THE RAMAN STUDY OF CERTAIN CARBONATES

NICOLAE BUZGAR¹, ANDREI IONUȚ APOPEI¹

¹ "Al. I. Cuza" University of Iași, Department of Geology, 20A Carol I Blv., 700505 Iași, Romania

Abstract

Some of the most common carbonates have been investigated by non-contact Raman spectroscopy. The synthetic alkali carbonates K_2CO_3 and Na_2CO_3 have also been studied. The Raman spectrum of aurichalcite is different from that of malachite. This spectrum has a characteristic intense band at 1069 cm⁻¹ which is assigned to the v_1 symmetric stretching mode of the carbonate unit. The two low intensity Raman lines of 1485 and 1507 cm⁻¹ may be ascribed to the v_3 asymmetric stretching modes. To the v_4 mode (doubly degenerate symmetric bending) are attributed the values of 706 cm⁻¹ (v_{4a}) and 733 cm⁻¹ (v_{4b}). A number of bands with different intensities are observed in the lowest spectral shift (285, 388, 430, 461 and 498 cm⁻¹). These Raman lines are assigned to the CuO and ZnO stretching and bending vibrations. A single band of the OH-stretching modes is observed at 3344 cm⁻¹.

Key words: nonpolarized Raman spectra, carbonates, alkali carbonates, aurichalcite

Introduction

The Raman modes of carbonates, like those of sulfates, are classified into three types (Nakamoto, 1997): (i) vibrations of $(CO_3)^{2-}$ groups (internal modes) (ii) vibrations of hydroxyl molecule (in the case of hydroxyl carbonates $\approx 900 \text{ cm}^{-1}$, 1500-1600 cm⁻¹ and 3400 cm⁻¹), and (iii) vibration modes M-O from the interactions between the cation and O of either $(CO_3)^{2-}$ or OH⁻ (external or lattice modes).

The carbonate ion $(CO_3)^{2^-}$ is a nonlinear four-atomic species and it must have 3(4)-6=6 normal modes of vibrations (Cotton, 1990). These six normal modes are illustrated in

¹ e-mail: nicolae.buzgar@uaic.ro

figures 1 and 2. The frequency of the fundamental vibration modes of the free carbonat ion are showed in table 1 (Scheetz and White, 1977). The v_2 mode of $(CO_3)^{2-}$, which is Raman forbidden in the free ion, remains weak after coupling to the cations in the lattice.

Mada		Symmetry	Selection	Frequencies (cm ⁻¹)
	Widde	Symmetry	Rules	Scheetz and White (1977)
ν_1	Nondegenerate symmetric stretch	A'_1	Raman	1064
ν ₂	Nondegenerate asymmetric (out-of plane) bend	<i>A</i> ′′ ₂	IR	-
ν ₃	Doubly degenerate asymmetric stretch	E'	IR+Rama n	1415
v_4	Doubly degenerate symmetric (in-plane) bend	E'	IR+Rama n	680

Table 1. The frequency of the fundamental vibrational modes of the $(CO_3)^{2-1}$

Type: $v_{4a}(E')$ Raman vibration around 700 cm⁻¹ region is due to the symmetric bending mode.

Type: $v_{4b}(E')$ Raman modes around 700 cm⁻¹ region are due to the symmetric bending mode.

Fig. 2 Illustration for normal modes of vibration; displacement vectors are represented by arrows.

Type: $v_{3b}(E')$ Weak Raman peaks near 1400 cm⁻¹ are due to the asymmetric stretch.

Fig. 2 (continued from the previous page)

Analytical procedure

Raman spectra were obtained at room temperature with a Horiba Jobin-Yvon RPA-HE 532 Raman Spectrograph with multichannel air cooled (-70 °C) CCD detector, using a doubled frequency NdYag laser, 532 nm/100 mW nominal power. The spectral resolution is 3 cm^{-1} /pixel, and the spectral range between 200 and 3400 cm⁻¹. Raman system includes a "Superhead" fibre optic Raman probe for non contact measurements, with an 50X LWD Olympus visible objective, NA = 0.50 WD = 10.6 mm.

