DONNAYITE, NaCaSr₃Y(CO₃)₀·3H₂O, A NEW MINERAL FROM MONT ST-HILAIRE, QUÉBEC

GEORGE Y. CHAO, PAUL R. MAINWARING AND JUDITH BAKER Department of Geology, Carleton University, Ottawa, Ontario K1S 5B6

Abstract

Donnayite occurs in pegmatite dykes, miarolitic cavities and interstices in nepheline syenite at Mont St-Hilaire. Québec. Usually associated with microcline, analcime, calcite, natrolite, chlorite, aegirine, arfvedsonite and other minerals, donnayite commonly occurs in syntactic intergrowths with ewaldite, a Sr analogue of ewaldite, mckelveyite, and rarely with synchysite. Crystals, 0.05 to 2 mm, vary in habit from platy, tabular, columnar, saucershaped, barrel-shaped to irregularly granular; they are usually pale yellow to yellow, but also colorless, white, grey, brown to reddish brown, with a white streak and vitreous lustre. Hardness = 3. D_{obs} =3.30 and $D_{calc} = 3.266$ g/cm³. Basal cleavage indistinct to fair. Dissolves in HCl with strong effervescence. Optically, biaxial negative, with α 1.551-1.561, β 1.646, γ 1.652, 2V 0-20°, $X \simeq c^*$. Donnayite is isomorphous with weloganite (as shown by the following unconventional setting): triclinic P1, a 9.000, b 8.999, c 6.793Å, α 102.77, β 116.28, γ 59.99°, Z = 1. The nine strongest powder diffraction lines are: 6.103 (4) (001), 4.368 (7) (120, 211, 110), 3.209 (3) (121, 111, 212), 2.839 (10) $(211, 1\overline{12}, 12\overline{2}), 2.598$ (4) $(33\overline{1}, 030, 30\overline{1}), 2.038$ (3) (310, 113, 212, 003, (2.018 (3) (242, 222, 420)),1.978 (3) (333, 303, 032, 032, 301, 331), 1.694 (3) $(54\overline{2}, 51\overline{2}, 1\overline{4}0, 150, 4\overline{1}\overline{1}, 45\overline{1}, 21\overline{4}, 1\overline{1}3)$. Twinning by rotation about [103]_{120°} and by reflection across (010), $(30\overline{1})$ or $(\overline{3}\overline{3}1)$ is extremely common. Electron microprobe analysis gives: Na₂O 3.37, CaO 5.75, BaO 0.85, SrO 35.8, Y2O3 13.1, Nd2O3 1.83, La₂O₃ 0.45, CO₂ (30.98), H₂O (6.34), sum 98.47%. CO2 and H2O are assumed to be stoichiometric. The analysis corresponds to Na_{0.93}(Ca_{0.87} $Nd_{0.09}La_{0.03}$) ($Sr_{2.95}Ba_{0.05}$) $Y_{0.99}(CO_3)_6 \cdot 3H_2O$, or ideally NaCaSr₃Y(CO₃)₆•3H₂O. New data show that mckelveyite is also triclinic, isomorphous with weloganite and donnayite; its original analysis may be recalculated to $(Na_{1,29}K_{0,02}) (Ca_{0,73}U_{0,17}) (Ba_{2,72})$ Sr_{0.17}) (Y_{0.70}RE_{0.32}) (CO₃)₆ •3.48H₂O, close to NaCa- $Ba_3Y(CO_3)_6 \cdot 3H_2O.$

Sommaire

La donnayite se présente dans des dykes pegmatitiques, cavités miarolitiques et fissures dans la syénite à néphéline du mont St-Hilaire, dans la province de Québec. Elle s'y trouve ordinairement associée aux espèces suivantes: microcline, analcime, calcite, natrolite, chlorite, aegyrine, arfvedso-

