APPENDICES

Appendix A	Early structural data	354
Appendix B	Modern data for monoclinic structures $(C2/m)$	362
Appendix C	Modern data for orthorhombic structures (Pnma)	413
Appendix D	Modern varieties ($P2_1/m$, $Pnmn$, $P2/a$)	429
Appendix E	Preliminary data	435
Appendix F	Mössbauer spectral studies of amphiboles	439
Appendix G	Infrared spectral studies of amphiboles	468
Appendix H	Magnetic susceptibility of amphiboles	479

The division between Appendix A and Appendix B is somewhat arbitrary but conforms to current usage. The majority of structure refinements in Appendix A are based on 2-D data. and those based on 3-D data have been superceded by more recent and more precise refinements. Thus the data listed in Appendix A are limited to "primary data", consisting of chemical compositions, cell contents, atomic positions and site occupancies. For Appendices B, C and D, complete data are listed; all "derivative data", interatomic distances and angles, were recalculated during this study. Where the calculated value(s) differed from those published by the original author(s) by more than two standard deviations, the discrepancy was identified (misprint in atomic position, bond length or bond angle), and the corrected value was used. The site-population Appendices (A3, B3, C3, D3, E3, F3, G2) also contain an outline of the method(s) used to derive the site populations, additional references to the source of the material and chemical data, and an assessment of the results; of course the latter cannot help but be somewhat subjective, good intentions to the contrary. For oxide sums, * indicates that additional oxides are present.

Where relevant, the method of cell-content calculation from the results of the chemical analysis is indicated by a number as follows:

- 1 24 (O, OH, F)
- 2 23 oxygen atoms
- 3. 13 cations
- 4 16 cations
- 5 Cell contents assumed
- 6 Not given
- 7 Normalized on cell volume and density
- 8 8(Si + Al)
- 9 8 Si
- 10 Other (see Appendix B3)

In the numbering system used, [] and () respectively designate orthorhombic and monoclinic amphiboles for which crystal-structure data are available; {} denotes an amphibole characterized by Mössbauer spectroscopy; < >denotes an amphibole examined by infrared absorption spectroscopy (but not Mössbauer spectroscopy); – denotes an amphibole examined by vibrational spectroscopy (exclusive of the hydroxyl stretching region); = denotes an amphibole for which magnetic susceptibility data are available.

PAGE

APPENDIX A. EARLY STRUCTURAL DATA

(1)	Tremolite	Warren (1929)
[2]	Anthophyllite	Warren & Modell (1930b)
(3)	Magnesio-riebeckite	Whittaker (1949)
[4]	Anthophyllite	Ito & Morimoto (1950)
(5)	Magnesio-hornblende	Zussman (1955)
(6)	Pargasitic hornblende	Heritsch et al. (1957)
(7)	Edenitic hornblende	Heritsch et al. (1957)
(8)	Tremolite	Zussman (1959)
(9)	Cummingtonite	Ghose & Hellner (1959)
(10)	Tschermakitic hornblende	Heritsch & Kahler (1960)
(11)	Alumino-pargasitic hornblende	Heritsch & Kahler (1960)
(12)	Potassian titanian magnesio-hastingsite	Heritsch & Riechert (1960)
(13)	Potassian titanian magnesio-hastingsite	Heritsch et al. (1960)
(14)	Potassian arfvedsonite	Kawahara (1963)
(15)	$Na_{2}H_{2}Co_{5}Si_{8}O_{22}(OH)_{2}$	Prewitt (1963), Gibbs & Prewitt (1968)
(16)	$Na_2H_2Mg_5Si_8O_{22}F_2$	Prewitt (1963), Gibbs & Prewitt (1968)
(17)	Riebeckite	Colville & Gibbs (1964)
(18)	Anthophyllite	Lindeman (1964)
(19)	Pargasitic hornblende	Trojer & Walitzi (1965)

		PAGE
Appendix A1.	Chemical compositions and unit-cell data	355
Appendix A2.	Atomic positions	357
Appendix A3.	Site populations and annotations	359

APPENDIX A1. CHEMICAL COMPOSITIONS AND UNIT-CELL DATA

<u> </u>										
	(1)	[2]	(3)	[4]	(5)	(6)	(7)	(8)	(9)	(10)
S102	-	59.29	56.1	-	50.21	44.60	45.05	57.66	51.0	45.96
Ti02	-	-	-	- .	1.20	1.30	1.40	0.01	_	0.62
A1203	-	0.59	0.66	-	4.55	14.14	13.78	1.51	0.2	14.84
Fe203	-	0.29	15.6	-	2.77	1.76	0.99	0.23	-	3.73
Fe ⁰	-	0.06	4.06	-	9.03	4.98	9.98	0.33	34.1	4.48
MnO	-	2.77	0.00	-	0.19	-	0.20	0.01	1.6	0.04
MgO	-	30.98	14.5	-	17.85	15.40	12.01	24.34	8.4	14.63
Ca0	-	1.26	1.11	-	9.69	11.46	10.28	13.79	0.6	9.51
Na2O	-	0.37	5.05	-	0.40	3.20	3.84	0.12	0.05	3.25
K20	-	0.19	0.71	-	0.23	1.17	0.16	0.02	0.3	0.43
H20	-	3.80	(2.21)) —	4.07	2.01	2.48	2.26	-	2.58
F	-	0.20		-	0.15	-			-	
		99 . 80	100.00	-	100.44	100.02	100.17	100.28	96.25	100.07
O≅F	-	0.08		-	0.06					
Total	-	<u>99.72</u>	100.0		100.38	100.02	100.17	100.28	96.25	100.07
Si	8.00	7.76	7.94	8.00	7.13	6.37	6.54	7.81	8.0	6.47
A1		0.09	0.06	_	0.76	1.63	1.46	0.19	tr.	1.53
<u>ς</u> ίυ	8.00	7.85	8.00	8.00	7.89	8.00	8.00	8.00	8.00	8.00
A 1	_	_	0.05	_	-	0.76	0.90	0.05	-	0.93
Ti	_	_	~	_	0.13	0.17	0.15	-	_	0.07
Fe3+	_	0.03	1.66	_	0.30	0.17	0.10	0.02		0.40
Fe2+	-	0.01	0.48	-	1.07	0.59	1.21	0.04	4.71	0.53
Mn	-	0.31	_		0.02	-	0.03	_	0.22	0.01
Mg	5.00	6.04	3.06	7.00	3.78	3.31	2.61	4.92	2.07	3.06
Συί	5.00	-	5.25	-	5.30	5.00	5.00	5.03	-	5.00
Σ vi_5	; <u> </u>		0.25	-	0.30			0.03	-	_
Ca	2.00	0.18	0.17	-	1.47	1.75	1.59	2.00	-	1.44
Na		0.10	1.38	-	0.11	0.25	0.41	-	-	0.56
∑ ^M (4)	2.00	6.67	1.80	7.00	1.88	2.00	2.00	2.03	7.00	2.00
Na	_	_	_	_	_	0.63	0.67	0.03	-	0.33
K	-	0.03	0.13	-	0.04	0.22	0.03	-	-	0.08
ΣA	-	0.03	0.13	-	0.04	0.85	0.70	0.03	-	0.41
Basis	5	1	6	5	7	6	6	1.	6	3
a (Å)	9 7/	18 5	0,70	18 5	0 97	0 86(6)	0 80(3)	9 840(5)	9 564	9 87(3)
ъ (A)	17.8	17.9	17.95	17.9	18:14	17,99(6)	18.04(9)	18.052(9)	18,302	18,01(3)
៍ផ្លំ	5.26	5.27	5, 21	5.27	5.31	5.300(5)	-5 33(1)	5.275(5)	5.348	5,333(9)
	105.2	90	103 0	90	105.4	105.6(2)	104.6(2)	104.7(1)	101.83	105.7(1)
v(Å3)	880	1745	899	1745	916.6	905.5	911.9	906.3	916.2	911.9

	(11)	(12)	(1	.3)	(14)	(15)	(16)	(17)	(18)	(19)
SiO2	43.18	39.24	40.95	39.85	39.66	47.46	-	-	-	-	44.20
T102	0.93	4.28	1(21	4.40	4.00	0.74	-	-	-	-	10.02
AL203	10.84	14.14	14.31	14.74	14.2/	2.43	-	-	-	-	13.93
re203	4.55	10.24	5.81	5.1/	5.07	11.85	-	-	-	-	4.2/
FeO	7.37	0.26	7.18	5.38	2.TO	24.44	-	~	-	-	8.14
Mn.O	0.04	0.08				0.56	-		-	-	11 FO
MgO	10.81	13.68	14.06	13.16	14.56	0.46	-	-	-	-	11.23
Ca0	9.20	12.55	12.55	11.54	10.78	1.19	-	-	-	-	9.60
Na_20	3.61	1.88	1.64	2.23	3.52	6.89	-	-	-	-	3.02
к ₂ 0	0.93	1.68	1.54	1.86	2.10	1.59	-	-	-	-	0.80
H20	3.44	2.41	0.26	1.86	0.49	2.25	-	-	-	-	3.08
F	-	-	-	-		-	-	-	-	-	
	100.90	100.44	99.10	100.19	100.15	100.02					100.00
O≡F	-	-	-	-	-	-	-	-	-	-	-
Total	100.90	100.44	99.10	100.19	100.15	100.02	-	-	-		10 0. 00
Si	6.29	5.83	-	5.85	-	7.50	8.00	8.00	-	-	6.46
A1	1.71	2.17	-	2.15	-	0.45			-		1.54
s iv	8.00	8.00	-	8.00	-	7.95	8.00	8.00	-	- :	8.00
A1.	1.16	0.31	-	0.40	-	-	-	-	-	-	0.86
Ti	0.10	0.48	-	0.49	-	0.09	-	-	-	-	0.15
Fe ³⁺	0.50	1.14	-	0.57	-	1.41	-	-	-	-	0.47
Fe2+	0.90	0.03	-	0.66	-	3.23	-	-	-	-	1.00
Mn	0.01	0.01	-		-	0.08	5.0Co	-	-	-	0.01
Mg	2.33	3.03	-	2.88	-	0.11		5.00	-	-	2.51
∑ີ ບໍ	5.00	5.00	-	5.00	-	4.92	5.00	5.00	-	-	5.00
_Σ vi_5	-	-	→	- ,	-	-	-	-	-	-	
Ca	1.44	2.00	-	1.82	-	0.20	-	-	-	-	1.50
Na	0.56	0.00		0.18	-	1.80	2.00	2.00	-		0.50
∑M(4)	2.00	2.00	-	2.00	-	2.00	2.00	2.00	-	-	2.00
Na	0.46	0.54	_	0.46	-	0.31	2H	2H	-	-	0.36
ĸ	0.17	0.32	_	0.35	_	0.32			-	-	0.15
ΣA	0.63	0.86	-	0.81	-	0.63	-	-	-	-	0.51
Basis	3	3	-	3	-	1	5	5	-	-	3
a (8)	0 00	(3) 0.0	8(2)	0 0	18(7)	9 94	9,832(5)	9,650(5)	9.811	18.576(5)	9.86
	10 05	(7) 17 0	8(2)	18 1	22 (20)	18.17	18.088(2)	17,920(2)	18.023	18.010(5)	18.07
	TO . 02	(1) 5 3	2(2)	TO • 1	365(25)	5 3/	5.299(5)	5,270(5)	5.316	5.258(2)	5.333
C (A)	105 5	(1) 10C	1(2)	105	7(2)	106 /	103 0(2)	102 9(2)	103.77	90	105.48
β (°)	T02.2	(T) TOP*	1(2)	0.50 TOD	·/(2)	104.4 03/	10J.0(2)	888 3	913.0	1759.1	915.7
V (A")	9T0"/	919.	v	232	• ~		710.4				

APPENDIX A2. ATOMIC POSITIONS

		(1)	Į	2]	(3)		[4]	(5)	(6)
			A-chain	B-chain		A-chair	n B-chair	ı	
0(1)	x	0.14	0.19	0.06	0.117	0.185	0.065	0.117	0.099
	y	0.08	0.18	0.18	0.089	0.178	0.178	0.087	0.092
	z	0.24	0.05	-0.30	(0.207)	0.050	-0.300	(0.217)	(0.219)
0(2)	x	0.14	0.19	0.06	0.120	0.185	0.065	0.120	0.117
	y	0.18	0.07	0.07	0.173	0.072	0.072	0.176	0.176
	z	0.74	-0.44	0.20	(0.740)	-0.450	0.200	(0.720)	(0.727)
0(3)	x	0.14	0.19	0.06	0.110	0.190	0.060	0.112	0.117
	y	0	1/4	1/4	0	1/4	1/4	0	0
	z	0.74	-0.45	0.20	(0.710)	-0.530	0.220	(0.712)	(0.717)
0(4)	x	0.36	0.19	0.06	0.354	0.190	0.060	0.362	0.363
	y	0.25	0.00	0.00	0.246	0.000	0.000	0.249	0.250
	z	0.76	0.05	-0.30	(0.804)	-0.030	-0.280	(0.792)	(0.803)
0(5)	x	0.36	0.20	0.05	0.353	0.200	0.050	0.350	0.349
	y	0.14	-0.13	-0.13	0.140	-0.125	-0.125	0.137	0.138
	z	0.11	0.30	0.05	(0.173)	0.300	0.050	(0.140)	(0.149)
0(6)	x	0.36	0.20	0.05	0.337	0.200	0.050	0.340	0.341
	y	0.11	-0.13	-0.13	0.110	-0.125	-0.125	0.114	0.117
	z	0.61	-0.20	-0.46	(0.677)	-0.200	-0.450	(0.640)	(0.631)
0(7)	x	0.36	0.19	0.06	0.326	0.190	0.060	0.335	0.343
	y	0	-1/4	-1/4	0	-1/4	-1/4	0	0
	z	0.26	0.45	0.20	(0.346)	0.470	0.220	(0.325)	(0.353)
T(1)	x	0.29	0.22	0.03	0.280	0.225	0.025	0.280	0.276
	y	0.08	-0.18	-0.18	0.088	-0.175	-0.175	0.086	0.087
	z	0.30	-0.46	0.29	(0.360)	-0.461	0.289	(0.340)	(0.346)
T(2)	x	0.29	0.22	0.03	0.287	0.225	0.025	0.288	0.293
	y	0.18	-0.08	-0.08	0.170	-0.075	-0.075	0.172	0.170
	z	0.80	0.04	-0.21	(0.877)	0.039	-0.211	(0.838)	(0.863)
M(1)	x	0	0.1	3	0	0.1	124	0	0
	y	0.09	0.1	7	0.090	0.1	167	0.088	0.089
	z	1/2	0.3	8	(1/2)	0.1	385	(1/2)	(1/2)
M(2)	x	0	0.1	0.13		0.1	L24	0	0
	y	0.17	0.0	0.08		0.0	D83	0.178	0.178
	z	0	-0.1	-0.13		-0.1	L15	(0)	(0)
M(3)	x y z	0 0 0	0.1 1/4 -0.1	3 3	0 0 (0)	0.1 1/ -0.1	L24 /4 L15	0 0 (0)	0 0 (0)
M(4)	x	0	0.1	3	0	0.1	124	0	0
	y	0.28	-0.0	2	0.277	-0.0	019	0.277	0.279
	z	1/2	0.3	3	(1/2)	0.3	885	(1/2)	(1/2)

