # 9 = C1 = 07		95.57(19)	06 - C1 - 03	× 2	
A1 - 011		2.810(5)	A2 - O5		2.506(5)	09 # 5 - C1 - 07 # 7 09 # 9 - C1 - 05 # 2		92.17(19) 92.83(19)	06 - C1 - 03 04 - C1 - 03	×2 ×2	93.15(17) 93.62(16)
A2 ● 3		2.476(5)	A2 - ●3	×2	2.581(3)	09 # 5 - C1 - 05 # 2		87.12(19)	04 - C1 - 03	x 2	85.38(16)
A2 - 01		2.484(4)	A2 – ● 6		2.850(5)	(19#9-C1-€6#7		86.54(19)	0 - C1 - 0		180.00(1)
						09#5 ~ C1 ~ ●6#7		93.54(19)			
A2 - 08		2.507(5)	B - O1	×4	2.012(3)	07 - C1 - ●5 # 2			01 - C2A - O1	× 2	89.1(2)
A2 - ()2		2.522(4)	H - 06	× 2	2.030(5)	07#7-C1-05#2			01 - C2A - 01 01 - C2A - 04	× 2	90.9(2) 85.31(13)
A2 - 04		2.541(5)	C1 - O6	×2	1.966(3)	07 - C1 - 06 # 7 07 # 7 - C1 - 06 # 7			01 - C2A - 04	ж4 ×4	93.69(13)
A2-06		2.579(4)	C1 - 04	×2	1.991(3)	■5#2 - C1 - O6#7		178.90(17)			80.0
A2 - 05		2.584(4)	C1 - 03	×2	2.025(3)	09#9 - C1 - 09#5		178,28(16)			
						07 - C1 - 07 # 7		178.31(16)	OS) – CSB – OS		
A2 - 09		2.850(5)	<i>C</i> 2A – ●1	×4	1.970(3)	-1 tm		20, 0(0)	06) - C2B - C2		
B-02	× 2	2.005(5)	C2∧ – ●4	×2	2.023(5)	\bullet 1 - C2A - O2 \bullet 1 - C2A - O2	×2 ×2	89.0(2) 91. 0 (2)	02) ~ $C2B - 0202$) - $C2B - 02$		90.5(2) 89.5(2)
B - O1	× 2	2.019(5)	C2B - O8	×2	2.035(6)	●1 - C2A - ●7	×2	86.55(17)	() - C2B - ●	^-	\$0.0 0 (1)
B O9	×2	2.029(5)	C2B C2	×4	2.212(4)	●1 - C2A - O7	×2	93.45(17)			-
C1 - @9	×2	1.959(4)	Si1 - ●8		1.580(6)	C2 - C2A - ●7	×2	93.93(17)	08 - Si1 - O7		111.4(3)
						●2 - C2A - 07	x 2		08 - Si1 - 03		109.74(18)
C1 - O7	× 2	1.983(4)	Si1 - 07		1.603(6)	0 - C2A - 0 011 - C2B - ●4		\$0.0(3)	07 - Si1 - 03 •3 - Si1 - •3	×2	107.64(19) 110.6(3)
C1 - 05		2.021(5)	5i1 - 03	× 2	1.633(3)	011 - C2B - 04 $011 - C2B - 04$	×2	78.97(19)	9 3 – 311 – 9 3		110.0(3)
C1 - 06		2.030(5)	512 - 05		1.590(5)	011 - C2B - 03	×2	101.0(2)	05 - Si2 - 07		112.8(3)
C2A - 01	×2	1.964(4)	Si2 07		1.617(6)	011 - C23 - 03	×2	76.0(2)	05 - 512 - 612	× 2	113.99(18)
C2A - 02	×2	1.976(4)	Si2 - O2	× 2	1.630(4)	04 - C2B - 03	×2	89,7(2)	07 - 512 - 02	x 2	104,0(2)
			312 02	~ 2	21030(1)	04 - C2B - 03	x 2	90.3(2) 180.0(2)	02 - Si2 - (12		107.0(3)
C2A - ()7	×2	2.023(5)				$\bullet - C2B - O$		100.0(2)	Sil - 07 - Si2		169.3(5)
C2B - ●11	×2	2.038(6)				●11 - Sil - Ol0		111.6(3)			
C23 - 0 4	×2	2.206(5)				●11 - Sit - O6		107.9(3)			
C2B - 03	×2	2.220(5)				010 - Si1 - O6		109.4(3)			
Si1 - 011		1.583(6)				010 - Si1 - OS		105.7(3)			
		1.607(6)				011 - Si1 - 05 06 - Sii - 05		111.5(3) 110.7(3)			
Si1 - 010						35 3		21011(2)			
Si1 ~ O6		1.633(5)				08 - Si2 - O10		E12.7(3)			
Si1 - ● 5		1.635(5)				08 - Si2 - 04		[13.6(3)			
Si2 - ● 8		1.591(5)				08 - Si2 - 03		114.3(3)			
Si2 - O10		1.619(6)				010 - \$i2 - 04 010 - \$i2 - ●3		103.1(3) 105.2(3)			
		1.629(5)				010 = 5i2 = 4 3		105.2(3)			
Si2 - 4								***			
Si2 - ●3	-	1.633(5)				Si1 - 010 - Si2		167.0(4)	1255		