nite. Elle forme des groupements syntaxiques avec l'éwaldite, l'éwaldite strontique, la mackelveyite et, mais rarement, avec la synchisite. Le faciès des cristaux est variable: aplati, tabulaire, prismatique, en forme de soucoupe ou de tonnelet, en masses grenues. Ces cristaux, dont la taille oscille entre 0.05 et 2mm, sont normalement de couleur jaune ou jaune pâle, parfois incolores, blancs, gris, bruns à rougeâtres, à poussière blanche et éclat vitreux. Dureté 3. Dobs 3.30, Dcale 3.266. Clivage parallèle à la base (plan du faciès tabulaire), indistinct ou assez bon. Ce minéral est soluble dans HCl avec forte effervescence. Observations optiques: α 1.551 - 1.561, β 1.646 γ 1.652, 2V (-) 0-20°, $X \simeq c^*$. La donnayite est isomorphe de la weloganite, triclinique P1, a 9.000, b 8.999, c 6.793Å, a 102.77, β 116.28, γ 59.99°, Z = 1 (maille non-conventionnelle pour montrer l'isomorphie). Pour les neuf raies les plus intenses du diagramme de poudre, 6.103 (4) (001), 4.368 (7) (120, 211, 110), 3.209 (3) (12<u>1</u>, 1<u>1</u>1, 21<u>2</u>), 2.839 (10) (211, 1<u>1</u>2, 12<u>2</u>), 2.598 (4) $(33\overline{1}, 030, 30\overline{1})$, 2.038 (3) $(3\overline{1}0, 1\overline{1}\overline{3}, 2\underline{1}2, 003)$, 2.018 (3) $(24\overline{2}, 2\overline{2}\overline{2}, 420), 1.978$ (3) $(33\overline{3}, 30\overline{3}, 30\overline{3}, 30\overline{3})$ 032, 032, 301, 331), 1,694 (3) (542, 512, 140, 150, 411, 451, 214, 113). Macles très fréquentes: par rotation $[103]_{120^{\circ}}$; par réflexion (010), (301), (331). La sonde électronique donne Na₂O 3.37, CaO 5.75, BaO 0.85, SrO 35.8 Y₂O₃ 13.1, Nd₂O₃ 1.83, La₂O₃ 0.45, CO₂ (30.98), H₂O (6.34), total 98.47% (on admet que CO₂ et H₂O sont stoechiométriques). Cette analyse correspond à Na0,93(Ca0.87Nd0.09La0.03) (Sr2.95 Ba_{0.05})Y_{0.99} (CO₃)₆•3H₂O, soit idéalement NaCaSr₃ Y(CO₃)₆ • 3H₂O. La mackelveyite, réexaminée, s'avère triclinique, isomorphe de weloganite et donnayite; sa composition originelle peut s'écrire $(Na_{1,29}K_{0,02})$ $(Ca_{0.73}U_{0.17})(Ba_{2.72}Sr_{0.17})(Y_{0.70}RE_{0.32})(CO_3)_6 \cdot 3.48H_2O_7$ soit NaCaBa₃Y(CO₃)₆•3H₂O comme formule idéale.

(Traduit par la Rédaction)

INTRODUCTION

In 1973 a specimen from mont St-Hilaire, Québec, labeled "brockite" was sent by D. W. Richerson to one of us (GYC) for verification. The specimen is composed of arfvedsonite, aegirine, calcite, sphalerite and minor amounts of catapleiite filling the interstices of coarse microcline crystals. The so-called "brockite" occurs as aggregates of approximately 0.5mm tabular crystals which usually display rough, irregular

FIG. 1. Scanning electron photomicrographs of donnayite. (a) Parallel growth or twinned crystal aggregate (1 mm dia.). (b) White tabular crystals (1 mm) of donnayite with brownish-red globular gaidonnayite crystals. (c) Saucer-shaped crystals (0.2 mm). (d) Columnar (1 mm long) aggregates displaying crystals with pedial termination. (e) Barrel-shaped crystal (1.5 mm long). (f) Hemimorphic crystals (0.2 mm) with pedial termination.

and somewhat curved surfaces with an overall hexagonal crystal outline. Some crystals are transparent with a pale yellow color but most crystals show a gradation of color from pale yellow and transparent near the rim to dark reddish brown and almost opaque toward the core. Under high magnification, with a scanning electron microscope, each "crystal" was found to be composed of numerous individuals in sub-parallel to parallel growth (Fig. 1a), too small to be separated for single-crystal X-ray work. Preliminary optical and X-ray studies together with electron microprobe analyses indicated the mineral to be a new species, a Y-bearing analogue of weloganite (Na₂Sr₃Zr $(CO_3)_6 \cdot 3H_2O$: Chen & Chao 1975, Grice & Perrault 1975). However, due to the small amount of material available and the lack of truly single crystals, a complete description of the mineral was not possible and the mineral was therefore tentatively designated UK33.