٦

									(1 1)	(10)
		(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(19)
	x	0.099	0.1134	0.111	0.098	0.098	0.104	0.099	0.117	0.105
0(1)	У	0.092	0.0873	0.088	0.093	0.093	0.089	0.092	0.089	0.092
	z	(0.219)	-	0,208	(0.208)	(0.208)	(0.224)	(0.219)	-	(0.21)
	x	0.117	0.1195	0.126	0.115	0.115	0.117	0.118	0.122	0.112
0(2)	У	0.176	0.1710	0.174	0.177	0.177	0.173	0.1/6	0.1/1	(0.710)
	Z	(0.727)	-	0./15	(0.715)	(0.713)	(0.757)	0.115	0 110	0 100
0(0)	x	0.117	0.1130	0.114	0.114	0.114	0.110	0.115	0.110	0.109
0(3)	y z	(0.717)	_	0.707	(0.714)	(0.714)	(0.710)	(0.715)	-	(0.71)
		0 262	0 3651	0 381	0 366	0.366	0.368	0.362	0.354	0.371
0(4)	x v	0.250	0.2481	0.245	0.251	0.251	0.250	0.250	0.246	0.250
- ()	z	(0.803)	-	0.771	(0.796)	(0.796)	(0.838)	(0.802)	-	(0.79)
	x	0.349	0.3463	0.349	0.353	0.353	0.349	0.348	0.351	0.352
0(5)	У	0.138	0.1340	0.129	0.139	0.139	0.138	0.138	0.136	0.138
	z	(0.149)	-	0.053	(0.143)	(0.143)	(0.149)	(0.148)	-	(0.14)
	x	0.341	0.3434	0.350	0.337	0.337	0.342	0.342	0.337	0.338
0(6)	У	0.117	0.1179	0.118	0.115	0.115	0.11/	0.118	U. 114	(0.65)
	z	(U.031)	-	0.347	(0.047)	(0.047)	0.345	0.240	0 226	0.338
0(7)	x	0.343	0.3376	0.342	0.338	0.338	0.345	0.340	0.320	0
0(7)	y z	(0.353)	-	0.275	(0.338)	(0.338)	(0.355)	(0.350)	_	(0.33)
	v	0.276	0.2791	0.286	0.279	0.279	0.284	0.275	0.280	0.284
T(1)	y	0.087	0.0838	0.084	0.087	0.087	0.087	0.087	0.083	0.086
	z	(0.346)	-	0.273	(0.339)	(0.339)	(0.334)	(0.345)	-	(0.34)
	x	0.293	0.2880	0.298	0.294	0.294	0.294	0.292	0.289	0.295
T(2)	У	0.170	0.1707	0.168	0.172	0.172	0.172	0.170	0.170	0.173
	Z	(0.863)	-	0./81	(0.854)	(0.854)	(0.849)	(0.002)	_	(0.05)
	x	0	0	0	0	0	0	0	0.091	0.088
M(T)	y 7	(1/2)	0.08//	1/2	(1/2)	(1/2)	(1/2)	(1/2)	-	(1/2)
		(_, _, _,	0	_, _	0	0	0	0	0	0
M(2)	v	0.178	0.1761	0.179	0.177	0.177	0.176	0.178	0.183	0.177
	z	(0)	-	-	(0)	(0)	(0)	(0)	-	(0)
	x	0	0	0	0	0	0	0	0	0
M(3)	У	0	0	0	0	0	0	0	0	0
	z	(0)	-	0	(0)	(0)	(0)	(0)	-	(0)
	х	0	0	0	0	0	0	0	0	0 0 2 8 0
M(4)	У	0.279	0.2783	0.259	0.281	0.281 (1/2)	0.280	0.2/9	0.277	(1/2)
	Z	(1/2)	-	1/4	(1/2)	(1/4)	(1/4)	<u> </u>	-	

Tremolite(1)

T(1) = T(2) Si M(1) = M(2) = M(3) Mg M(4) Ca O(3) OH

Cation site-populations assigned by analogy with diopside (Warren & Bragg 1928). O(3) assigned as hydroxyl from the second rule of Pauling (1929). No chemical data given. Original structure in I2/m orientation.

Anthophyllite[2]

T1A = T1B = T2A = T2B si M1 = M2 = M3 = M4 Mg O(3) OH

Cation site-populations assigned by analogy with enstatite (Warren & Modell 1930a). O3A and O3B assigned as hydroxyl from second rule of Pauling (1929).

Magnesio-riebeckite(3)

M(1) = M(3) 0.72Mg + 0.28Fe

M(2) 0.33Mg + 0.02Al + 0.65Fe

M(4) 0.69Na + 0.065K + 0.085Ca + 0.125MgCation site-populations assigned from peak heights on Fourier syntheses, together with the cell contents from the chemical analysis. From the short $\langle M(2)-O \rangle$ and charge considerations, trivalent cations were considered to be strongly ordered at the M(2) site. Because of the fibrous nature of magnesio-riebeckite, only *hk*0 data could be collected; *z* parameters were derived by assuming that the cation polyhedra would be as regular as the *x* and *y* parameters allowed. Original structure in I2/m.

Mössbauer spectra of this amphibole are given in Bancroft & Burns (1969) and Ernst & Wai (1970); details are given in Appendix F, #{21}. The X-ray photoelectron spectrum is given by Adams *et al.* (1972), details given earlier in text.

Anthophyllite[4]

No chemical data given, $Mg_7Si_8O_{22}(OH)_2$ assumed. Site populations were presumably assigned after Warren & Modell (1930b).

Magnesio-hornblende(5)

M(1) = M(2) = M(3) 0.72Mg + 0.28FeM(4) 0.81Ca + 0.10Mg Cation site-populations assigned from peak heights on Fourier syntheses, together with the cell contents from the chemical data. The possibility of some Fe at M(4) was not ruled out. Only hk0 data were collected; z co-ordinates were determined as for magnesio-riebeckite (3). Original structure in 12/m. The original chemical composition is from Hutton (1940); redetermination of the water by Zussman (1955) gave 3.05 wt. %. The structural formula was calculated from the density and cell volume (Hey 1939), giving $X_{1.62}Y_{5.20}Z_{8.00}O_{22.0}(OH, F)_{1.99}$ H_{0.92}, indicating excess hydrogen in the structure. The results of a new analysis were given by Hutton (1956).

Pargasitic hornblende(6)

 $\begin{array}{l} T(1) = T(2) \ 0.80 Si \ + \ 0.20 Al \\ M(1) = M(2) = M(3) \ 0.66 Mg \ + \ 0.12 Fe^{2+} \\ + \ 0.03 Fe^{3+} \ + \ 0.15 Al \ + \ 0.04 Ti \\ M(4) \ 0.88 Ca \ + \ 0.12 Na \\ A \ 0.63 Na \ + \ 0.22 K \\ O(3) \ 0.88 \ OH \ + \ 0.12 \ O^{2-} \end{array}$

Disordered site-populations were assumed for tetrahedral and octahedral sites. Only hk0 data were collected; z co-ordinates were determined as for magnesio-riebeckite(3). Chemical data were reported by Koritnig (1940).

Edenitic hornblende(7)

T(1) = T(2) 0.82Si + 0.18Al

 $M(1) = M(2) = M(3) 0.52Mg + 0.24Fe^{2+}$

 $+ 0.02 \text{Fe}^{3+} + 0.18 \text{Al} + 0.04 \text{Ti}$

M(4) 0.80Ca + 0.20Na

A 0.67Na + 0.03K

O(3) 0.94 OH + 0.06 O²⁻

Disordered site-populations were assumed for tetrahedral and octahedral sites. Only hk0 data were collected; z co-ordinates were determined as for magnesio-riebeckite(3). Chemical data were reported by Paulitsch (1948).

Tremolite(8)

$$M(1) = M(2) = M(3) Mg$$

M(4) Ca

Cation site-populations assumed from analysis. Only hk0 data were collected, x and y values were determined by least-squares refinement; z values were not determined or estimated.

Cummingtonite(9)

 $M(1) = M(2) = M(3) \ 0.6Fe^{2+} + 0.4Mg$ $M(4) \ 1.0Fe^{2+}$ Cation site-populations derived by manual adjustment of scattering factors until individual isotropic temperature-factors approximately equal [1.65, 2.23, 1.22 and 1.80 Å², respectively, for the M(1), M(2), M(3) and M(4) sites]. Details of the paragenesis are given by Mueller (1960, 1961).

Tschermakitic hornblende(10)

 $\begin{array}{l} T(1) = T(2) \ 0.81 \text{Si} + 0.19 \text{Al} \\ M(1) = M(2) = M(3) \ 0.61 \text{Mg} + 0.11 \text{Fe}^{2+} \\ + \ 0.08 \text{Fe}^{3+} + 0.19 \text{Al} + 0.01 \text{Ti} \\ M(4) \ 0.72 \text{Ca} + 0.28 \text{Na} \\ \text{A} \ 0.33 \text{Na} + 0.08 \text{K} \\ O(3) \ 1.0 \ \text{OH} \end{array}$

Disordered cation site-populations were assumed at tetrahedral and octahedral sites. Only hk0 data were collected; z co-ordinates determined as for magnesio-riebeckite(3).

Alumino-pargasitic hornblende(11)

 $\begin{array}{l} T(1) = T(2) \ 0.79 {\rm Si} + 0.21 {\rm Al} \\ M(1) = M(2) = M(3) \ 0.47 {\rm Mg} + 0.18 {\rm Fe}^{2+} \\ + \ 0.10 {\rm Fe}^{3+} + 0.23 {\rm Al} + 0.02 {\rm Ti} \\ M(4) \ 0.72 {\rm Ca} + 0.28 {\rm Na} \\ {\rm A} \ 0.46 {\rm Na} + 0.17 {\rm K} \\ O(3) \ 0.89 \ {\rm OH} + 0.11 \ {\rm O}^{2-} \end{array}$

Disordered cation site-populations were assumed at tetrahedral and octahedral sites. Only hk0 data collected; z co-ordinates determined as for magnesio-riebeckite(3).

Potassian titanian magnesio-hastingsite(12)

 $\begin{array}{l} T(1) = T(2) \ 0.73 Si + 0.27 Al \\ M(1) = M(2) = M(3) \ 0.61 Mg + 0.22 Fe^{3+} \\ + \ 0.06 Al \ + \ 0.10 Ti \\ M(4) \ 1.0 Ca \\ A \ 0.54 Na \ + \ 0.32 K \\ O(3) \ 0.45 \ OH \ + \ 0.55 \ O^{2-} \end{array}$

Disordered cation site-populations were assumed at tetrahedral and octahedral sites. Only hk0 data were collected; z co-ordinates were determined as for magnesio-riebeckite(3). Results of two chemical analyses are given; the structural formula is derived from the more recent data.

Potassian titanian magnesio-hastingsite(13)

 $\begin{array}{l} T(1) = T(2) \ 0.73 Si + 0.27 Al \\ M(1) = M(2) = M(3) \ 0.58 Mg + 0.13 Fe^{2+} \\ + \ 0.11 Fe^{3+} + \ 0.08 Al + 0.10 Ti \\ M(4) \ 0.91 Ca + 0.09 Na \\ A \ 0.46 Na + 0.35 K \\ O(3) \ 0.79 \ OH + 0.21 \ O^{2-} \end{array}$

Disordered cation site-populations were assumed at tetrahedral and octahedral sites. Only hk0 data were collected; z co-ordinates were determined as for magnesio-riebeckite(3). Results of chemical analyses are given; the structural formula is derived from the more recent data.

Potassian arfvedsonite(14)

M(1) = M(2) = M(3) (Mg, Fe, Mn, Ti) M(4) (Ca, Na, K)

Site populations not derived. Apparent c-glide extinctions in this amphibole ascribed to the Templeton effect (Templeton 1956). Only (hk0) data collected, z co-ordinates not derived. The structural formula is given only in very general terms, as (Ca, Na, K)_{2.84}(Si, Al)₈Fe^{3+1.42}(Fe, Mn, Mg, Ti)_{8.54}(OH)_{2.15}O₂₂. For the exact structural formula calculated from the chemical data given, see Appendix Al. Chemical analysis includes 0.16 wt. % P₂O₅.

 $Na_{2}H_{2}Co_{5}Si_{8}O_{22}(OH)_{2}(15)$

M(1)	1.0Co	0.5Ų
M(2)	1.0Co	0.5
M(3)	1.0Co	0.5
M(4)	(Na, Co)	1.3

Site populations determined by "population density" refinement (Gibbs & Prewitt 1968); the actual composition apparently departs somewhat from the ideal (Prewitt 1963). No coordinates given.

$Na_{2}H_{2}Mg_{5}Si_{8}O_{22}F_{2}(16)$

Site populations and co-ordinates not given; Na shows preferential ordering in M(4) site (Prewitt 1963).

Riebeckite(17)

 $M(1) 1.0Fe^{2+}$

M(2) 1.0Fe^{3+}

M(3) $0.25Al + 0.50Fe^{2+} + 0.25Li$

M(4) 1.0Na

Cation site-populations quoted by Onuki & Ernst (1969). Positional co-ordinates not given.

Anthophyllite[18]

Abstract only, no information given apart from cell dimensions, physical properties and cell contents.