2 讨 论

2.1 关于硅钛铈矿亚族矿物的空间群

如前所述,人们对硅钛铈矿亚族矿物的真空间群认识存在歧见。一种是彭志忠等^[5] 1964 年利用多重胶片法所确定的 C2/m。杨光明等^[6] 通过透射电镜研究认为格子类型为 C 心格子,Yang Zhuming等^[7] 认为结构是 C2/m 的原因是 Ti, Fe等在八面体中的无序占位造成了对称的增高。另一种是,Calvo 和 Faggiami^[5] 对人工合成硅钛铈矿类似物进行的晶体结构研究,所定的空间群为 P2₁/a,并认为结构中存在赝对称面,该结构被收录在目前无机晶体结构数据库(ICSD)中作为基钛铈矿的晶体结构数据。

日本学者 Miyawaki 和 Matsubata 等^[9-11]在珀硅 钛铈矿、SrZr 硅钛铈矿类似物 regeite 的晶体结构 研究中,对比了该矿物的 P2₁/a 和 C2/m 结构模型,结果表明两种模型均具有较好的 R 因子和结构参数,但作者分析衍射点中存在的弱衍射点并不符合 C 心格子的衍射规律后认为,该矿物是具有假 C2/m 空间群的 P2₁/a 对称结构。

杨光明等[6]认为,天然产出的硅钛铈矿族矿物

图 5 CCDX 射线单晶衍射仪收集的衍射数据在倒易空间中[\emptyset 01]方向的投影图,h+k=2n为强衍射点,所有的 h+k=2n+1 为弱衍射点

Fig. 5. Reciprocal spars viewed down [001], h + k = 2n being strong, h + h = 2n + 1 being weak.

的真空间群为 C2/m,而人工合成的是 $P2_1/a$ 。但从目前的研究成果来看,并非完全具有这样的规律。

在本次测定中,仔细分析了产于白云鄂博的品 质丁道衡矿的衍射数据,通过对衍射数据的观察. 我们注意到, 衍射数据中对于 hdl 具有指标为 65 1,922,236,432,924,1233等弱的衍射(图5)。 其 1/8 可达 8~15(1/8>3 为可观察点),这些指标 并不符合 h + k = 2n 的 C 心格子的衍射规律,尽管 这些衍射较弱,但忽略它们并不可取。在 P2/a 结构模型中,注意到 01 和 02,03 和 04,05 和 06 这三对氧原子的坐标极为接近,如果说在极小的误 差范围内,把它们视为相等的话,结构就从 P2./a 空间群变为 C2/m 空间群。事实上 C2/m 空间群 就是将本来位置相差极小的 0102,0304,0506 原 子作为同等位置而产生的结果(图 6)。因此,造成 了 C2/m 和 P21/a 两种空间群都能得到很好的结 构参数,但从结构精修的角度和衍射数据具有非 C心格子的衍射特征看, P2, Ia 空间群结构模型才能 反映真实的结构, 而 C2/m 空间群结构则是在忽略 弱衍射点情况下用强衍射点精修的顺对称空间群 的平均结构。这一结论与 Miyawaki 和 Matsubata 等 关于 regeite 的晶体结构研究结论完全一样。