Data acquisition was performed by 2-20 seconds exposure, 5-30 acquisitions, at laser magnification of 90-100%, to improve the signal-to-noise ratio. Spectra manipulations consists of a basic data treatment, such as baseline adjustment and peak fitting (Lorentz function).

Samples

The samples used in the study are listed in table 2. The first nine samples with their sample number, belong to the collection of "*Grigore Cobălcescu*" Mineralogy and Petrography Museum of the "*Alexandru Ioan Cuza*" University of Iassy. The other two samples were synthetic alkaly carbonates.

Results and discussions

A. Anhydrous carbonates

1. Calcite group

Three samples of minerals are used from the calcite group: calcite, siderite and rhodochrosite. The nonpolarized Raman spectra of the calcite, siderite and rhodochrosite are shown in figure 3.

	Mineral	Sample no.	Location
1.	Calcite	5413	Guanajuato – Mexico
2.	Siderite	5455	Lobenstein – Germany
3.	Rhodochrosite	5438	Kohlenbach – Germany
4.	Aragonite	5421	Spania Dolina – Slovakia
5.	Witherite	5484	Alston – England
6.	Strontianite	5432	Drensteinfurt – Germany
7.	Azurite	5397	Namibia
8.	Malachite	5393	Eisenzeche – Germany
9.	Aurichalcite	5457	Lavrio - Greece
10.	KCO ₃	-	Synthetic
11.	Natrite	-	Synthetic

Table 2 Samples used in the study

The Raman spectra of these minerals are very similar. The intense band (v_1) of the calcite spectrum corresponds to the symmetric stretching of CO₃ group at 1087 cm⁻¹. The v_2 (asymmetric bending) vibration mode does not appear. The Raman lines attributed to v_3 (asymmetric stretching) mode and v_4 (symmetric bending) mode have 1437 cm⁻¹, respectively 714 cm⁻¹. The Raman spectrum of siderite is characterized by the same Raman band corresponding to the symmetric stretching of CO₃ group as that of the calcite, at 1087 cm⁻¹. The band at 1442 cm⁻¹ corresponds to the v_3 normal mode and 736 cm⁻¹ to the v_4 (O-C-O in-plane bending) mode. The Raman spectrum of rhodochrosite consists of a strongest intensity band at 1094 cm⁻¹ assigned to the v_1 symmetric stretching mode of CO₃ group. The v_3 normal mode appears at 1439 cm⁻¹ and the v_4 normal mode at 725 cm⁻¹.

The lower wavenumbers of calcite (285 cm⁻¹), siderite (289 cm⁻¹) and rhodochrosite (292 cm⁻¹) observed in figure 3 arise from the external vibration of the CO₃ groups that involve translatory oscillations of those groups (relative translations between the cation and anionic group). There are no values below 200 cm⁻¹ because the Raman shift is 200-3400 cm⁻¹.

A weak lines observed at 1749, 1729 and 1752 cm⁻¹ may be regarded as the combination bands of v_1 + v_4 modes (Gunasekaran et al., 2006). The spectrum of siderite presents a band at 514 cm⁻¹, which may be assigned to the vibration of a Fe-O bond.

The observed vibrational bands of calcite, siderite and rhodochrosite were compared with their documented values and are listed in table 3. The positions of the observed Raman bands are in agreement with those reported by Gunasekaran et al. (2006) for calcite and Beny (1991) for siderite and rhodochrosite. The minor shift in positions may be due to the effect of natural impurities present in the samples.

Fig. 3. Raman spectrum of calcite compared with those of siderite and rhodochrosite.

2. Aragonite group

The Raman spectra for the aragonite, witherite and strontianite are shown in figure 4. The spectra of these investigated samples show only five bands out of the 30 predicted Raman-active modes (Krishnamurti, 1960; Urmos et al., 1991). These spectra are governed by the very strong Raman line atributed to the v_1 symmetric stretching mode of the carbonate group. The wavenumbers of this Raman band are 1083, 1069 and 1059 cm⁻¹ (tab. 4). They are similar to those reported by Urmos et al. (1991), Krishnamurti (1960) and Beny (1989).