Pargasitic hornblende(19)

- $T(1) \sim T(2) \ 0.81Si + 0.19Al$
- M(1) 0.63Mg + 0.07Fe²⁺ + 0.03Fe³⁺ + 0.03 Ti + 0.24 AlM(2) $0.51Mg + 0.20Fe^{2+} + 0.09Fe^{3+}$ + 0.03 Ti + 0.17 Al
- M(3) $0.38Mg + 0.32Fe^{2+} + 0.16Fe^{3+}$
- + 0.03 Ti + 0.11 Al
- M(4) 0.75Ca + 0.25Na

A 0.36Na + 0.15K $O(3) \sim OH$

Disordered cation site-populations assumed at tetrahedral sites. Octahedral site-populations derived from Fourier maps (presumably in terms of Mg = Mg + Al and $Fe = Fe^{2+} + Fe^{3+}$ + Ti). Only hk0 data were collected; z coordinates were derived as for edenitic hornblende(7). The chemical data were reported by Machatschki & Walitzi (1963).

APPENDIX B. MODERN DATA FOR MONOCLINIC STRUCTURES (C2/m)

(21) Cummingtonite

- (22) Grunerite
- (24) Potassian titanian magnesio-hastingsite
- (26) Glaucophane
- (28) Tirodite
- (29) Potassium-magnesio-katophorite
- (30) Tremolite
- (34) Fluor-richterite
- (35) Fluor-richterite
- (36) Fluor-tremolite
- (37) Manganoan ferro-actinolite
- (38) Potassian pargasite
- (39) Potassian titanian pargasite
- (40) Potassian oxy-kaersutite
- (41) Tirodite
- (42) Magnesio-hornblende
- (43) Tremolite
- (44) Hastingsite
- (45) Magnesio-hornblende
- (46) Magnesio-hornblende
- (48) Tschermakite
- (49) Ferro-tschermakitic hornblende
- (50) Tschermakitic hornblende
- (51) Potassian ferri-taramite
- (52) Potassian ferri-tschermakitic hornblende
- (53) Tremolite
- (54) Ferro-tschermakite
- (55) Potassian oxy-kaersutite
- (56) Tremolite
- (57) Zincian tirodite
- (58) Subsilicic titanian magnesian hastingsite
- (59) Potassian ferri-taramite
- (60) Potassian tschermakite
- (61) Pargasite
- (62) Sodian fluor-clinoholmquistite
- (63) Pargasitic hornblende
- (64) Arfvedsonite
- (65) Potassium-arfvedsonite
- (66) Potassium-arfvedsonite
- (67) Potassium-arfvedsonite
- (68) Fluor-riebeckite
- (69) Ferro-glaucophane
- (70) Pargasitic hornblende
- (71) Pargasite
- (72) Magnesio-hastingsite
- (73) Ferroan pargasitic hornblende
- (74) Potassian titanian magnesio-hastingsite
- (75) . . .

Ghose (1961), Fischer (1966), Mitchell et al. (1971)Finger (1967, 1969a); Finger & Zoltai (1967) Papike & Clark (1967), Papike et al. (1969) Robinson (1971), Robinson et al. (1973) Papike & Clark (1968) Papike et al. (1969) Papike et al. (1969), Cameron (1970) Papike et al. (1969) Cameron (1970), Cameron & Gibbs (1971) Cameron (1970), Cameron & Gibbs (1971) Cameron (1970), Cameron & Gibbs (1973) Mitchell (1970), Mitchell et al. (1970a, b, 1971) Robinson et al. (1970, 1973), Robinson (1971) Robinson (1971), Robinson et al. (1973) Kitamura & Tokonami (1971), Kitamura et al. (1973, 1975) Sueno et al. (1972a) Litvin et al. (1971a), Litvin (1973) Litvin et al. (1972a), Litvin (1973) Litvin et al. (1972a), Litvin (1973) Litvin et al. (1971b, 1972b), Litvin (1973) Litvin et al. (1972b), Litvin (1973) Litvin (1973) Litvin et al. (1973b) Litvin et al. (1973b) Litvin et al. (1973c) Kawahara et al. (1972) Sueno et al. (1972b, 1973) Hawthorne (1973), Hawthorne & Grundy (1973a) Hawthorne (1973), Hawthorne & Grundy (1973b) Hawthorne (1973), Hawthorne & Grundy (1976) Hawthorne (1973), Hawthorne & Grundy (1973c, 1977b) Hawthorne (1973), Hawthorne & Grundy (1977a) Hawthorne (1973), Hawthorne & Grundy (1978) Litvin et al. (1974a) Litvin et al. (1974b) Litvin et al. (1975a) Litvin et al. (1975b) Litvin et al. (1976) Litvin et al. (1976) Litvin *et al.* (1976) Hawthorne (1976) Hawthorne (1978b) Hawthorne (1979) Bocchio et al. (1978) Bocchio et al. (1978) Bocchio et al. (1978) Hawthorne et al. (1980) Walitzi & Walter (1981) Ungaretti et al. (1978, 1981), Ungaretti (1980)

		PAGE
Appendix B1.	Chemical composition and unit-cell data	363
Appendix B2.	Atomic positions	370
Appendix B3.	Site populations and annotations	377
Appendix B4.	Cation-anion and cation-cation distances	390
Appendix B5.	Anion-anion distances	399
Appendix B6.	Interatomic angles	406
Appendix B7.	Refinement details for $C2/m$ amphiboles	412

APPENDIX B1	CHEMICAL	COMPOSITIONS	AND	UNIT-CELL	DATA
-------------	----------	--------------	-----	-----------	------

<u></u>						211211	
	(21)	(22)	(24)	(26)	(28)	(29)	(30)
Si0	54.0	49.01	40.42	58.04	55.27	52.67	58,90
Ti0 ²	0.01	0.05	4.43	0.66	0.00	3.53	0.02
A1202	0.40	0.00	13,90	10.31	0.34	1.72	0.56
Feo	-	-	4.84	2.89	_	0.58	-
FeÕ	20.0	44.99	6.85	6.12	4.52	2.41	0.22
Mn0	1.35	0.37	0.10	0.07	16.62	0.06	0.42
Mg0	18.5	3.17	12,95	11.71	19.18	21.32	24.74
Ca0	2.2	0.31	10.28	1.37	1.19	6.95	13.00
Na ₂ 0	-	0.04	3.04	6.97	0.26	3.64	0.40
к ₂ Õ	_	0.00	2.05	0.02	0.00	5.70	0.10
Н20	2.2	1.59	0.96	1.98	2.46	0.46	1 19
F	_	2.00	0.15	0.02	0.80	1.29	0.30
	98.66	101.21	99.97	100/17	100.73	100.48	99.95*
0 = F		0.84	0.06	0.01	0.34	0.54	0.13
Total	98.66	<u>100.37</u>	99.91	100.16	100.39	99.94	99.85
Si	7.90	8.00	5.97	7,92	7,95	7.44	7.95
A1	0.10		2.03	0.08	0.05	0.29	0.05
$\sum iv$	8.00	8.00	8.00	8.00	8.00	8.00*	8.00
A1	_	-	0.39	1.58	-	-	0.04
Ti ₂₁	-	-	0.49	0.06	-	0.17	_
Fe	-	-	0.54	0.30	-	_	-
Fe ²⁺	2.50	6.14	0.84	0.70	0.54	0.28	0.02
Mn	0.17	0.05	0.01	0.01	2.02	0.01	0.05
Mg	4.05	0.77	2.85	2.38	4.11	4.49	4.97
$\sum vi$	-	-	5.12	5.03	_	4.95	5.08
$\sum vi$							
<u> </u>	0.35	0.06	0.12	0.03	- 10		0.08
Na	0.33	0.00	1.03	0.20	0.18	1.05	1.86
$\nabla M(A)$	·			<u> </u>		1.00	0.04
<u>ک (</u>		7.02	2.00		6.85	2.05	2.00
Na	-	-	0.62	0.07	0.03	-	0.06
K			0.39			1.03	0.02
$\sum \mathbf{A}$	-	_	1.01	0.07	0.03	1 02	0.08
						1.02	0.08
Basis	6	1	4	1	1	2	2
a(Å)	9.516(5)	9.5642(7)	9,870(1)	9.541(2)	9,583(2)	10.019(2)	9,818(5)
ь(Д)	18.139(10)	18,393(2)	18.058(4)	17.740(3)	18,091(5)	18,036(7)	18.047(8)
c(Ă)	5.311	5,3388(3)	5.307(2)	5,295(2)	5,315(4)	5,286(3)	5,275(3)
$\beta(3)$	102.1(1)	101.892(3)	105.20(2)	103.67(2)	102.63(2)	104,98(3)	104.66(5)
V(X)	896.4	919.0(2)	912.7(3)	870.9(3)	899.1(6)	922.7(5)	904.2(6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·····	(34)	(35)	(36)	(37	7)	(38)	(39)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C*O	_	_	_	50.6	51.0	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5102 Tri 02	_	_	-	0.1	0.04	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1000	-	-	-	2.4	2.0	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Feelo	-	-	-	-	2.8	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FeO	-	-	-	22.4	19.9	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	-	-	-	2.7	2.4	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MeO	_	-	_	8.3	8.6	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO	-	-	-	10.8	10.7	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₂ 0	-	-	-	0.5	0.35	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K20	-	<u> </u>	-	0.14	0.16	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	н-0	-	-	-	-	1.71	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	-	****	-	0.19	0.14	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	98.45	100.08	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 = F	-	-	-	0.08	0.06	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	-	-	-	98.37	100.02	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C 4	8 00	7 97	8.00	7.66	7.72	6.14	5.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 A1		_	-	0.34	0.28	1.86	2.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iv	8 00	7.97	8,00	8.00	8.00	8.00	8.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						************		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	-	-	-	0.10	0.08	0.54	0.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti.	-	_	-	0.01	0.00	0.09	0.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feat	-	-	-	2 84	0.31	1.08	1.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe ²⁺	-	1.68		2.04	2.53		0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn	-	-	-	0.35	0.31	0.01	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg	5.00	3.45	5.00	1.86	1.94		5 00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Σ^{vi}	5.00	5.13	5.00	5.16	5.17	4.98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V 121			—	0.16	0 17	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	0.13	2 00	1 76	1.74	1,99	1.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca	1.00	0.90	2.00	0.08	0.09		0.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{Na} M(4)		2.05	2 00	2.00	2,00	2.00	2.00
Na1.001.00-0.010.010.630.39KA0.030.030.030.40 \sum 1.000.040.040.930.79Basis565777a(A)9.824(3)9.846(2)9.787(3)9.891(1)9.910(1)9.9108(7)b(A)17.968(3)18.019(3)18.004(2)18.200(1)18.022(1)18.0487(9)c(A)5.263(1)5.274(3)5.263(2)5.305(1)5.312(1)5.3158(9) $\beta(O)$ 104.22(1)104.25(1)104.44(2)104.64(1)105.78(1)105.418(6) $\beta(O)$ 906.6(4)906.8(6)898.1(5)924.0(1)912.9(1)916.7(1)	Σ.			2.00	2:00			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na	1.00	1.00	-	0.01	0.01	0.63	0.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĸ.	_	-	-	0.03	0.03	0.30	0.40
Basis565777 $a(A)$ 9.824(3)9.846(2)9.787(3)9.891(1)9.910(1)9.9108(7) $b(A)$ 17.968(3)18.019(3)18.004(2)18.200(1)18.022(1)18.0487(9) $c(A)$ 5.263(1)5.274(3)5.263(2)5.305(1)5.312(1)5.3158(9) $\beta(O)$ 104.22(1)104.25(1)104.44(2)104.64(1)105.78(1)105.418(6) $\gamma(A^3)$ 900.6(4)906.8(6)898.1(5)924.0(1)912.9(1)916.7(1)	\sum^{A}	1.00	1.00	-	0.04	0.04	<u> 0.93 </u>	0.79
a(A)9.824(3)9.846(2)9.787(3)9.891(1)9.910(1)9.9108(7)b(A)17.968(3)18.019(3)18.004(2)18.200(1)18.022(1)18.0487(9)c(A)5.263(1)5.274(3)5.263(2)5.305(1)5.312(1)5.3158(9) $\beta({}^{O})$ 104.22(1)104.25(1)104.44(2)104.64(1)105.78(1)105.418(6) $\gamma(A^3)$ 900.6(4)906.8(6)898.1(5)924.0(1)912.9(1)916.7(1)	Basis	5	6	5		7	7	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ (%)	0 92/(2)	0 846(2)	0 787(3)	9 9	91(1)	9.910(1)	9,9108(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a(A)	7.024(3)	3.040(2) 18 010(3)	18 004(2)	18 2	200(1)	18.022(1)	18.0487(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T1.200(3)	10.017(3) 5 974(9)	5 263(2)	5.3	NO5(1)	5,312(1)	5.3158(9)
V(3) 900.6(4) 906.8(6) 898.1(5) 924.0(1) 912.9(1) 916.7(1)		3+203(1) 106 22 (1)	3.274(3) 106 25(1)	104,44(2)	104.	64(1)	105.78(1)	105.418(6)
	w (83)	900.6(4)	906,8(6)	898.1(5)	924	.0(1)	912.9(1)	916.7(1)