A year later, the mineral was again encountered in small quantities in varied mineral associations, habits and colors on newly collected specimens and on specimens sent to us for verification from several advanced mineral collectors. It became possible, therefore, to gather sufficient data for characterizing this new species. The mineral has been named donnayite, after Professors J. D. H. Donnay and G. Donnay, in recognition of their contributions to the fields of crystallography and mineralogy. Both the mineral and its name have been approved by the Commission on New Minerals and Mineral Names, I. M. A. The type specimens are deposited at the National Museum of Natural Sciences, Ottawa (Specimen #39394, 39395, 39396) and the Royal Ontario Museum, Toronto (specimen #M35222).

OCCURRENCE AND PHYSICAL PROPERTIES

Donnayite occurs in small quantities in the pegmatite dykes, miarolitic cavities and interstices in the nepheline syenite at Mont St-Hilaire, Québec. The mineral is usually associated with microcline, analcime, natrolite, calcite, arfvedsonite and minor chlorite. aegirine. amounts of siderite, rhodochrosite, ancylite, pyrite, sphalerite, hematite, goethite, pyrophanite, catapleiite, gaidonnayite and astrophyllite. Crystals are usually very small, from 0.05 to 1.0mm, rarely 2.0mm. The mineral is commonly pale yellow to yellow, but also colorless, white, grey and rarely reddish brown due to hematite inclusions. The streak is white. The mineral is transparent with a vitreous lustre, but the white and grey varieties are opaque and earthy. Crystals with vitreous lustre have a hardness about 3 on the Mohs scale whereas the earthy material is apparently softer. An indistinct to fair basal cleavage is present. Density determined by the flotation method is 3.30(1) g/cm³. The mineral dissolves rapidly in 1:1 HCl with strong effervescence.

Donnayite crystals generally display apparent trigonal or hexagonal symmetry with various habits from platy, tabular (Fig. 1b), saucer-

FIG. 2. Scanning electron photomicrographs of polycrystals produced by syntactic intergrowth of donnayite with other minerals. (a) Hemimorphic polycrystals (1.5-2.0 mm long) of ewaldite (dark bands) and donnayite (lighter bands) with a donnayite "cap"(D). The polycrystals are white and opaque, the "caps" are pale yellow and transparent. (b) A doubly terminated hemimorphic polycrystal (2.0 mm long) of ewaldite and its Sr analogue with "caps" of donnayite(D) and mckelveyite(M).

shaped (Fig. 1c), columnar (Fig. 1d), barrelshaped (Fig. 1e) to irregularly granular. Some crystals are clearly hemimorphic, with curved trigonal pyramidal faces converging toward a point on one end and terminated with a flat pedion on the other (Fig. 1f). As with the minerals in the bastnaesite-synchysite family (Donnay & Donnay 1953), donnayite commonly forms syntactic intergrowths with other minerals of similar structure and chemical composition. Ewaldite, Ba(Na,Ca,Y,RE)(CO₃)₂ (Donnay & Donnay 1971), a Sr analogue of ewaldite, mckelveyite, and rarely synchysite have been found in such intergrowths with donnayite. Donnayite may occur as a "cap" on ewaldite crystals as shown in Figure 2a. In one case, a hemimorphic polycrystal of ewaldite was found to have a "cap" of donnayite on one end and a "cap" of mckelvevite on the other (Fig. 2b).

Optically, donnayite is biaxial negative with α 1.551-1.561(2), β 1.646(2), and γ 1.652(2). The 2V varies from crystal to crystal and from point to point on the same crystal from 20° to almost 0°, the most commonly observed values being 5 to 10° . The X principal vibration axis is approximately parallel to c^* with a maximum deviation from parallelism of 5°. Prismatic sections of well-formed crystals always show sharp and nearly parallel extinctions between crossed polars whereas the basal sections either show patchy extinction or no extinction at all. On these basal sections the orientation of the optic plane has been observed to vary from point to point corresponding to rotations of 60° or 120° about c^* , strongly suggesting twinning. The acute-bisectrix interference figures often show complications and various degrees of distortion, probably due to overlapping twinned individuals.