	Calcite		lerite	Rhodochrosite		Eraa	
This study	Gunasekaran et al., 2006	This study	Beny (1991)	This study	Beny (1991)	CO_3^{2}	Assignment
	89						R*(CO ₃)
	162		190		184		$T(Ca, CO_3)$
285	288	289	294	293	289		$T(Ca, CO_3)$
		514	506				$T(Fe, CO_3)$
715	716	737	731 742	726	718	680	v_4 -Symmetric bending mode
						879	v ₂ -Asymmetric bending mode
1087	1092	1087	1087	1094	1064 1085	1063	v_1 -Symmetric stretching mode
1437	1437	1442		1439	1414	1415	v ₃ -Asymmetric stretching mode
1749	1754	1729	1726 1733	1752	1725		$v_1 + v_4$

Table 3. Raman bands in calcite, siderite and rhodochrosite (cm⁻¹)

R* - rotational

The Raman lines atributed to the v_3 asymmetric stretching mode can be obseerved at 1422 and 1511 cm⁻¹ for witherite, 1445 and 1543 cm⁻¹ for strontianite, respectively 1461 and 1573 cm⁻¹ for aragonite. The appearance of two lines corresponding to v_3 is in accordance with the splitting of v_3 predicted by theory. The Raman lines at 693, 700 and 701 cm⁻¹ were assigned to the v_4 normal mode. The v_2 vibration mode are not visible in our spectra. The Raman bands due to the external vibration mode for aragonite, strontianite and witherite have the frequencies 250, 242 and 227 cm⁻¹. The frequencies of all Raman bands observed in this study can be correlated with the atomic masses of the cations.

3. Alkali carbonates

The Raman spectrum of K_2CO_3 (fig. 5) shows a couple of bands at 1026 and 1063 cm⁻¹ that may be attributed to the v_1 symmetric stretching mode (tab. 5). The two bands may be explained by the presence of the molecules belonging to two structures, C_{2v} bidentate form and D_{3h} , in agreement with the theoretical values calculated by Koura et al. (1996). The v_2 vibration mode is not Raman active. The bands at 1374 cm⁻¹ and 1426 cm⁻¹, can be assigned to v_{3a} respectively v_{3b} . To the v_4 mode (doubly degenerate symmetric bending) are attributed the values of 677 cm⁻¹ (v_{4a}) and 702 cm⁻¹ (v_{4b}). The spectrum also presents three bands at 237 cm⁻¹, 287 cm⁻¹ and 484 cm⁻¹, which may be assigned to the external vibration modes between the cation and anionic group (T(K,CO_3)).

Fig. 4 Raman spectra of aragonite, strontianite and witherite.

A			Cture attices its					
Aragonite		Strontianite		Witherite				
This	Urmos	Krishnamurti	This	Krishnamurti	This	Krishnamurti	Beny	Assignment
study	(1991)	(1960)	study	(1960)	study	(1960)	(1989)	rissignition
study	(1))1)	(1)00)	study	(1)00)	study	(1)00)	(1)0))	
250	284	285	242	246	227	227	224	T(M,CO ₃)
701	701	702	700	701	693	691	690	
	705	707	-	711	-	699	696	ν_4
	-	716	-	-	-	-	-	
NO	853	854	NO	855	NO	852	-	v ₂
1002	1005	1000	1000	1074	1050	10/1	1035	
1083	1085	1086	1069	1074	1059	1061	1059	v_1
-	-	-	-	1408	-	1394	-	
1461	1462	1415	1445	1438	1422	1409	1419	Va
1573	1547	1463	1543	1447	1511	1421	1505	v3
NO		2165			NO	2116*		$2v_1$

Table 4. Raman bands in aragonite, strontianite and witherite (cm⁻¹)