			····				
	(40)	(41)	(42)	(43)	(4	4)	(45)
S±0	38.24	58.31	48.40	55.45	37.93	37.10	45.78
T107	5.89		0.33	0.04	3.30	3.58	0.78
A1.02	15.48	0.06	11.54	1.24	7.96	9.70	8.23
FeoOo	9.27	_	1.44	1.04	3.96	4.97	2.99
FeO	4.89	0.13	3.59	7.04	28.32	26.85	16.12
MnO	0.16	8.24	0.07	0.59	0.57	0.38	0.44
MgO	10.73	27.17	18.03	21.22	2.56	1.55	10.44
CaO	10.69	2.46	10.70	10.54	9.66	9.87	11.77
Na ₂ 0	2.50	0.22	2.52	0.54	1.71	1.59	0.79
K20	1.33		0.60	0.09	1.55	1.34	0.64
Н20	0.53	-	2.63	2.30	2.50	2.41	2.08
F	-	-	_	-			
	99.71	96.59	100.23	100.35	100.46	100.32	100.17*
0 = F						-	100.17
Total	<u>99.71</u>	96.59	100.23	100.35	100.46	100.32	100.17
Si	5.75	8.02	6,73	7.80	6.10	6.03	6.79
AL	2.25		1.27	0.20	1.50	1.87	<u>1.21</u>
$\sum iv$	8.00	8.02	8.00	8.00	<u> 7.60</u> *	<u></u> *	8.00
A1.	0.48	0.01	0.62	-	-	-	0.23
Ti.	0.67	-	0.03	-	(0.40)	(0.44)	0.09
Fen	1.04	-	0.15	0.10	0.50	0.59	0.34
Fe ²⁺	0.61	0.01	0.42	0.82	3.80	3.64	2.00
Mn	0.02	0.96	0.01	0.06	0.08	0.05	0.06
Mg	2.42	5.57	3.73	4.44	0.62	0.38	2.28
Σ^{vi}	5.24	-	4.96	5.42	5.00	5.00	5.00
$\sum v_{-5}^{v_{i}}$	0.24	-	-	0.42	-	-	-
Ca	1.72	0.36	1.59	1.58	1.68	1.72	1.87
Na M(A)	0.04	0.06	0.41		0.32	0.28	0.13
$\sum n(4)$	2.00	6.97	2.00	2.00	2.00	2.00	2.00
Na	0.69	-	0.27	0.15	0.20	0.22	0.10
К.	0.25		0.10	0.02	0.28	0.28	0.11
Σ^{A}	0.94		0.37	0.17	0.48	0.50	0.21
-	·						
Basis	1	2	3	3	3	3	3
a (Å)	9,807(3)	9,595(1)	9,780(6)	9.830(2)	9.94	5(6)	9.883(4)
ъà	18.017(6)	18.077(2)	17,908(4)	18,084(3)	18.23	39(2)	18,126(5)
c (Å)	5,307(2)	5,307(1)	5.293(2)	5.281(3)	5.34	0(3)	5.319(3)
<i>bi</i> ch	105.43(2)	102.61(2)	104.93(7)	104.70(2)	104.9	95(2)	104.93(8)
v (A ³)	903.9(7)	898.4(2)	895.8(8)	907.9(6)	935 (3	1)	920.5(6)

•

	(45)	(4	6)	(48)	(49)	(50)	(51)	(52)
S102	45.33	44.51	45.45	42.62	44.08	43.33	37 55	43 43
T102	0.96	1.79	1.45	0.45	0.67	0.78	0.89	1 44
A1203	7.57	8.70	7.85	17.73	13.99	15.98	9,90	10 75
Fe ₂ 0 ₃	3.95	3.46	3.22	1.00	1.40	1.84	11.89	9 43
FeÕ	16.22	16.09	16.80	12.96	16.20	13,15	21.40	4 39
MnO	0.49	0.29	0.28	0.04	0.18	0.17	1.25	0 14
MgO	9.17	10.45	10.09	9,90	8.44	9.54	1.31	13 82
CaO	11.99	10.36	11.00	11.84	10.88	10.95	7.28	10.60
Na ₂ 0	0.93	1.47	1.10	0.54	1.35	1.21	4.05	1.72
K2Õ	0.92	0.39	0.65	0.40	0.15	0.28	2.11	1.38
H20	2.04	2.10	1.96	2.45	2.70	2.70	1.84	2.07
F	-		· _	_	-	_	-	-
	100.41*	99.84*	100.38*	99.93	100.04	99,99	99.82	99,17
0=F	-	-	-	-	-	-	-	-
Total	100.41	99.84	100.38	99.93	100.04	99.99	99.82	99.17
Si	6.82	6.59	6.80	6.14	6.48	6.30	6.14	6.36
A1	1.18	1.41	1.20	1.86	1.52	1.70	1.86	1.64
Σιυ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Å1	0.16	0.10	0.18	1.15	0.91	1.04	0.04	0.22
Ti	0.11	0.18	0.16	0.05	0.07	0.09	0.11	0.16
Feat	0.45	0.39	0.36	0.11	0.16	0.20	1.45	1.04
Fe ²⁺	2.04	1.99	2.02	1.56	1.99	1.59	2.92	0.54
Min	0.06	0.04	0.04	0.01	0.02	0.02	0.18	0.02
Mg	<u>2.18</u>	2.29	2.24	2.13	1.85	2.06	0.30	3.02
Συι		4.99	5.00	5.01	5.00	5.00	5.00	5.00
Σ^{vi-5}	-	-	-	0.01	-	-	-	-
Ca	1.93	1.62	1.76	1.83	1.71	1.76	1.27	1.66
Na	0.07	0.38	0.24	0.15	0.29	0.24	0.73	0.34
Σ ^m (4)	2.00	2.00	<u>_2.00</u>	1.99	2.00	2.00	2.00	2.00
Na	0.07	0.01	0.05	-	0.03	0.04	0.55	0.15
K	0.09	0.07	0.12	0.07	0.09	0.04	0.45	0.26
ΣĦ	0.16	0.08	0.17	0.07	0.12	0.08	1.00	0.41
Basis	3	3	3	3	3	3	3	3
a (Å)		9.84	2(4)	9.762(6)	9. 792(-)	9.753(-)	9.960(8)	9.89
b (Ă)		18.11	.4(5)	17.994(12)	18.050(-)	17.989(-)	18.177(8)	18.03
c (Ă)		5.31	.8(3)	5.325(6)	5.322(-)	5.321(-)	5.352(2)	5.31
β(ĭ)		104.9	3(8)	105.10(8)	104.8(-)	104 .8(-)	105.07(5)	105.2(1)
V(X ³)		915.9	(6)	9 02.2(5)	909.2(-)	902.5(-)	935(1)	913.7

.

ļ

	(53a) (53	b) (54)	(55)	(56)	(57)	(58)	(59)
S10	58,90	40.12	39.90	56.57	53.60	33.50	39.05
T102	0.02	0.87	4.65	0.01		3.26	1.56
A1203	0.56	18.67	14.35	1.41	0.51	17.89	9.98
Fe ₂ 0 ₂	_	2.64	9.60	0.01	0.35	6.65	10.98
Fe0	0.22	16.75	0.04	0.08	3.50	16.49	18.36
MnO	0.42	0.27	0.08	0.03	12.90	0.26	1.38
MgO	24.74	5.48	14.52	24.41	16.90	5.00	3.76
CaO	13.00	11.65	12.14	12.25	1.66	10.30	6.94
Na ₂ 0	0.40	0.80	1.90	1.44	0.75	3.14	4.56
K20	0.10	0.75	2.31	0.68	0.17	1.48	1.88
н20	1.19	1.62	0.50	1.46	2.53	1.41	1.81
F	0.30	0.07	0.12	1.52		0.25	
	99.95	99.69	100.11	99.87	99.82*	99.63	100.26
0 ≡ F	0.13	0.03	0.05	0.64		0.10	
Total	99.85	99.66	100.06	99.23	99.82	<u>99.53</u>	100.26
Si	7.95	6.00	5.878	7.767	7.87	5.27	6.178
A1	0.05	2.00	2.122	0.228	0.09	2.73	1.822
Σ^{iv}	8.00	8.00	8.000	7.995	7.94	8.00	8.000
A1	0.04	1.30	0.370	-	-	0.58	0.039
Ti.,	_	0.10	0.515	0.001	-	0.39	0.186
Fen	-	0.30	1.064	0.001	0.07	0.79	1.307
Fe	0.02	2.10	-	0.009	0.42	2.17	2.429
Mn	0.05	0.02	0.009	0.003	1.60	0.04	0.185
Mg	4.97	1.22	3,188	4.995	3.70	<u> </u>	0.886
Σ^{vi}	5.08	5.04	5.146	5.009		5.14	5.032
					0.7-5Zn		
√vi -			0.146		-	0.14	0 032
2 5	0.08	0.04	0.146	1 000	-	0.14	1 176
Ca	1.86	1.86	1.916	1.802	0.20	1.74	0 792
$\frac{Na}{\nabla}M(4)$	0.04	0.10		<u>, 0,198</u>	<u> </u>	2 00	2 000
Σ	2.00	2.00	2.062				
Na	0.06	0.13	0.543	0.184	-	0.83	0.607
KA	0.02	0.14	0.434	0,119	0.02	0.30	
Σ^{-}	0.08		0.977	0.303			0.988
Basis	2	2	1	1	1	1	1
a (Å) b (Å)	9.860(1) 9.898 18.118(3) 18.190	 (2) 9.8179(7 (3) 18.106(2)) 9.892(1) 18.064(2)	9.863(1) 18.048(2)	9.606(1) 18.126(1)	9.8659(4) 18.0139(8)	9.923(1) 18.134(2)
c (Å)	5.285(1) 5.296	(1) 5.3314(5) 5.3116(7) 5.285(1)	5.317(1)	5.3545(2)	5.352(1)
B	104.57(1) 104.46	(1) 105.00 (1)	105.388(5) 104.79(1)	102.63(1)	105.08(1)	104.84(1)
v (Å ³)	913.8(2) 923.4(2) 915.4(3)	915.1(4)	909.6(2)	903.4(1)	918.35(9)	930.9(2)

<u></u>	(60)	(61)	(62)	(63)	(64)	(65)	(66)
Si0	41.36	39.49	57.68		47.86	46.45	53.00
T102	1.95	2.02	· _		0.64	0.64	0.97
A1202	12.49	15.56	13.52		1.69	3.44	0.27
$Fe_{2}^{2}0_{3}^{3}$	4.25	3.07	0.44		17.95	16.70	19.71
FeŐ	12.36	8.04	5.87		19.91	19.59	4.24
MnO	0.11	2.12	0.45		0.71	0.63	4.27
Mg0	11.45	15.56	9.37		0.13	-	2.13
Ca0	10.85	12.04	3.00		1.64	1.63	0.52
Na_20	1.68	2.68	1.74		6.25	5.94	10.97
K ₂ 0	1.50	0.32	0.28		0.61	3.74	2.84
н <mark>2</mark> 0	1.87	1.66	1.67		1.67	0.95	0.58
F		-	1.70		1.16	1.24	1.39
• -	99.87	100.16	101.07		100.22	100.95	100.89
0 = F			0.71		0.49	0.52	0.58
Total	99.87	100.16	100.36		99.73	100.43	100.31
Si	6.10	5.78	8.00	6.42	7.68	7.51	8.00
A1	1.90	2.22		1.58	0.32	0.49	
Σιυ	8.00	8.00	8.00	8.00	8.00	8.00	8.00
A1	0.27	0.46	2.21	0.57	-	0.16	0.05
Ti ₃₊	0.22	0.22	Li=0.08	0.01	0.08	0.08	0.11
Fe ₂₊	0.47	0.33	0.05	0.05	2.17	2.02	2.40
Fe	1.52	0.98	0.68	0.27	2.68	2.65	0.53
Mn	0.01	0.01	0.05	0.01	0.10	0.09	0.55
Mg	2.51	3.30	<u> 1.93 </u>	4.06	0.03		0.48
7.00	5.00		5.00		5.06		<u>4.12</u>
∑ vi _5	-	0.30	-	-	0.06	-	-
Ca	1.71	1.88	0.21	1.82	0.28	0.28	0.09
$\frac{Na}{M(4)}$	0.29		L <u>1=1.79</u>	0.18	1.66	1.72	2.79
Σ	2.00	2.18	2.00	2.00			2.88
Na	0.19	0.76	0.45	0.46	0.28	0.14	0.41
K A	0.28	0.06	0.04	0.05	0.17	0.77	0.54
Σ	0.47	0.82	0.54	0.51	0.45	<u>0.91</u>	0.95
Basis °	3	4			.8	3	9
a (Å)	9.838(5)	9.869(3)	9.334(7)	9.863(3)	9.774(1)	9.935(5)	9.788(4)
b (Å)	18.063(4)	18.040(14)	17.596(10)	18.016(12)	18.032(7)	18.102(2)	17.863(11)
c (Å)	5.313(5)	5.307(3)	5.267(3)	5.291(4)	5.333(4)	5.339(3)	5.285(4)
β (°)	104.8(1)	105.17(3)	102.3(1)	105.2(1)	103.7(1)	103,9(2)	103.80(5)
V (Å ³)	912.3(9)	912.0(4)	846.0(5)	907(1)	913(1)	931(1)	897(1)

	(67)		(68)	(69)	(70)	(71)	(72)	(73)	(74)
S102 T102 A1203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 H20 F	48.78 0.58 1.61 7.53 26.47 0.89 0.49 0.95 6.66 3.95 - 0.21 97.21 1	49.20 0.96 1.70 7.50 26.64 0.98 0.40 0.90 7.22 3.39 1.64	50.45 0.14 1.96 17.52 17.90 1.40 0.05 0.08 6.80 1.48 0.87 2.58 101.77	$54.63 \\ 0.06 \\ 11.02 \\ 2.76 \\ 16.02 \\ 0.08 \\ 4.75 \\ 0.98 \\ 6.25 \\ 0.01 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	_	_	_	43.89 0.79 14.42 2.48 12.64 0.29 12.37 9.14 2.10 0.12 - - 97.99	40.26 3.16 11.99 7.78 5.52 0.12 13.98 12.01 2.54 1.87 1.63
O≡F Total	<u>0.11</u> 99.62		$\frac{1.09}{100.68}$	97.56				<u>-</u> 97.99	100.86
$\sum_{iv}^{\text{S1}} iv$	7.830 0.170 8.000		7.748 0.252 8.000	7.94 0.06 8.00	6.517 <u>1.483</u> 8.000	6.294 <u>1.706</u> <u>8.000</u>	6.253 <u>1.747</u> <u>8.000</u>	6.372 <u>1.628</u> <u>8.000</u>	5.94 <u>2.06</u> <u>8.00</u>
Al Ti Fe ³⁺ Fe ²⁺ Mn ∑ vi	0.143 0.093 0.905 3.550 0.127 <u>0.107</u> <u>4.925</u>		0.103 0.016 2.025 2.299 0.182 0.011 4.970	1.83 0.01 0.31 1.94 0.01 <u>1.03</u> 5.13	0.665 - 0.288 0.800 - <u>3.317</u> <u>5.070</u>	0.431 - 0.429 0.814 - <u>3.414</u> <u>5.088</u>	0.522 0.478 0.687 <u>-</u> <u>3.373</u> <u>5.060</u>	0.840 0.086 0.271 1.535 0.036 <u>2.676</u> <u>5.444</u>	0.02 0.35 0.86 0.68 0.02 <u>3.07</u> <u>5.00</u>
$\sum_{\substack{\text{Ca}\\\sum}}^{vi} v_{-5}$	0.159 <u>1.841</u> <u>2.000</u>		0.013 <u>1.987</u> <u>2.000</u>	0.13 0.15 <u>1.72</u> 2.00	0.070 1.762 <u>0.168</u> 2.000	0.088 1.872 <u>0.040</u> 2.000	0.060 1.873 <u>0.067</u> 2.000	0.444 1.422 <u>0.134</u> <u>2.000</u>	1.90 0.10 2.00
$\sum_{K}^{Na} A$	0.310 0.748 1.058		0.037 0.290 0.327	0.03 	0.658 <u>0.041</u> <u>0.699</u>	0.828 0.058 0.886	0.714 <u>0.099</u> <u>0.813</u>	0.457 <u>0.022</u> <u>0.479</u>	0.63 <u>0.35</u> <u>0.98</u>
Basis	1		1	2	10	10	10	10	3
	10.007(2) 18.077(2) 5.332(1) 104.101(935.48(3))) 7))	9.811(3) 18.013(5) 5.326(2) 103.68(1) 914.5	9.587(4) 17.832(7) 5.315(2) 103.47(3) 883.64	9.818(1) 17.972(2) 5.300(1) 104.886(3) 903.79	9.851(1) 17.981(2) 5.293(1) 105.070(7) 905.44	9.848(1) 17.974(2) 5.299(1) 105.057(3) 905.76	9.832(3) 18.037(5) 5.302(1) 105.01(2) 908.2	9.880(2) 18.012(4) 5.324(2) 105.26(2) 914.1(4)