X-RAY CRYSTALLOGRAPHY

Crystals of donnayite used for the singlecrystal X-ray diffraction study were first checked optically for identity and possible intergrowth of other minerals using a spindle stage and then by X-ray using a 114.6 mm diameter Gandolfi camera. The precession photographs show that donnayite is triclinic, pseudorhombohedral and isomorphous with weloganite (Table 1). The space group is Pl by virtue of the hemimorphic crystal morphology (Fig. 1f). The cell parameters of donnayite given in Table 1 are results of a least-squares refinement using powder diffraction data (Table 2). A non-conventional cell is used here in order to bring out the pseudosymmetry (a =b, $\gamma = 60^{\circ}$) and to allow a direct comparison with the cell of weloganite. Due to the strong pseudosymmetry, there are two equally acceptable choices of the reduced cell (Table 3) which may be derived from the adopted cell by the matrices 101/110/001 and 101/010/001. The difference between the two reduced cells is well within the error of measurement.

As with weloganite, twinning in donnayite is the rule rather than the exception. Many unsuccessful attempts were made to obtain untwinned fragments by repeatedly splitting twinned crystals. Significant changes in the volume ratio of the twin individuals were obtained, in the best cases, which permitted the recognition of the triclinic symmetry from the X-ray photographs. Two twin laws are operative either individually or simultaneously. These may be stated as a rotation about [103]120° or [001]*_{120°} and a reflection across (010), $(30\overline{1})$ or $(\overline{3}\overline{3}1)$. The twin axis corresponds to the pseudo three-fold axis and the twin planes

TABLE 1. CELL PARAMETERS OF DONNAYITE AND RELATED MINERALS

Donnayite NaCaSr ₃ Y(CO ₃) ₆ •3H ₂ O		Weloganite $Na_2Sr_3Zr(CO_3)_6^{*3H_2O}$			McKelveyite NaCaBa ₃ Y(CO ₃)•3H ₂ O	
	This study	Chen & Chao 1975	Grice & Perrault 1975	Sabina <u>et</u> <u>al</u> . 1968	This study	Milton <u>et al</u> . 1965
Symmetry	P1	P1	P]	^{P3} 1.2	Pl	p 3 *
a (Å)	9.000(1)	8.988(1)	8.966(1)	8.96	9.170(3)	9.174(2)
b c α(°) β	8.999(1) 6.793(1) 102.77(1) 116.28(1)	9.988(1) 6.730(1) 102.84(1) 116.42(2)	6.730(1) 102.72(2) 116.65(1)	18.06	7.075(2) 102.50(3) 115.63(3) 59.99(3)	19.154(7)
	59.99(1) 427.4 1 3.30(1)	421.6 1	419.6 1	3x418.5 3 3.22(3)	464.5 1	3x465.4 3 3.62
D _{calc}	3.266	3.208		3.260		3.47-3.58

* Also P3 or P3m1, Desautels (1967).

ŧ

TABLE 2. X-RAY POWDER DIFFRACTION DATA OF DONNAYITE(1)

	Donnayite			Weloganite ⁽²⁾		
hk1	dcalc	d _{obs}	I _{obs}	d _{calc}	d _{obs}	I _{obs}
010	7.792	7.768	1	7.784	7.786	3
100				7.149	7.143	3
001	6.094	6.103	4	6.027	6.022	5
011				4.766	4,765	1/2
ōit				4.765		., -
211	4.370	4 260	-	4.361	1 262	
110	4.369	4.300	'	4.361	4.302	o
121	4.037			4.024		
111	4.037	4.041	2	4.024	4.022	4
101	4.037			4.024	3,906	1
iii				3.909	011.00	•
212	3.207			3.187		_
121	3.206	3.209	3	3.188	3.187	5
002	3.047	3.050	2	3.013	3.013	5
ĨĨŹ	2.838		-	2.817		
122	2.838	2.839	10	2.817	2.817	10
211	2.83/			2.818		
030	2.598	2,598	4	2.594	2.594	7
301	2.598			2.594		
330	2.390			2.384		
031	2.390	2.391	2	2.383	2.382	6
ŏ3i	2.390	1.02.	-	2.383		-
300	2.389			2.383		
213	2.259	2 261	~1	2.239		
122	2.259	2.201	~,	2.239		
221	2.233			2.230	2.233	7
241	2.233	2.233	2	2.230		
220	2.233	2 183	<]	2.230	2,181	2
240	2.184	21100	••	2.180	21101	-
1 <u>13</u>	2.038			2.019		
310	2.03/	2.038	3	2.032	2.024	I
003	2.037			2.019		
242	2.019			2.012		
222	2.018	2.018	3	2.012	2.012	7
420	2.018			2.012		
333	1.977			1.966		
30 <u>3</u>	1.977		_	1.966		-
032	1.977	1.978	3	1.966	1.966	/
301	1.977			1.966		
331	1.977			1.966		
423	1.917	1 010	2	1.908	1 007	7
241	1.916	1.910	3	1.908	1.907	
214	1.694			1.677	1.676	4
113	1.694			1.677		
542	1.694			1.691		
140	1.693	1.694	3	1.691	1.691	4
150	1.693			1.691		
411	1.693			1.691		
451	1.693			1.589		
033	1.600			1.588		
302	1.600			1.588		~
515	1.600	1.600	2	1.588	1.589	6
141	1.594			1.590		
410	1.594			1.590		
151	1.594			1.590		
441 403	1.561					
213	1.559	1.560	2			
114	1.559					
124	1.559					
000	1.009					