NO = not observed; NA = not assigned

Table 5. Frequencies of the Raman lines of the alkali carbonates

	K ₂ CO ₃		Na ₂ CO ₃						
This	Koura et al. (1996)		This	Beny	Burgio and	Assignment			
study	Calculated	Measured	study	(1988)	Clark (2001)				
237, 288, 484	76, 85, 122, 252, 278, 291	126, 141 192	290	111, 131 149, 171 189	NI*	T (K,CO ₃) T (Na, CO ₃)			
677	688	692	702	702 701	702	v_{4a} (<i>E</i> ') Symmetric bending mode			
702	706	697		701	702	v_{4b} (<i>E'</i>) Symmetric bending mode			
1026	1025	1043	1020	1069	1071	v_1 (A' ₁) Symmetric stretching			
1063	1025	1064	1080	1079	1081	mode			
1374	1385	1405	1420	1421	NI*	v_{3a} (<i>E'</i>) Asymmetric stretching mode			
1426	1557		1429	1431	111	v_{3b} (<i>E'</i>) Asymmetric stretching mode			

NI – Raman bands which appear in the Figure 48 (Burgio and Clark, 2001) but without determined frequencies

For Na_2CO_3 , the most intense Raman band, corresponding to the v_1 symmetric stretching vibration of the carbonate group, is at 1080 cm⁻¹. The 1429 cm⁻¹ peak

corresponds to the v_3 normal mode and line of 702 cm⁻¹ is attributed to the v_4 symmetric bending mode. The Raman spectrum of Na₂CO₃ shows only one line of lattice mode, at 290 cm⁻¹. The wavenumbers of Raman lines for two alkali carbonates are presented in table 5.

Fig. 5 Raman spectra of alkali carbonates (synth.)

B. Carbonates with hydroxyl

1. Azurite

The spectrum of azurite is shown in figure 6. The wavenumbers of the detected bands are reported in table 6. This azurite spectrum is characterized by several lines that cover the spectral range of 200-1600 cm⁻¹. The bands observed up to 600 cm⁻¹ are assigned to the translations of (Cu, CO₃) and those observed up to 1600 cm⁻¹ are assigned to CO₃ complex (Frost et al., 2002). The Raman spectrum of our azurite does not show the O-H stretching band at about 3400 cm⁻¹.

Fig. 6. Raman spectrum of azurite in the 200-3400 cm⁻¹ region

Azurite has a characteristic intense band at 404 cm⁻¹. The v_1 symmetric stretching band of the carbonate ion is observed at 1098 cm⁻¹. The bands attributed to the carbonate (v_3) asymmetric stretching vibration appear at 1425 cm⁻¹ and 1459 cm⁻¹. One band is observed in the Raman spectrum of azurite at 766 cm⁻¹ and is assigned to the v_4 mode. The band of 835 cm⁻¹ was assigned to the v_2 asymmetric bending vibration. A number of bands with different intensities are observed in the lowest spectral shift of the Raman spectrum of azurite (250, 285, 339, 404 and 544 cm⁻¹). These Raman lines are assigned to the lattice modes. The O-H out-of-plane bending mode of azurite was reported at 939 cm⁻¹. We have not found any information available for Raman line of 1579 cm⁻¹. It is probably due to the O-H bending mode, in agreement with Nakamoto (1997).

This storday	Azurite	Assignment		
This study	Frost et al., 2002 Mattei et al., 20		Assignment	
250, 285, 339, 404, 544	112, 131, 139, 144, 154, 165, 171, 179, 194, 215, 237, 248, 265, 281, 332, 387, 400, 414, 540	157, 174, 182, 240, 250, 267, 282, 332, 387, 402, 542	T(Cu, CO ₃)	
766	739 764	744 768	v ₄ -Symmetric CO ₃ bending mode	
835	815 835	840	v ₂ -Asymmetric CO ₃ bending mode	
939	952	937	O-H out-of-plane bending mode	
1097	1095	1099	v ₁ -Symmetric CO ₃ stretching mode	
1425	1421	1422	v-Asymmetric CO-	
1459	1431	1433	stretching mode	
		1462	successing mode	
1579		1582	O-H bending mode	
NO	3424 3446	3431	O-H stretching mode	

Table 6. Raman bands of azurite (cm⁻¹)

NO = not observed

2. Malachite

The Raman spectrum of malachite is shown in figure 7. Malachite has two characteristic very strong bands at 435 and 1495 cm^{-1} .