APPENDIX B2. ATOMIC POSITIONS

·		(21)	(22)	(24)	(26)	(28)	(29)	(30)
			、 ,	()	(20)	(20)	(2))	(00)
	x	0.1135(4)	0.1120(5)	0.1064(4)	0.1092(6)	0.1141(3)	0.1102(3)	0.1117(2)
0(1)	У	0.0874(2)	0.0882(2)	0.0885(2)	0.0927(3)	0.0865(2)	0.0855(2)	0.0860(1)
	Z	0,2087(9)	0.2044(9)	0.2168(7)	0.2037(11)	0.2110(5)	0.2194(9)	0.2171(3)
	ж	0.1232(4)	0.1253(4)	0.1183(4)	0.1177(6)	0.1222(3)	0.1172(3)	0.1185(2)
0(2)	У	0.1721(2)	0.1735(2)	0.1729(2)	0.1714(3)	0.1723(2)	0.1694(2)	0.1712(1)
	z	0.7193(9)	0.7142(8)	0.7308(7)	0.7480(11)	0.7190(5)	0.7269(10)	0.7240(4)
	x	0.1134(7)	0.1147(7)	0.1070(6)	0.1126(9)	0.1128(5)	0.1021(4)	0.1096(2)
0(3)	У	0	0	0	0	0	0	0
	z	0.7067(13)	0.7035(13)	0.7132(11)	0.7088(16)	0.7108(9)	0.7158(12)	0.7152(4)
	ж	0.3798(5)	0.3839(5)	0.3664(4)	0.3679(6)	0.3739(4)	0.3612(4)	0.3654(2)
0(4)	У	0.2460(2)	0.2416(2)	0.2502(2)	0.2529(3)	0.2473(2)	0.2482(2)	0.2480(1)
	z	0.7716(9)	0.7689(8)	0.7896(8)	0.8058(11)	0.7772(6)	0.8007(11)	0.7933(3)
	x	0.3514(4)	0.3483(5)	0.3494(4)	0.3548(6)	0.3495(3)	0.3442(5)	0.3465(2)
0(5)	у	0.1310(2)	0.1275(2)	0.1391(2)	0.1318(3)	0.1305(2)	0.1302(2)	0.1343(1)
	z	0.0659(9)	0.0519(8)	0.1090(8)	0.0893(11)	0.0660(6)	0.0993(10)	0.0992(3)
	x	0.3488(5)	0.3478(4)	0.3446(4)	0.3407(6)	0.3491(3)	0.3408(4)	0.3436(2)
0(6)	У	0.1185(2)	0.1182(2)	0.1179(2)	0.1224(3)	0.1214(2)	0.1172(2)	0.1185(1)
	z	0.5597(9)	0.5530(8)	0.6054(8)	0.5814(11)	0.5597(6)	0.5940(10)	0.5884(3)
	x	0.3417(7)	0.3376(6)	0.3389(6)	0.3317(9)	0.3428(5)	0.3333(5)	0.3370(2)
0(7)	У	0	0	0	0	0	0	0
	z	0.2719(13)	0.2700(13)	0.2863(12)	0.3018(16)	0.2806(10)	0.3062(14)	0.2921(5)
	x	0.2874(2)	0.2867(2)	0.2812(1)	0,2831(2)	0.2862(1)	0.2756(1)	0.2804(1)
T(1)	у	0.0842(1)	0.0836(1)	0.0856(1)	0.0871(1)	0.0842(1)	0.0849(1)	0.0840(1)
	z	0.2746(3)	0.2707(3)	0.3035(3)	0.2931(4)	0.2777(2)	0.3021(4)	0.2964(1)
	ж	0.2977(2)	0.2993(2)	0.2910(1)	0.2920(2)	0.2952(1)	0.2847(1)	0 2887(1)
T(2)	у	0.1688(1)	0.1667(1)	0.1724(1)	0.1730(1)	0.1700(1)	0.1718(1)	0.1711(1)
	z	0.7817(3)	0.7780(4)	0.8118(3)	0.8087(4)	0.7849(2)	0.8085(4)	0.8042(1)
	x	0	0	0	0	0	0	0
M(1)	y	0.0872(1)	0.08781(8)	0.0857(1)	0.0908(2)	0.0871(1)	0.0886(1)	0.0878(1)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	x	n	0	0	0	0	0	•
M(2)	v	0.1773(1)	0.17936(9)	0 1775(1)	0 1807(2)	0 1772(1)	0 1702(1)	0 1766(1)
• •	z	0	0	0	0	0.173(1)	0.1/93(1)	0.1700(1)
	x	0	0	n n	0	0	õ	ő
M(3)	v	õ	ő	0	0	0	0	0
	z	Ō	õ	ő	õ	0	0	0
	x	0	0	0	0	-	0	0
M(4)	v	0.2597(1)	0.25741(8)	0 2780(1)	0 2772(3)	0 2626(1)	0 2770(1)	0 277((1)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	v	_		0 0200(7)		_/ _		1/2
A(-)	v	-	-	1/2	.		U.U199(7)	-
/	z	-	_	0.0612(24)	-	-	0.0431(11)	-
	v	_	_				~~~~~~~~~~	
A(-)	y	_	_	-	-	-	-	-
	z	-	-	-	-	-	_	-
	_							

		(34)	(35)	(36)	(37)	(38)	(39)	(40)
0(1)	х	0.1141(6)	0.1145(7)	0.1126(3)	0.1118(4)	0.1056(3)	0.1059(4)	0.1073(8)
	У	0.0849(3)	0.0846(3)	0.0847(2)	0.0874(2)	0.0886(1)	0.0884(2)	0.0872(4)
	z	0.2202(13)	0.2179(14)	0.2197(6)	0.2141(8)	0.2163(5)	0.2159(9)	0.2261(16)
0(2)	х	0.1179(6)	0.1188(7)	0.1187(3)	0.1209(3)	0.1198(2)	0.1190(3)	0.1170(8)
	У	0.1688(3)	0.1689(4)	0.1702(2)	0.1730(2)	0.1739(1)	0.1732(2)	0.1706(4)
	z	0.7276(13)	0.7256(14)	0.7239(6)	0.7240(7)	0.7350(5)	0.7313(8)	0.7326(16)
0(3)	x	0.1029(6)	0.1022(8)	0.1020(4)	0.1114(5)	0.1078(3)	0.1076(5)	0.1015(12)
	y	0	0	0	0	0	0	0
	z	0.7097(13)	0.7122(15)	0.7124(8)	0.7129(11)	0.7142(7)	0.7104(12)	0.7177(26)
0(4)	x	0.3606(6)	0.3611(7)	0.3644(4)	0.3675(4)	0.3674(2)	0.3670(4)	0.3654(9)
	y	0.2491(3)	0.2479(4)	0.2484(2)	0.2462(2)	0.2508(1)	0.2503(2)	0.2514(4)
	z	0.7914(12)	0.7928(13)	0.7907(7)	0.7906(8)	0.7923(5)	0.7915(9)	0.7858(19)
0(5)	x	0.3500(7)	0.3504(7)	0.3471(3)	0.3457(4)	0.3503(2)	0.3504(4)	0.3493(8)
	y	0.1302(2)	0.1310(3)	0.1351(2)	0.1335(2)	0.1397(1)	0.1403(2)	0.1396(4)
	z	0.0914(13)	0.0913(15)	0.1001(7)	0.0939(8)	0.1108(5)	0.1109(9)	0.1029(16)
0(6)	ж	0.3445(6)	0.3448(7)	0.3444(3)	0.3432(4)	0.3440(2)	0.3455(4)	0.3472(8)
	У	0.1165(2)	0.1175(3)	0.1197(2)	0.1187(2)	0.1182(1)	0.1169(2)	0.1196(4)
	z	0.5908(12)	0.5857(13)	0.5857(6)	0.5841(8)	0.6094(5)	0.6108(8)	0.6056(16)
0(7)	x	0.3425(9)	0.3416(10)	0.3408(5)	0.3349(5)	0.3389(4)	0.3383(5)	0.3435(13)
	y	0	0	0	0	0	0	0
	z	0.2899(18)	0.2896(19)	0.2922(10)	0.2914(12)	0.2861(8)	0.2834(13)	0.2835(28)
T(1)	x	0.2803(2)	0.2816(2)	0.2829(1)	0.2807(1)	0.2799(1)	0.2806(1)	0.2842(4)
	y	0.0843(1)	0.0842(1)	0.0834(1)	0.08399(7)	0.0857(1)	0.0857(1)	0.0855(2)
	z	0.2937(5)	0.2944(5)	0.2960(2)	0.2943(3)	0.3034(2)	0.3042(3)	0.3027(8)
T(2)	x	0.2884(2)	0.2892(3)	0.2900(1)	0.2895(1)	0.2908(1)	0.2907(1)	0.2921(4)
	y	0.1711(1)	0.1704(1)	0.1707(1)	0.17054(7)	0.1734(1)	0.1728(1)	0.1722(2)
	z	0.8037(5)	0.8011(5)	0.8041(2)	0.8022(3)	0.8141(2)	0.8135(3)	0.8107(7)
M(1)	x	0	0	0	0	0	0	0
	y	0.0896(2)	0.0896(2)	0.0885(1)	0.08874(7)	0.0899(1)	0.0868(1)	0.0798(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	x	0	0	0	0	0	0	0
	y	0.1783(2)	0.1797(2)	0.1760(1)	0.17857(7)	0.1766(1)	0.1771(1)	0.1774(3)
	z	0	0	0	0	0	0	0
M(3)	х	0	0	0	0	0	0	0
	У	0	0	0	0	0	0	0
	z	0	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0	0
	y	0.2757(2)	0.2749(2)	0.2771(1)	0.27690(8)	0.2802(1)	0.2795(1)	0.2779(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
A(-)	x y z	0.0281(14) 0.4892(12) 0.0760(27)	0.0277(15) 0.4871(10) 0.0644(29)	- -		0.0267(5) 1/2 0.0556(11)	0.0234(9) 1/2 0.0442(22)	0.0277(18) 1/2 0.0690(34)
A(-)	x y z		-	-				- - -

		(41)	(42)	(43)	(44)	(45)	(46)	(48)
0(1)	x	0.1131(3)	0.1069(10)	0.1128(9)	0.1043(11)	0.1084(6)	0.1070(11)	0.1042(12)
	y	0.0863(1)	0.0892(6)	0.0862(5)	0.0884(6)	0.0887(3)	0.0902(6)	0.0939(6)
	z	0.2120(6)	0.2063(24)	0.2161(23)	0.2020(31)	0.2137(17)	0.2040(28)	0.2099(28)
0(2)	x	0.1214(3)	0.1209(10)	0.1197(9)	0.1252(11)	0.1194(6)	0.1200(12)	0.1201(11)
	y	0.1719(1)	0.1731(6)	0.1723(5)	0.1757(6)	0.1734(3)	0.1740(6)	0.1761(6)
	z	0.7185(6)	0.7360(25)	0.7249(23)	0.7294(31)	0.7290(16)	0.7350(29)	0.7497(21)
0(3)	x	0.1134(5)	0.1113(15)	0.1103(13)	0.1139(17)	0.1112(8)	0.1080(12)	0.1122(17)
	y	0	0	0	0	0	0	0
	z	0.7096(8)	0.7148(36)	0.7139(32)	0.7167(31)	0.7156(24)	0.7210(41)	0.7113(40)
0(4)	x	0.3742(3)	0.3661(10)	0.3644(9)	0.3640(11)	0.3667(6)	0.3660(12)	0.3713(11)
	y	0.2473(2)	0.2515(6)	0.2473(5)	0.2485(6)	0.2487(3)	0.2500(6)	0.2519(6)
	z	0.7787(6)	0.7972(26)	0.7930(22)	0.7968(30)	0.7951(17)	0.7970(23)	0.7956(27)
0(5)	x	0.3491(3)	0.3499(11)	0.3460(9)	0.3465(11)	0.3482(7)	0.3500(12)	0.3530(12)
	y	0.1303(2)	0.1376(6)	0.1344(5)	0.1364(6)	0.1363(3)	0.1380(6)	0.1409(6)
	z	0.0676(6)	0.1045(27)	0.0965(24)	0.0992(32)	0.1026(18)	0.1040(32)	0.1104(29)
0(6)	x	0.3491(3)	0.3425(11)	0.3415(9)	0.3425(11)	0.3413(6)	0.3420(12)	0.3404(11)
	y	0.1214(2)	0.1182(6)	0.1177(5)	0.1182(6)	0.1179(3)	0.1190(6)	0.1208(6)
	z	0.5597(6)	0.5975(26)	0.5901(24)	0.5946(32)	0.5995(17)	0.5970(32)	0.6059(27)
0(7)	x	0.3427(5)	0.3330(15)	0.3338(13)	0.3342(16)	0.3343(9)	0.3330(16)	0.3285(18)
	y	0	0	0	0	0	0	0
	z	0.2829(9)	0.2827(36)	0.2885(31)	0.2935(43)	0.2962(24)	0.2910(41)	0.2865(43)
T(1)	x	0.2860(1)	0.2792(4)	0.2797(3)	0.2795(4)	0.2801(2)	0.2800(4)	0.2808(4)
	y	0.0843(1)	0.0855(2)	0.0840(2)	0.0841(1)	0.0849(1)	0.0848(2)	0.0866(2)
	z	0.2783(2)	0.2996(9)	0.2961(8)	0.2995(11)	0.2997(7)	0.2980(11)	0.3022(10)
T(2)	x	0.2947(1)	0.2909(4)	0.2894(3)	0.2924(4)	0.2904(2)	0.2920(4)	0.2927(4)
	y	0.1702(1)	0.1723(2)	0.1706(2)	0.1714(2)	0.1719(1)	0.1720(2)	0.1734(2)
	z	0.7851(2)	0.8095(10)	0.8031(8)	0.8071(11)	0.8075(7)	0.8100(12)	0.8171(10)
M(1)	x	0	0	0	0	0	0	0
	y	0.0870(1)	0.0881(3)	0.0876(3)	0.0900(2)	0.0887(1)	0.0866(2)	0.0900(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	ж	0	0	0	0	0	0	0
	У	0.1767(1)	0,1771(3)	0.1765(2)	0.1787(2)	0.1780(1)	0.1773(2)	0.1776(3)
	z	0	0	0	0	0	0	0
M(3)	x	0	0	0	0	0	0	0
	y	0	0	0	0	0	0	0
	z	0	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0	0
	y	0.2642(1)	0.2793(3)	0.2780(2)	0.2809(7)	0.2794(1)	0.2797(2)	0.2804(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
A(-)	x	-	0	0	0	0	0	0
	y	-	1/2	1/2	1/2	1/2	1/2	1/2
	z	-	0	0	0	0	0	0
A(-)	x y z	-			-	- - -	-	-