		us many mor				
	P1	us many mon	re lines			
133	1.346			1.341		
363	1.346	1.345	<1	1.341	1.341	1
532	1.500			1.498		-
36T	1.500	1.499	<1	1.498	1.497	3
331	1.500		-	1.498		
510	1.542			1.537		
42	1.542			1.537		
13	1.542	1.541	<1	1.537	1.538	4
52	1.542			1.537		
640	1.542			1.538		

CuKα radiation, λ = 1.5418Å, 114.6 mm camera, Si standard, visual intensities.
Data from Chen & Chao (1975).

correspond to the pseudo mirror planes of the pseudorhombohedral lattice.

ELECTRON MICROPROBE ANALYSIS

Donnavite was analyzed using a Cambridge MK5 electron microprobe for the following elements using the standards shown in parentheses: Ca, Y, La (rare earth glass REE3, Drake & Weill 1972), Nd (REE2), Ba (synthetic barium ferrite), Sr (strontianite), and Na (sodium niobate). K, Zr, Si, Al, F, Nb, Ce and other rare-earth elements were also looked for but not detected. The analyses were performed at 15kV using a slightly defocused beam. To avoid producing a crater on the specimen, which would reduce the Na count-rate with time, the specimen was translated across the beam at 10 μ m per minute. Raw X-ray data with fixed carbon weight percentage were processed using the ZAF correction procedure of EMPADR VII (Rucklidge & Gasparrini 1969).

Several crystals, representative of different habits and mineral associations, were initially selected and prepared for analysis. However, all except one crystal were shown to be unsuitable owing to the presence of intimate syntactic intergrowths with other minerals. The analysis (Table 4) was, therefore, obtained from one crystal only. The CO₂ and H₂O values given in Table 4 were calculated on the basis of 6CO₃²⁻ and 3H₂O per formula by analogy with weloganite. This analysis corresponds to Na_{0.93} $(Ca_{0.87}Nd_{0.09}La_{0.03})(Sr_{2.95}Ba_{0.05})Y_{0.99}(CO_3)_6 \cdot 3H_2O_7$ or ideally, NaCaSr₃Y(CO₃)₆•3H₂O. Assuming one formula unit per cell, the density calculated

TABLE 3. THE REDUCED CELLS OF DONNAYITE

	(1)	(2)
a(Å) b c α(°) β γ	8.544 8.998 6.793 102.81 109.19 110.51	8.544 8.999 6.793 102.77 109.19 110.55

Transformation matrix from adopted cell to reduced cell $(1) = \overline{101}/1\overline{10}/001$ and to $(2) = 101/0\overline{10}/00\overline{1}$.

TABLE 4. ELECTRON MICROPROBE ANALYSIS OF DONNAYITE

	Wt%	Wi	:%
Na ₂ 0	3.37	Nd203 1	.83
CaÖ	5.75	$La_2 0_3 = 0$	45
BaO	0.85	C0, (30.	.98)
Sr0	35.8	H20 (6	34)
^Y 2 ⁰ 3	13.1	Total 98	.47

Contents of $\rm CO_2$ and $\rm H_2O$ were calculated on the basis of 6CO_3 and 3H_2O per formula.

from the empirical formula is $3.266g/cm^3$, in good agreement with the observed value of $3.30g/cm^3$.