As in the case of azurite, the Raman bands at the lowest region of the spectrum of malachite (fig. 7) can be attributed to the lattice modes (tab. 7). In this region the spectrum shows an intense band at 435 cm^{-1} , and the others at: 215, 270, 354, 537 and 597 cm⁻¹.

The characteristic bands for the CO₃ group are observed at: 1059 and 1098 cm⁻¹ for the v_1 symmetric stretching modes (of two different CO₃ groups – doubly degenerate mode); 820 cm⁻¹ attributed to the v_2 asymmetric bending mode (Frost et al., 2002); 1368, 1462 and 1495 cm⁻¹ assigned to the v_3 asymmetric stretching modes; 722 and 755 cm⁻¹ for v_4 symmetric bending (doubly degenerate mode). For the hydroxyl-stretching region, the

spectrum shows bands at 3310 and 3382 cm^{-1} . The vibration mode of the hydroxyl group (O-H bending mode) appears at 1639 cm^{-1} .

Differences between the spectra of malachite and azurite may be explained by the molecular structure of azurite being based upon a distorted square planar arrangement compared with a distorted octahedral arrangement of the copper in malachite (Frost et al., 2002).

Fig. 7. Raman spectrum of malachite in the 200-3400 cm⁻¹ region.

3. Aurichalcite

The Raman spectrum of aurichalcite is different from those of malachite and azurite. This spectrum has a characteristic intense band at 1069 cm⁻¹ which is assigned to the v_1 symmetric stretching mode of the carbonate unit (fig. 8, tab. 8).

The two low intensity Raman lines of 1485 and 1507 cm⁻¹ may be ascribed to the v_3 asymmetric stretching modes. To the v_4 mode (doubly degenerate symmetric bending) are attributed the values of 706 cm⁻¹ (v_{4a}) and 733 cm⁻¹ (v_{4b}). A number of bands with different intensities are observed in the lowest spectral shift of the aurichalcite Raman spectrum (285, 388, 430, 461 and 498 cm⁻¹). These Raman lines are assigned to the CuO and ZnO

stretching and bending vibrations (Frost et al., 2007). A single band of the OH-stretching modes is observed at 3344 cm^{-1} .

This study	Mala	Assignment	
This study	Frost et al. (2002)	Mattei et al. (2008)	Assignment
215, 269, 354,	130, 142, 151, 166, 176,	157, 171, 182, 204, 224,	
434, 536, 596	205, 217, 267, 294, 320,	272, 352, 435, 513, 537,	$T(C_{11}, CO_{1})$
	249, 389, 429, 514, 531,	601	$\Gamma(Cu, CO_3)$
	563, 596		
722	718	723	v ₄ -Symmetric CO ₃
755	750	753	bending mode
820	807		v ₂ -Asymmetric CO ₃
820	817		bending mode
1059	1098	1058	v ₁ -Symmetric CO ₃
1097		1101	stretching mode
1368	1365	1370	
1462	1423	1463	v ₃ -Asymmetric CO ₃
1495	1493	1497	stretching mode
	1514		
1639			O-H bending mode
3310	3349		O H stratahing mode
3382	3380	3380	O-ri suetching mode

Table 7. Raman bands in malachite (cm⁻¹)

Fig. 8. Raman spectrum of aurichalcite

This study	Frost et al. (2007)	Assignment
285, 388, 430, 461, 498	278-283, 388-392, 428-432, 460-463, 498-499	$T(Cu, CO_3)$ and $T(Zn, CO_3)$
706 733 -	708-711 733-737 748-753	v ₄ -Symmetric CO ₃ bending mode
-	849-860	v ₂ -Asymmetric CO ₃ bending mode
1000 1069 -	1020 1060-1065 1071-1072	v ₁ -Symmetric CO ₃ stretching mode
1485 1507	1485 1506-1511	v ₃ -Asymmetric CO ₃ stretching mode
3344	3338-3355	O-H stretching mode

Table 8. Raman bands in aurichalcite (cm⁻¹)

Conclusions

In all spectra the three fundamental vibration modes of $(CO_3)^{2-}$ were observed, with variations in band positions and splitting, caused by the influences of the different structures and cations.