		(49)	(50)	(51)	(52)	(53a)	(53b)	(54)	(55)
0(1)	x	0.103(1)	0.103(2)	0.107(2)	0.1077(8)	0.Ì117(2)	0.1118(3)	0.1046(4)	0.1058(4)
	y	0.0932(7)	0.0921(8)	0.0915(9)	0.0864(5)	0.0862(1)	0.0863(2)	0.0936(2)	0.0870(2)
	z	0.202(4)	0.204(4)	0.204(3)	0.2198(14)	0.2171(5)	0.2175(6)	0.2099(7)	0.2196(7)
0(2)	х	0.120(1)	0.119(2)	0.124(2)	0.1166(9)	0.1190(2)	0.1198(3)	0.1198(4)	0.1184(4)
	У	0.1761(7)	0.1761(8)	0.1748(7)	0.1701(5)	0.1712(1)	0.1713(2)	0.1766(2)	0.1713(2)
	z	0.737(4)	0.751(4)	0.738(3)	0.7338(15)	0.7235(5)	0.7235(6)	0.7419(7)	0.7291(7)
0(3)	x	0.112(2)	0.109(3)	0.108(3)	0.1058(10)	0.1104(3)	0.1106(5)	0.1136(6)	0.1065(5)
	y	0	0	0	0	0	0	0	0
	z	0.715(6)	0.708(6)	0.718(6)	0.7359(15)	0.7157(7)	0.7179(9)	0.7126(10)	0.7160)10)
0(4)	x	0.368(1)	0.370(1)	0.360(2)	0.3655(8)	0.3658(2)	0.3662(3)	0.3713(4)	0.3651(4)
	y	0.2523(7)	0.2506(7)	0.2500(8)	0.2520(4)	0.2470(1)	0.2461(2)	0.2511(2)	0.2514(2)
	z	0.798(4)	0.810(3)	0.788(3)	0.7747(16)	0.7951(5)	0.7958(7)	0.7951(7)	0.7891(8)
0(5)	x	0.349(1)	0.352(1)	0.351(2)	0.3507(9)	0.3451(2)	0.3441(3)	0.3516(4)	0.3504(4)
	y	0.1385(6)	0.1387(7)	0.1366(7)	0.1407(5)	0.1326(1)	0.1316(2)	0.1401(2)	0.1402(2)
	z	0.105(4)	0.112(4)	0.102(4)	0.1076(16)	0.0950(5)	0.0936(6)	0.1093(7)	0.1107(7)
0(6)	x	0.340(1)	0.341(1)	0.340(2)	0.3481(8)	0.3429(2)	0.3420(3)	0.3418(4)	0.3469(4)
	y	0.1193(7)	0.1179(7)	0.1170(8)	0.1157(4)	0.1192(1)	0.1194(2)	0.1206(2)	0.1181(2)
	z	0.603(4)	0.603(4)	0.612(4)	0.6039(16)	0.5844(5)	0.5820(6)	0.6021(7)	0.6094(8)
0(7)	x y z	0.334(2) 0 0.294(4)	0.333(2) 0 0.286(5)	0.332(2) 0 0.282(5)	0.3465(14) 0 0.2740(30)	0.3354(3) 0.2946(7)	0.3349(5) 0 0.2957(10)	0.3323(6) 0.2861(12)	0.3414(6) 0 0.2859(12)
T(1)	x	0.2812(5)	0.2774(6)	0.2760(6)	0.2844(4)	0.2798(1)	0.2791(1)	0.2799(1)	0.2823(1)
	y	0.0864(2)	0.0867(3)	0.0857(3)	0.0849(2)	0.0839(1)	0.0837(1)	0.0864(1)	0.08560(7)
	z	0.298(2)	0.300(1)	0.302(1)	0.3000(10)	0.2955(2)	0.2945(2)	0.3012(3)	0.3045(3)
T(2)	x	0.2934(5)	0.2942(5)	0.2936(6)	0.2910(4)	0.2882(1)	0.2880(1)	0.2926(1)	0.2908(1)
	y	0.1733(3)	0.1731(3)	0.1715(3)	0.1725(2)	0.1707(1)	0.1702(1)	0.1736(1)	0.17304(7)
	z	0.813(1)	0.814(1)	0.811(2)	0.8091(9)	0.8032(2)	0.8027(2)	0.8161(2)	0.8118(3)
M(1)	x	0	0	0	0	0	0	0	0
	y	0.0895(8)	0.0904(4)	0.0897(3)	0.0823(2)	0.0877(1)	0.0878(1)	0.0902(1)	0.0817(1)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	x	0	0	0	0	0	0	0	0
	y	0.1780(7)	0.1777(4)	0.1803(2)	0.1769(3)	0.1770(1)	0.1776(1)	0.1782(1)	0.1767(1)
	z	0	0	0	0	0	0	0	0
M(3)	x	0	0	0	0	0	0	0	0
	y	0	0	0	0	0	0	0	0
	z	0	0	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0	0	0
	y	0.2801(7)	0.2802(3)	0.2826(4)	0.2776(3)	0.2776(1)	0.2778(1)	0.2806(1)	0.27890(8)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
A(-)	x y z	-	-	0.020(4) 1/2 0.044(6)	0 1/2 0	-	-	0.0272(34) 1/2 0.0621(63)	0.0467(11) 1/2 0.0901(22)
A(-)	ж У z	-		-	0 1/2 0	-	-	0 0.4784(17) 0	0 0.4917(8) 0

		(56a)	(56b)	(57)	(58)	(59)	(60)	(61)
0(1)	x	0.1112(2)	0.1114(1)	0.1138(3)	0.1035(3)	0.1063(2)	0.1064(10)	0.1080(12)
	y	0.0858(1)	0.08570(7)	0.0864(1)	0.0935(1)	0.0912(1)	0.0908(5)	0.0894(6)
	z	0.2184(3)	0.2182(3)	0.2116(5)	0.2109(5)	0.2136(4)	0.2132(23)	0.2071(27)
0(2)	x	0.1189(2)	0.1187(1)	0.1224(3)	0.1180(3)	0.1210(2)	0.1200(9)	0.1193(10)
	y	0.1706(1)	0.17067(6)	0.1723(1)	0.1766(1)	0.1745(1)	0.1730(5)	0.1745(5)
	z	0.7247(3)	0.7251(3)	0.7198(5)	0.7455(6)	0.7356(4)	0.7356(22)	0.7300(24)
0(3)	ж	0.1072(3)	0.1082(2)	0.1130(4)	0.1111(4)	0.1104(3)	0.1083(14)	0.1111(15)
	У	0	0	0	0	0	0	0
	z	0.7152(5)	0.7154(4)	0.7104(7)	0.7097(8)	0.7099(6)	0.7157(33)	0.7165(34)
0(4)	x	0.3646(2)	0.3642(2)	0.3751(3)	0.3717(3)	0.3662(2)	0.3684(9)	0.3665(11)
	y	0.2482(1)	0.24818(7)	0.2469(1)	0.2518(1)	0.2499(1)	0.2523(8)	0.2509(6)
	z	0.7931(3)	0.7928(3)	0.7767(5)	0.7946(5)	0.7939(4)	0.8016(21)	0.7907(25)
0(5)	x	0.3466(2)	0.3467(1)	0.3501(3)	0.3526(3)	0.3494(2)	0.3479(10)	0.3504(11)
	y	0.1341(1)	0.13391(7)	0.1307(2)	0.1401(1)	0.1364(1)	0.1370(5)	0.1404(5)
	z	0.1003(3)	0.0998(3)	0.0673(5)	0.1155(6)	0.1004(5)	0.1045(23)	0.1097(25)
0(6)	x	0.3437(2)	0.3437(1)	0.3492(3)	0.3418(3)	0.3425(2)	0.3455(9)	0.3422(12)
	y	0.1183(1)	0.11805(7)	0.1204(2)	0.1181(1)	0.1189(1)	0.1199(4)	0.1156(6)
	z	0.5913(3)	0.5910(3)	0.5616(5)	0.6105(6)	0.6015(5)	0.6013(21)	0.6030(28)
0(7)	x	0.3386(3)	0.3380(2)	0.3439(4)	0.3328(4)	0.3353(4)	0.3343(15)	0.3333(15)
	y	0	0	0	0	0	0	0
	z	0.2913(5)	0.2921(4)	0.2787(8)	0.2807(9)	0.2886(7)	0.2947(33)	0.2650(35)
T(1)	х	0.28005(7)	0.2799(2)	0.2864(1)	0.2789(1)	0.27973(9)	0.2807(4)	0.2807(4)
	У	0.08417(3)	0.08424(4)	0.08426(5)	0.08693(5)	0.08621(5)	0.0851(2)	0.0847(2)
	z	0.2979(1)	0.2974(4)	0.2784(2)	0.3042(2)	0.3005(2)	0.3027(8)	0.3011(9)
T(2)	х	0.28803(7)	0.2882(2)	0.2955(1)	0.2920(1)	0.29085(8)	0.2906(3)	0.2924(4)
	У	0.17132(4)	0.171 3 3(8)	0.16977(5)	0.17394(6)	0.17241(4)	0.1731(2)	0.1723(2)
	z	0.8050(1)	0.8056(4)	0.7853(2)	0.8188(2)	0.8105(1)	0.8102(8)	0.8120(9)
M(1)	x	0	0	0	0	0	0	0
	y	0.08821(7)	0.0883(1)	0.08711(6)	0.09076(6)	0.08945(4)	0.0885(2)	0.0887(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	x	0	0	0	0	0	0	0
	y	0.17678(6)	0.1770(1)	0.17744(7)	0.17904(6)	0.17993(4)	0.1776(2)	0.1769(2)
	z	0	0	0	0	0	0	0
M(3)	x	0	0	0	0	0	0	0
	y	0	0	0	0	0	0	0
	z	0	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0	0
	y	0.27797(4)	0.2779(1)	0.26251(5)	0.28193(7)	0.28033(6)	0.2805(2)	0.2792(2)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
A(-)	x y z	0.0407(23) 1/2 0.0887(42)	0.0450(40) 1/2 0.1030(76)		0.0391(24) 1/2 0.0908(52)	0.0437(8) 1/2 0.0906(16)	0 1/2 0	0.0162(57) 1/2 0.0712(93)
A(-)	x y z	0 0.4901(19) 0	0 0.4897(38) 0		0 0.4848(5) 0	0 0.4889(5) 0		- - -