DISCUSSION

The isomorphous relationship between donnayite and weloganite may be extended to mckelvevite which also has been found in small amounts, forming syntactic intergrowths with donnayite at Mont St-Hilaire. Mckelveyite from the Green River Formation, Wyoming was originally described by Milton et al. (1965) as trigonal P3, a 9.174(2), c 19.154(7)Å, with two units of Na_{1.9}Ba_{4.0}Ca_{1.1}Sr_{0.2}RE_{1.5}U_{0.3}(CO₃)₉•5H₂O per cell. The space group was later given as P3 or P3ml by Desautels (1967) based on morphological evidence. The isomorphism, suggested by the strong similarity of its powder diffraction pattern (Milton et al. 1965) with those of donnayite and weloganite, was confirmed by X-ray study of a single crystal obtained by repeatedly splitting a twinned crystal. The parameters of the triclinic cell of mckelveyite derived from least-squares refinement using the powder data given by Milton et al. (1965) are compared with those of donnayite and weloganite in Table 1. The original analysis of mckelveyite may be recalculated, on the basis of $6CO_2$ per formula, to $(Na_{1.29}K_{0.02})$ $(Ca_{0.73}U_{0.17})$ (Ba_{2.72}Sr_{0.17}) (Y_{0.70}RE_{0.32}) (CO₃)₆•3.48H₂O. Despite the analytical difficulties stated by the authors (mainly due to large amounts of inclusions of organic matter, acmite, biotite and quartz) the recalculated formula is surprisingly close to the expected ideal formula NaCaBa₃Y(CO₃)₆·3H₂O. Thus, mckelveyite is clearly the Ba analogue of donnayite. The two minerals probably form a solid solution but the extent of the solid solution is not yet known.

The Na:Ca ratios in donnayite and mckelveyite are both very close to 1:1; therefore, it is reasonable to assume that Na and Ca atoms are ordered in the two distinct positions occupied by Na in the weloganite structure (Grice & Perrault 1975).

ACKNOWLEDGEMENTS

The authors are thankful to Charles and Marcelle Weber, W. A. Henderson, Jr., David W. Richerson, Peter Tarassoff, Les Horvath and Q. Wight who either donated materials used in this study or placed their valuable specimens at our disposal. We are also indebted to Prof. A. Pabst for providing specimens of mckelveyite from the drill core of Perkins Green River No. 3. This work is supported by National Research Council grants A5113 to GYC, and E3815 to the microprobe facility.

References

- CHEN, T. T. & CHAO, G. Y. (1975): X-ray crystallography of weloganite. Can. Mineral. 13, 22-26.
- DESAUTELS, P. E. (1967): The morphology of mckelveyite. Amer. Mineral. 52, 860-864.
- DONNAY, G. & DONNAY, J. D. H. (1953): The crystallography of bastnaesite, parisite, roentgenite, and synchisite. *Amer. Mineral.* 38, 932-963.
- & (1971): Ewaldite, a new barium calcium carbonate. I. Occurrence of ewaldite in syntactic intergrowth with mckelveyite. *Tscher*maks Mineral. Petrog. Mitt. 15, 185-200.
- DRAKE, M. J. & WEILL, D. F. (1972): New rare earth element standards for electron microprobe analysis. *Chem. Geol.* 10, 179-181.
- GRICE, J. D. & PERRAULT, G. (1975): The crystal structure of triclinic weloganite. Can. Mineral. 13, 209-216.
- MILTON, C., INGRAM, B., CLARK, J. R. & DWORNIK, E. J. (1965): Mckelveyite, a new hydrous sodium barium rare-earth uranium carbonate mineral from the Green River Formation, Wyoming. *Amer. Mineral.* 50, 593-612.
- RUCKLIDGE, J. C. & GASPARRINI, E. L. (1969): A computer program for processing electron microprobe analytical data (EMPADR VII). Dep. Geol. Univ. Toronto.
- SABINA, A. P., JAMBOR, J. L. & PLANT, A. G. (1968): Weloganite, a new strontium zirconium carbonate from Montreal Island, Canada. Can. Mineral. 9, 468-477.
- Received April 1978, revised manuscript accepted May 1978.