The measured Raman bands of analyzed carbonates are similar to those reported in literature (v_1 between 1000-1100 cm⁻¹, v_2 -800-900 cm⁻¹, v_3 - 1400-1500 cm⁻¹, v_4 - 690-790 cm⁻¹). The slight differences between some Raman spectra were probably caused by either the instruments and techniques or the composition of the minerals.

Although the v_2 vibration mode is not normally active in Raman, it makes an exception in the case of the azurite and malachite samples.

The frequencies of all Raman bands of the orthorhombic carbonates (the aragonite group) can be corelated with the atomic masses of the cations. In the case of trigonal carbonates (the calcite group), the frequencies of the vibrational modes of $(CO_3)^{2-}$ and the atomic masses of cations cannot be correlated.

The Raman spectrum of malachite and aurichalcite are different although the two minerals have similar structures.

Acknowledgments

This work has been supported by Romanian Ministry of Education, Research and Innovation under a PNCDI II – IDEI grant PCE no. 795/2009.

References

- Beny, C., 1988. Société Française de Minéralogie et de Cristallographie Base de données de spectres Raman. Natrite; quoted from http://wwwobs.univ-bpclermont.fr/sfmc/ramandb2/fpdf/UTIL81.pdf
- Beny, C., 1989. Société Française de Minéralogie et de Cristallographie Base de données de spectres Raman. Witherite; quoted from http://wwwobs.univ- bpclermont.fr/sfmc/ ramandb2/fpdf/WITHE11.pdf
- Beny, C., 1991. Société Française de Minéralogie et de Cristallographie Base de données de spectres Raman. Siderite, Rhodochrosite; quoted from http://wwwobs.univ-bpclermont.fr/sfmc/ramandb2/fpdf/SIDER31.pdf
- Burgio, L., Clark, R.J.H., 2001. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochimica Acta, Part A, 57, 1491-1521.
- Cotton, F.A., 1990. Chemical applications of group theory. Third edition. Wiley-Interscience, Texas.
- Frost, R.L., Hales, M.C., Reddy, B.J., 2007. Aurichalcite A SEM and Raman spectroscopic study. Polyhedron, 26, 3291-3300.
- Frost, R.L., Martens, W.N., Rintoul, L., Mahmutagic, E., Kloprogge, J.T., 2002. Raman spectroscopic study of azurite and malachite at 298 and 77 K. Journal of Raman Spectroscopy, 33, 252-259.
- Gunasekaran, S., Anbalagan, G., Pandi, S., 2006. Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892-899.
- Koura, N., Kohara, S., Takeuchi, K., Takahasi, S., Curtiss, L.A., Grimsditch, M., Saboungi, M.L., 1996. Alkali carbonates: Raman spectroscopy, ab initio calculations and structure. Journal of Molecular Structure, 382, 163-169.
- Krishnamurti, D., 1960. The Raman spectra of aragonite, strontianite and witherite. Indian Academy of Sciences.
- Mattei, E., Vivo, G., Santis, A., Gaetani, C., Pelosi, C., Santamaria, U., 2008. Raman spectroscopic analysis of azurite blackening. Journal of Raman Spectroscopy, 39, 302-306.
- Nakamoto, K., 1997. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. John Wiley and Sons, New York.
- Nakamoto, K., 2009. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. (Sixth edition). John Wiley and Sons, New Jersey.
- Scheetz, E.B., White, B.W., 1977. Vibrational spectra of the alkaline earth double carbonates. American Mineralogist, 62, 36-50.
- Urmos, J., Sharma, S.K., Mackenzie, F.T., 1991. Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 76, 641-646.