¢

		(62)	(62)	((1))	14.52		((7)	
	x	(82) 0.111(2)	(63)	(64) 0.101(1)	(65) 0.114(1)	(60) 0.109(2)	(67) 0.1096(3)	(68) 0.1098(3)
0(1)	y z	0.0933(10) 0.185(5)	0.0875(7) 0.2184(36)	0.091(1) 0.183(5)	0.093(1) 0.188(4)	0.088(1) 0.167(5)	0.0914(2) 0.2082(7)	0.0913(2) 0.2047(6)
0(2)	х У	0.114(2) 0.1742(9)	0.1183(13) 0.1727(7)	0.123(2) 0.170(1)	0.121(1) 0.171(1)	0.118(2) 0.171(1)	0.1201(4) 0.1731(2)	0.1195(3) 0.1723(2)
	z	0.722(5)	0.7236(36)	0.732(6)	0.728(3)	0.739(4)	0.7332(7)	0.7378(6)
0(3)	х У	0.107(3) 0	0.1107(19) 0	0.124(3) 0	0.104(2) 0	0.121(3) 0	0.1074(5) 0	0.1118(4) 0
	z	0.716(7)	0.7125(50)	0.728(8)	0.704(5)	0.705(7)	0.7067(9)	0.7095(8)
0(4)	x y z	0.375(2) 0.2556(10) 0.787(5)	0.3668(12) 0.2490(7) 0.7869(36)	0.354(2) 0.255(1) 0.821(6)	0.360(1) 0.249(1) 0.813(5)	0.353(2) 0.254(1) 0.815(5)	0.3643(4) 0.2473(2) 0.7984(7)	0.3656(3) 0.2491(2) 0.8013(6)
0(5)	x	0.362(2)	0.3476(13)	0.343(2)	0.347(1)	0.351(2)	0.3440(4)	0.3491(3)
•(3)	z	0.055(4)	0.1144(35)	0.077(6)	0.130(1) 0.075(3)	0.130(1) 0.079(5)	0.1273(2) 0.0827(7)	0.1282(2) 0.0814(5)
0(6)	X	0.345(2)	0.3434(13)	0.337(2)	0.336(1)	0.337(2)	0.3663(4)	0.3399(3)
0(0)	y Z	0.1248(9) 0.552(4)	0.6054(34)	0.120(1) 0.582(6)	0.11/(1) 0.576(4)	0.118(1) 0.582(5)	0.1172(2) 0.5841(7)	0.1206(2) 0.5778(5)
0(7)	x v	0.336(3) 0	0.3367(18)	0.324(3)	0.327(2)	0.333(3)	0.3262(6)	0.3325(5)
	z	0.275(7)	0.2773(47)	0.297(8)	0.294(4)	0.301(7)	0.2988(10)	0.3004(8)
т(1)	x	0.2854(8)	0.2819(5)	0.2753(8)	0.2764(5)	0.2753 (7)	0.2738(1)	0.2796(1)
-(-)	z	0.282(3)	0.3025(15)	0.289(2)	0.0853(2) 0.289(1)	0.0865(4) 0.288(2)	0.2917(3)	0.2905(2)
T(2)	x v	0.3025(9) 0.1730(4)	0.2909(5) 0.1724(2)	0.2964(9) 0.1707(5)	0.2897(4)	0.2893(7)	0.2864(1)	0.2901(1)
	z	0.792(3)	0.8130(14)	0.800(2)	0.800(1)	0.797(2)	0.17104(7) 0.8018(2)	0.8015(2)
M(1)	x v	0 0-0895 (5)	0 0.0881(5)	0	0	0	0	0
- (-)	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	x v	0 0.1777(5)	0	0	0	0	0	0
	z	0	0	0,1034(3)	0.1837(2)	0.1804(3)	0.10443(3)	0.18282(3)
M(3)	x	0	0	0	0	0	0	0
~-(3)	z	õ	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0	0
**(*)	z	1/2	1/2	1/2	1/2	0.2864(8) 1/2	0.2//9(2) 1/2	0.2/82(1) 1/2
۵()	x	0.034(10)	0	0	0.031(-)	0	0.0172(5)	0.0387(11)
) Z	0.063(27)	0	0	1/2 0.075(-)	1/2 0	1/2 0.0402(9)	1/2 0.0833(19)
۵(-)	x	-	-	-	-	-	-	-
	y Z	-	-	-	-	-	_	

		(69)	(70)	(71)	(72)	(73)	(74)
0(1)	x	0.1089(3)	0.1069(1)	0.1062(1)	0.1069(1)	0.1061(4)	0.1044(5)
	y	0.0947(1)	0.08979(6)	0.08926(6)	0.08831(7)	0.0895(2)	0.0883(3)
	z	0.2016(5)	0.2142(2)	0.2146(2)	0.2152(2)	0.2134(7)	0.218(1)
0(2)	x	0.1178(3)	0.1196(1)	0.1197(1)	0.1202(1)	0.1203(4)	0.1188(5)
	y	0.1730(1)	0.17378(6)	0.17400(6)	0.17360(7)	0.1743(2)	0.1728(3)
	z	0.7478(4)	0.7356(2)	0.7352(2)	0.7338(2)	0.7351(7)	0.733(1)
0(3)	x y z	0.1129(4) 0 0.7077(7)	0.1089(2) 0.7127(3)	0.1087(2) 0 0.7136(3)	0.1085(2) 0 0.7144(4)	0.1094(6) 0 0.7132(11)	0.1061(8) 0 0.713(2)
0(4)	x	0.3695(3)	0.3691(1)	0.3683(1)	0.3678(1)	0.3696(4)	0.3661(5)
	y	0.2520(1)	0.25024(6)	0.25026(6)	0.24970(7)	0.2498(2)	0.2505(3)
	z	0.8064(5)	0.7904(2)	0.7895(2)	0.7871(3)	0.7879(8)	0.788(1)
0(5)	x	0.3550(3)	0.3506(1)	0.3504(1)	0.3501(1)	0.3506(4)	0.3498(6)
	y	0.1307(1)	0.13927(6)	0.13981(6)	0.13963(7)	0.1403(2)	0.1409(3)
	z	0.0884(5)	0.1086(2)	0.1103(2)	0.1097(3)	0.1107(7)	0.114(1)
0(6)	x	0.3398(3)	0.3426(1)	0.3430(1)	0.3435(1)	0.3436(4)	0.3454(6)
	y	0.1224(1)	0.11701(6)	0.11653(6)	0.11570(7)	0.1168(2)	0.1169(3)
	z	0.5793(5)	0.6049(2)	0.6087(2)	0.6089(3)	0.6066(8)	0.611(1)
0(7)	x	0.3288(4)	0.3371(2)	0.3381(2)	0.3395(2)	0.3394(6)	0.3369(8)
	y	0	0	0	0	0	0
	z	0.3022(7)	0.2780(3)	0.2770(3)	0.2732(4)	0.2750(12)	0.280(2)
T(1)	x	0.2824(1)	0.28061(4)	0.28025(4)	0.28063(5)	0.2812(1)	0.2802(3)
	y	0.08732(5)	0.08576(2)	0.08569(2)	0.08545(2)	0.08559(7)	0.0856(2)
	z	0.2922(2)	0.30064(8)	0.30178(8)	0.3013(1)	0.3008(3)	0.3037(6)
T(2)	x	0.2926(1)	0.29146(4)	0.29105(4)	0.29112(5)	0.2921(1)	0.2912(2)
	y	0.17268(5)	0.17283(2)	0.17310(2)	0.17282(2)	0.17282(7)	0.1728(1)
	z	0.8079(2)	0.81182(8)	0.81279(8)	0.8116(1)	0.8125(3)	0.8137(4)
M(1)	x	0	0	0	0	0	0
	y	0.09176(7)	0.08952(3)	0.08945(3)	0.08931(4)	0.0892(1)	0.0864(3)
	z	1/2	1/2	1/2	1/2	1/2	1/2
M(2)	x	0	0	0	0	0	0
	y	0.18168(7)	0.17755(3)	0.17734(3)	0.17741(3)	0.1773(1)	0.1772(3)
	z	0	0	0	0	0	0
M(3)	x	0	0	0	0 -	0	0
	y	0	0	0	0	0	0
	z	0	0	0	0	0	0
M(4)	x	0	0	0	0	0	0
	y	0.2772(1)	0.27872(3)	0.27921(3)	0.27857(3)	0.2783(1)	0.2792(1)
	z	1/2	1/2	1/2	1/2	1/2	1/2
A(-)	x	-	0.0283(13)	0.0332(11)	0.0346(11)	0.037(5)	0.044(4)
	y	-	1/2	1/2	1/2	1/2	1/2
	z	-	0.0845(24)	0.0864(20)	0.0866(21)	0.088(9)	0.092(9)
A(-)	x y z	- -	0 0.4748(3) 0	0 0.4710(2) 0	0 0.4717(2) 0	0 0.4762(13) 0	0 0.489(2) 0

Cummingtonite(21)

 $\begin{array}{ll} M(1) & 0.84Mg + 0.16Fe^{2+}(0.67Mg + 0.33Fe^{2+}) \\ M(2) & 0.95Mg + 0.05Fe^{2+}(0.85Mg + 0.15Fe^{2+}) \\ M(3) & 0.84Mg + 0.16Fe^{2+}(0.67Mg + 0.33Fe^{2+}) \\ M(4) & 0.13Mg + 0.87Fe^{2+}(0.25Mg + 0.75Fe^{2+}) \\ O(3) & 1.0(OH) \end{array}$

Values in parentheses were given by Ghose (1961), and were derived by manually adjusting the site populations until the individual isotropic temperature-factors were approximately equal [1.00(5), 0.95(6), 0.99(6), 0.84(5) Å², respectively]. The first values given were derived by least-squares refinement of the site populations (Fischer 1966), with the isotropic temperature-factors refining to 0.23, 0.27, 0.22 and 0.88 Å², respectively.

Mössbauer examination of this amphibole (Hafner & Ghose 1971) indicates an $Fe^{2+}_{M(4)}/Fe^{2+}_{M(1,2,3)}$ ratio of 0.73/0.20; the above refinements give 0.75/0.26 (Ghose 1961) and 0.87/0.12 (Fischer 1966). These three studies give the following values for total Fe^{2+} in the crystal:

Ghose (1961)	2.79Fe ²⁺	p.f.u.
Fischer (1966)	2.32Fe ²⁺	p.f.u.
Hafner & Ghose (1971)	2.46Fe ²⁺	p.f.u.

The chemical analysis shows 0.35 Ca p.f.u. that has been attributed to admixed actinolite. Assuming a Ca content of 0.1 atoms p.f.u. and normalizing to seven cations gives an M-site bulk composition of $(Mg_{4.16}Fe^{2+}_{2.57}Mn_{0.17}Ca_{0.10})$. None of the values given above for total Fe^{2+} agree with this site content. Using the $Fe^{2+}_{M(4)}/Fe^{2+}_{M(1,2,3)}$ value of Hafner & Ghose (1971) together with $Fe^{2+}_{M(1)}/Fe^{2+}_{M(2)}/Fe^{2+}_{M(3)}$ proportions of Fischer (1966) and the total site-contents indicated above gives the following site-populations:

- M(1) $0.29 Fe^{2+} + 0.71 Mg$
- M(2) $0.09 \text{Fe}^{2+} + 0.91 \text{Mg}$
- M(3) $0.29 Fe^{2+} + 0.71 Mg$

M(4)
$$0.76Fe^{2+} + 0.09Mn + 0.05Ca + 0.10Mg$$

Mn was assumed to be ordered in the M(4) site as has been shown by combined Mössbauer and infrared absorption studies (Bancroft *et al.* 1967a) and combined Mössbauer and crystal-structure-refinement studies (Hawthorne & Grundy 1977b). O(3) was assumed to be completely occupied by OH. The mean observed octahedral bond-lengths are in good agreement with those calculated from the curves of Hawthorne (1978a) using the site-populations given above [<M(1)-O> obs. 2.094, calc. 2.093; <M(2)-O> obs. 2.083, calc. 2.088; <M(3)-O>

obs. 2.090, calc. 2.085 Å]. Cell dimensions are from Viswanathan & Ghose (1965).

Grunerite(22)

M(1)	0.848(8)Fe $+ 0.152$ Mg	0.51(3)	A²
M(2)	0.773(7)Fe + 0.227 Mg	0.51(4)	
M(3)	0.888(12)Fe + 0.112 Mg	0.56(5)	
M(4)	0.985(8)Fe $+ 0.015$ Mg	0.92(4)	
O(3)	0.70(OH) + 0.26F		

A Mössbauer study (Hafner & Ghose 1971) of this amphibole gave statistically equal sitepopulations for M(4) and the weighted average of the M(1), M(2) and M(3) sites; this study also indicated ~0.06 Fe³⁺ p.f.u., but there is no information as to where this occurs. The small amount of Ca indicated by the chemical analysis (Klein 1964, sample no. 1) presumably occurs in the M(4) site; thus, M(4) could be completely occupied by Fe²⁺ and Ca with even less Mg than indicated above. Chemical analysis total includes 0.1 wt. % P₂O₅.

Potassian titanian magnesio-hastingsite(24)

T(1)	0.58Si + 0.42Al	0.49(2) Å ²
T(2)	0.92Si + 0.08Al	0.46(2)
M(1)	0.65 Mg + 0.35 Fe	0.91(3)
M(2)	0.24Ti+0.20Al	
	+0.45Mg+0.11Fe	0.56(3)
M(3)	0.65Mg + 0.35Fe	0.48(3)
M(4)	0.82Ca + 0.11Na +	
	0.06Fe+0.01Mn	0.87(2)
Α	0.63Na + 0.30K	3.34(13)

Cation site-populations from Robinson et al. (1973), all other data from Robinson (1971); no standard deviations given for site populations. The site populations of Si and Mg were refined over the T and M(1, 2, 3) sites, respectively, with octahedral Al and Ti assigned to the M(2)site and bulk-chemical constraints operative. The isotropic temperature-factors at the M(1), M(2) and M(3) sites differ significantly, and suggest that there is too much scattering power at the M(1) site. Both the analyses by Mason (1968) and White *et al.* (1972) show ~ 1.0 wt. % H₂O; as F = 0.15 wt. %, this suggests that the O(3) position is occupied by 0.47 $OH + 0.04 F + 0.49 O^{2-}$. Robinson *et al.* (1973) suggested that the Fe at the M(2) site is in the trivalent state on the basis of the short <M(2)-O> value. This leaves 0.32Fe³⁺ p.f.u. to be distributed over the M(1) and M(3) sites. Using the equations of Hawthorne (1978a)

377

and assuming that the Fe at the M(1) and M(3) sites is in the divalent state, the following mean octahedral bond-lengths are obtained:

<m(1)-o></m(1)-o>	obs.	2.077, calc.	2.102 Å
<m(2)-o></m(2)-o>	obs.	2.047, calc.	2.041 Å
<m(3)-o></m(3)-o>	obs.	2.079, calc.	2.093 Å

The agreement is not good, particularly for the M(1) site. The occupancy of the O(3) position indicated by the analysis (Mason 1968) suggests that this amphibole is partially oxidized. a fact that is not surprising in view of its paragenesis. Kitamura et al. (1975) showed that Ti is strongly ordered in the M(1) site in potassian oxy-kaersutite(40). The oxidized nature of potassian titanian magnesio-hastingsite (24), the high Ti content and short <M(1)-O>suggest a similar ordering in this amphibole. From the observed bond-lengths, mean cationradii at the three M sites may be calculated from the equations of Hawthorne (1978a); the following values were obtained for M(1), M(2) and M(3): 0.715, 0.670 and 0.725 Å, respectively. Using these values together with the total site-scattering powers indicated by the site populations of Robinson et al. (1973), cation site-populations may be obtained. Assuming M(1) is occupied by Mg, Ti⁴⁺ and Fe²⁺, and M(3) is occupied by Mg, Fe^{3+} and Fe^{2+} , site populations may be calculated that result in mean cation-radii of 0.715 and 0.725 Å. respectively. The M(2) site-populations are obtained by difference, assuming that Mn and 0.12Fe^{2+} occupy the M(4) site; the resulting mean cation-radius for the M(2) site is 0.665 Å, in good agreement with the ideal value of 0.670 Å. The calculated site-populations are:

M(1) 0.65Mg+0.15Ti⁴⁺+0.20Fe²⁺

$$0.21 \mathrm{Fe}^{3+} + 0.05 \mathrm{Fe}^{2-}$$

+ $0.23 \mathrm{Fe}^{2+}$

M(3) $0.65Mg+0.12Fe^{3+}+0.23Fe^{2+}$ These values are, of course, highly speculative, but the overall pattern is in agreement with current knowledge of oxy-amphiboles. One supporting factor is that the total number of higher-valence-state cations (Fe³⁺ and Ti⁴⁺) co-ordinated to O(3) is approximately equal to the O²⁻ site-populations at the O(3) site: (Ti⁴⁺+Fe³⁺) at M(1) and M(3) = 0.42 atoms p.f.u.; O²⁻ site-occupancy of O(3) = 0.49 atoms p.f.u.