图 6 在 P2₁/a 和 C2/m 两种模型中 O1-3 的位置 (在 P2₁/a 为屬对称面, C2/m 为对称面)

Fig. 6. The O1-03 sites in the $P2_1/a$ and C2/m models.

最近我们对采自四川攀枝花铁矿的硅钛铈矿矿物,按与上述丁道衡矿相同的实验条件,也做了结构精测。结果表明,衍射中无弱衍射点,其空间群为 C2/m(有关成果拟另文报道)。由此,我们认为,不论是 C2/m 还是 $P2_1/a$ 都可以是硅钛铈矿亚族矿物的真空间群。

2.2 丁道衡矿的晶体结构特征

用范海福等[12]编写的超结构晶体结构解析 程序 SAPI(Structure Analysis Programs with Intelligent control)对衍射点进行分析,结果表明,该矿物的 衍射数据具有 h + k = 2n 的赝对称衍射规律,即 h + k = 2n 为强衍射点, 所有的 h + k = 2n + 1 为 弱衍射点(图 5),对比两个结构模型可以清楚地 发现, P21/a 和 C2/m 结构除了 O1, O2, O3 的位 置外, C1 位置的坐标也有明显的不同。在 P21/a 结构模型中该位置出现很小的偏离,其结果是使 在原 C2/m 模型中的特殊等效位置而变为一般 等效位置(表 2)。其原因可能是成分中含有较高 的 Ti, 在该位置大部分 Fe 被 Ti 取代而发生的位 移,同时 O1-O3 在 P2, Ia 结构中由于原子坐标的 偏移而呈现腹对称面(图 6),因此,在衍射特征上 表现出 h + k = 2n 为强衍射点的赝对称衍射规 律。对于两种结构模型,虽然晶胞参数没有变,但 是对于 ▶ 格子来说,对称重复性为一个晶胞(图 7), 而对于 C2/m, 由于存在真正的对称面, 对称 重复性只有 P 格子的二分之一。因此,富 Ti 和 Fe^{2+} 硅钛铈矿的结构可以认为是具有 C2/m 顺对 称空间群的 $P2_1/a$ 超结构,是一种表现为赝空间 群对称的超结构新类型。

图 7 在 P2₁/a 和 C2/m 两种模型中 O1-3 的对称位置 Fig. 7. The O1-O3 sites in the P2₁/a and C2/m models

3 结 论

参 考 文 猷:

- [1] MucDonald R, Belkin H E. Compositional variation in minerals of the chevkinite group [J]. Mineralogical Magazine, 2002, 66 (6); 1075 1098.
- [2] Popov V A, Pautov L A, Sokolova E, et al. Polyakevite-(Ce), (REE, Ca)4(Mg, Fc²⁺)(Cr³⁺, Fe³⁺)2(Ti, Nb)2Si4O₂₂, a new netamict mineral species from the 1men Mountains, Soathernals, Russia, Mineral description and crystalchemistry[J]. Can Mineral, 2001, 39:1095 1104.
- [3] Haggerty S E, Mariano A N. Strontian-ioparite and strontian-chevkinite: two new minerals in rhemorphic fenites from the Parama Basin carbonatites [J]. South America Comtrib Mineral Petrol, 1983.84:365 381.
- [4] Gottardi C. The crystal structure of perfectle[J]. Am Mineral, 1960, 45:1-14.
- [5] Peng Z, Pan Z. The crystal structure of chevkimiter[J]. Scientia Sinica, 1964, 13(9):1539 1945.
- [6] 杨光明、福兆格、吴秀玲、等。四川昌北稀土矿床中的硅钛铈矿[1]。矿物学报、1991、11(2):109~114。
- [7] Yang Zhuning, Fleck M, Smith M, et al. The crystal structure of natural Fe-rich chevkinite- (Ce) [J]. Eur J Mineral, 2002, 14:909 975.
- [8] Calvo C., Faggiani R. A re-investigation of the crystal structures of chevkinite and perrictife[1]. Am Mineral. 1974, 59:1277 1285.
- [9] Miyawaki R, Matsubara S, Miyajima H. The crystal structure of rengeite Sr₄ZrTi₄ (Si₂O₇)₂O₈[J]. Journal of Mineralogical and Petrological Sciences, 2002, 97: 7-12.
- [10] Miyajima H, Matsubara S, Miyawaki R, et al. Rengeite, St₄ZrTi₄O₂₂, a new mineral, the Sr-Zranaloque of perriente from the Itoiguwa-Ohmi district. Niigate Prefecture, Central Japan[1]. Mineral Magazine, 2001, 65(1);111-120.
- [11] Miyajima H, Miyawaki R, Ito K, Matsubaraite S, StaTis (Si2O₁)2O₈, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the

- Itoigava-Ohmi district, Niigata Prefecture, Jupan[1]. European Journal of Mineralogy, 2002, 14 (6): 1119-1128.
- [12] Fan Hai-fu, Yao Jia-xing, Qian Jin-zi. The program SAPI and its applications. I. Automatic search of pseudo-systematic extinction for solving superstructures. [J]. Acta Cryst , 1988, A44: 688 691.
- [13] 张如柏, 龙烈云, 川西南某堆似性花岗岩中的难饮铈矿[1], 成都地质学院学报,1987,14(2):61-64
- [14] 宋仁章, 丁榮首, 奈哲。 賽马矿和磁钛铈矿中铁的占位研究[J]. 科学逝报,1999,44(13):1449-[451.

THE CRYSTAL STRUCTURE OF A NEW MINERAL DINGDAOHENGITE-(CE)

LI Guo-wu¹, YANG Guang-ming², MA Zhe-sheng¹, SHI Ni-cheng¹, XIONG Ming¹, SHENG Gan-fu³, FAN Hai-fu⁴

China University of Geosciences (Beijing), Reijing 100083, China;
 China University of Geosciences (Wuhan),
 Wuhan 430074, China;
 Chengdu Institute of Geology and Mineral Resources, chengdu 610082 China;
 Institute of Physics, Chinase Academy of Sciences, Beijing 100080, Chinas)

Abstract: Dingdaohengite-(Ce) (IMA CNMMN 2005-014) is a new mineral of the Chevkinite group found in Bayun Obo, Inner Mongolia, China. The chemical formula of the sample is $Ce_4 Fe_2 Ti_3 Si_4 Ci_2$. Crystals are monoclinic with unit-cell parameters a=1.34656(15) nm, b=0.57356(6) nm, c=1.10977(12) nm, $\beta=100.636(2)^\circ$, V=0.84239(16) nm³ and Z=2. The structures of Dingdaohengite-(Ce) were refined with space group $P2_1/a$ and C2/m. Least-squares refinement results showed that both structural models of Dingdaohengite-(Ce) are very good, R1=0.027 with $P2_1/a$ and R1=0.021 with C2/m. In order to illustrate the relationship between the two space groups $P2_1/a$ and C2/m, the distribution of diffraction intensities were inspected. Pseudo-extinction was found that reflections with a+b=2n+1 are weak. By neglecting systematically weak a+b=2n+1 reflections the space group became a+b=2m+1 is concluded that the crystal structure of Dingdaohengite-(Ce) is a superstructure with space group a+b=2m+1. It is concluded that the crystal structure of Dingdaohengite-(Ce) is a superstructure with space group a+b=2m+1. It possesses pseudo symmetry corresponding to the space group a+b=2m+1 properties of a+b=2m+1.

Key words: Dingdaohengite-(Ce); crystal structure; space group; superstructure