Glaucophane(26)

M(1)	$0.84(2)Mg + 0.16Fe^{2+}$	0.38(5) Å ²
M(2)	$0.91(2)Al + 0.09Fe^{3+}$	0.26(4)
M(3)	$0.71(2)Mg + 0.29Fe^{2+}$	0.24(3)
M(4)	0.98(4)Na+0.02Ca	0.80(7)

Cation site-populations from Papike & Clark (1968), derived by unconstrained refinement of site occupancies; Fe was assumed to be in the trivalent state at the M(2) site on the basis of the short $\langle M(2)-O \rangle$ and by analogy with crocidolite (Whittaker 1949). The total M-site contents obtained by unconstrained refinement differ significantly from those indicated by the chemical analysis:

refinement:

 $(Na_{1.96}Ca_{0.04})(Mg_{2.39}Al_{1.82}Fe^{2+}0.61}Fe^{3+}0.18)$ analysis:

 $\begin{array}{c} (Na_{1.84}Ca_{0.20}) \ (Mg_{2.38}Al_{1.58}Fe^{2+}{}_{0.70}\\ Fe^{3+}{}_{0.30}Ti_{0.06}Mn_{0.01}) \end{array}$

No supporting evidence was given for the validity of the refined composition. Finger (1969a) and Burnham et al. (1971) have shown that unconstrained site-population refinement can lead to significant differences between refined and analyzed cell-contents; this may be the case for glaucophane. However, there is some evidence to support the results of the refinement. Comparison of $\langle M(2)-O \rangle$ in glaucophane and ferroglaucophane (Hawthorne 1979) together with the M(2) site-populations indicates that the mean constituent-cation radius in glaucophane is essentially correct. Bancroft & Burns (1969) obtained site populations for this glaucophane by Mössbauer spectroscopy; their results for the M(1) and M(3) sites are statistically identical to those indicated by the X-ray site-populations. This additional evidence supports the site populations assigned for glaucophane. The chemical analysis includes 0.01 Cl.

Tirodite(28)

- M(1) 0.208(9)(Fe+Mn)+0.792Mg = 0.79Mg+0.03Fe+0.18Mn 0.45 Å²
- M(2) 0.158(8) (Fe+Mn)+0.842Mg = 0.84Mg+0.12Fe+0.04Mn = 0.39
- $\begin{array}{rl} M(3) & 0.125(14) \, (Fe+Mn) + 0.875 \, Mg = \\ & 0.88 \, Mg + 0.07 Fe + 0.05 \, Mn & 0.27 \end{array}$
- $\begin{array}{lll} M(4) & 0.88 \ (Fe+Mn) + 0.03 Mg + 0.09 Ca = \\ & 0.78 Mn + 0.09 Fe + 0.03 Mg & 0.81 \\ & + 0.09 Ca + 0.01 Na \end{array}$

$$O(3) \quad 0.92(OH) + 0.08F$$

Cation site-populations were refined in terms of the scattering species (Fe+Mn) and Mg, with bulk-chemical constraints operative; the spread in the equivalent isotropic temperature-factors at the M(1), M(2) and M(3) site suggests that the scattering power at the M(3) site is less than it should be. Cation site-occupancies were assigned by comparison of the <M-O> with similar distances in ordered end-member pyroxenes and amphiboles containing these cations. Using these site occupancies together with the curves of Hawthorne (1978a) gives the following < M-O> distances:

<m(1)-o></m(1)-o>	obs.	2.096,	calc.	2.096 Å
<m(2)-o></m(2)-o>	obs.	2.088,	calc.	2.093 Å
<m(3)-o></m(3)-o>	obs.	2.080.	calc.	2.077 Å

This supports the assigned site-populations, although it should be noted that the following site-populations

 $M(1) = 0.792Mg + 0.025Fe^{2+} + 0.183Mn$

- M(2) $0.842Mg + 0.158Fe^{2+}$
- $M(3) \quad 0.875Mg + 0.125Mn$

provide an even better agreement. The O(3) site-population was taken from the analysis by Klein (1964) and normalized to a total of 1.0. The analysis total includes $0.09 P_2O_5$.

Potassium-magnesio-katophorite(29)

T(1)	0.06(4)A1+0.96Si	0.54(2) Å
T(2)	0.01A1+0.99Si	0.54(2)
M(1)	0.91Mg+0.05(2)Ti	
	+0.04(Fe+Mn)	0.77(3)
M(2)	0.89Mg + 0.11(Fe + Mn)	0.60(3)
M(3)	0.94Mg+0.06Ti	0.69(5)
M(4)	0.50Ca+0.50Na	0.80(3)
A(m)	0.5K	1.58(6)

Cation site-populations from Cameron (1970); the relative ordering of Ti and (Fe+Mn) was derived by the partitioned matrix method (see previous section on site occupancies from X-ray data) and is unlikely to be statistically significant. The cell contents indicate that all Fe³⁺ and 0.07 Ti must be assigned to the T sites to fill them up; whether this is the case or a result of error in the analysis is difficult to assess, as the presence of cations other than Si, Al and Be in the T sites has not been incontrovertibly proven in the amphiboles. < T(2)-O >is quite large: 1.646 Å. However, the isotropic temperature-factor at this site (see above) does not suggest any substitution of transition metals at this site. The large $\langle T(2)-O \rangle$ value is compatible with complete Si occupancy when the bond-length distortion Δ is considered, as potassian magnesio-katophorite(29) agrees with the general trend ($\Delta vs. < T-O>$) of Figure 37 for non-^{iv}Al C2/m amphiboles. Comparison of < M(2)-O > for this amphibole (2.092 Å) and fluor-richterite(34) (2.085 Å) supports the premise that the mean radius of the constituent M(2) cation in this amphibole is larger than 0.720 Å, the value for Mg. Mn is negligible. and assuming $M(2) = 0.89Mg + 0.11Fe^{2+}$, the following values for $\langle M(2)-O \rangle$ are obtained: $\langle M(2)-O \rangle$ obs. 2.095, calc. 2.089 Å. This suggests that no trivalent cations occur in the M(2) site of potassium-magnesio-katophorite (29).

The chemical analysis (Prider 1939) indicates an O(3) site-occupancy O(3)=0.22(OH)+0.29F +0.42 O²⁻ [<r> = 1.338 Å]; H₂O⁻ was not determined in the analysis. If this site population is correct, it indicates that this amphibole is considerably oxidized, suggesting that higher valence cations may occupy the M(1) and M(3) sites. The analysis total includes 0.15 SrO.

Tremolite(30)

Ų

Site populations assigned; equality of octahedral-site isotropic temperature-factors is in agreement with this. The cell content from the chemical analysis (Ross *et al.* 1969) indicates a small amount of octahedral Al that may be assigned to the M(2) site on the basis of the observed site-preference of octahedral Al in other C2/m amphiboles and on mean bondlength considerations. The analysis total includes 0.10 CO₂ (Ross *et al.* 1968b).

Fluor-richterite(34)

M(1)	Mg	0.50(7) Å ²
M(2)	Mg	0.50(7)
M(3)	Mg	0.24(8)
M(4)	0.5Ca + 0.5Na	0.61(4)
A(1)	0.25Na	3.0(4)
O(3)	1.00F	0.49(11)

The stoichiometry of this synthetic amphibole (Cameron 1970) forces this assignment, assuming that all Ca occurs at the M(4) site. The isotropic temperature-factor at the M(3) site is less than that at the M(1) and M(2) sites, but the difference is only $\sim 2\sigma$, and hence not significant.

Fluor-richterite(35)

M(1)	0.8	0(2)Mg + 0.20Fe	0.7	7(6) Ų
M(2)	0.4	8(2)Mg + 0.52Fe	0.7	6(5)
M(3)	0.8	5Mg+0.15Fe	0.7	9(8)
M(4)	0.5	1Na+0.45Ca+0.0	4Fe 0.9	3(6)
A(1)	0.25	ōNa	2.3	(3)
O(3)	1.00)F	0.7	4(12)
Cat	ion	site-populations	(Cameron	1970)

derived by constrained site-occupancy refinement. The octahedral-site isotropic temperaturefactors are statistically equal, supporting these results. The cell contents calculated from the chemical composition indicates a slight deficiency from the ideal Ca content and a slight excess of octahedral cations; excess Fe was thus assigned to the M(4) site. Charge-balance considerations (Cameron 1970) indicate that little if any of the Fe is in the trivalent state.

One rather puzzling factor is seen when the $\langle M(3) - O \rangle$ and constituent M(3) cation radii for the two fluor-richterites(34) and (35) are compared:

fluor-richterite(34):

<M(3)-O> = 2.057, $r_{M(3)} = 0.720$ Å fluor-richterite(35):

< M(3)-O> = 2.051, $r_{M(3)} = 0.729$ Å. The reason for the smaller < M(3)-O> associated with the larger constituent-cation radius is unclear.

Fluor-tremolite(36)

M(1)	Mg	0.40(4) Å ²
M(2)	Mg	0.51(4)
M(3)	Mg	0.37(5)
M(4)	Ca	0.73(2)
O(3)	F	0.60(6)

Cation site-populations for this synthetic amphibole were assumed; the octahedral-site isotropic temperature-factors are statistically equal and support this assignment.

Manganoan ferro-actinolite(37)

0.56(3) Å ²
0.58(3)
0.59(3)
16Fe ³⁺
0.04A1 0.55(3)
0.68(3)
4Na 0.97(3)

Cation site-populations (Mitchell *et al.* 1971) were derived by constrained site-occupancy refinement; no standard deviations were given. Tetrahedral Al occupancy of T(1) supported by comparison of $\langle T-O \rangle$ distances with those in tremolite(30). Octahedral-site temperature-factors are statistically equal and support the assigned populations. The "C-type" cation sum is 5.16 atoms p.f.u.; 0.16 Mn was assigned to the M(4) site.

Fe site-occupancies have also been obtained for this actinolite by Mössbauer methods (Burns & Greaves 1971): The agreement between the X-ray and Mössbauer results is poor. The problems associated with deriving Fe site-populations by Mössbauer spectroscopy have been examined earlier, and for these reasons the X-ray results are considered more reliable.

Potassian pargasite(38)

Γ(1)	0.62Si+0.38Al	0.49(2) Å ²
Γ(2)	0.91Si+0.09A1	0.48(2)
M(1)	0.77Mg+0.23Fe	0.40(2)
M(2)	0.48Mg + 0.20Fe + 0.27Al	
	+0.05Ti	0.37(2)
M(3)	0.76Mg+0.24Fe	0.29(3)
M(4)	1.00Ca	0.68(2)
A(m)	0.315Na+0.15K	3.45(11)
D(3)	$0.42F + (0.58 - x)O^{2-} + x(OH)$	0.91(5)

Cation site-populations (Robinson *et al.* 1973) were derived by constrained site-occupancy refinement; no standard deviations were given. There is a slight difference in the isotropic temperature-factors at the M(1) and M(3) sites, but this is of marginal (3σ) significance. Robinson *et al.* (1973) assumed that most of the Fe at the M(2) site is trivalent, with Fe at M(1) and M(3) divalent. This is a potassian pargasite, assuming Fe³⁺ < Al (*cf.* analyses 492 and 1011, Leake 1968).

Potassian titanian pargasite(39)

T(1)	0.54Si+0.46Al	0.55(3) Å ²
T(2)	0.92Si+0.08Al	0.55(3)
M(1)	0.68Mg + 0.32Fe	1.10(4)
M(2)	0.44Mg + 0.22Ti + 0.17Al	
	+0.17Fe	0.62(3)
M(3)	0.68Mg+0.32Fe	0.69(4)
M(4)	0.92Ca+0.08Na	0.71(3)
Α	0.39Na+0.40K	_

Cation site-populations from Robinson *et al.* (1973); no standard deviations given for site populations. The site populations of Si and Mg were refined over the T and M(1, 2, 3) sites, respectively, with octahedral Al and Ti assigned to the M(2) site and bulk-chemical constraints operative. The isotropic temperature-factors at the M(1), M(2) and M(3) sites differ significantly, and suggest that there is too much scattering power at the M(1) site. The O(3) occupancy is not given. However, this "titanian pargasite" is from Boulder Dam, Arizona and was originally called kaersutite. A kaersutite from Boulder

Dam, Arizona (Leake 1968, #512) has a similar chemical composition and a site occupancy $O(3) = 0.11(OH) + 0.19F + 0.70 O^{2^{-}}$.

Although the mean bond-lengths suggest that this O(3) occupancy is not directly applicable to the titanian pargasite, it does suggest that the O(3) position is deficient in (OH) and partly occupied by O^{2-} . This suggests that the amphibole is at least partially oxidized; unfortunately the Fe^{3+}/Fe^{2+} ratio is not known, and so confirmatory evidence for this is lacking. However, oxidation can be accompanied by Ti disordering; this questions the assumption that Ti is ordered in the M(2) site. Robinson *et al.* (1973) proposed that the Fe in the M(2) site is predominantly Fe^{3+} ; the <M(2)-O> distance is compatible with this assumption.

Potassium oxy-kaersutite(40)

T(1)	0.55Si+0.45Al	0.49(6) Ų
T(2)	0.89Si + 0.11Al	0.31(6)
M (1)	0.40MG+0.33Fe+0.27Ti	0.35(7)
M(2)	0.75MG + 0.23Fe + 0.02Ti	0.22(8)
M(3)	0.50MG + 0.46Fe + 0.04Ti	0.38(9)
M(4)	0.12MC+0.86Ca	0.60(7)
Α	0.73Na+0.25K	3.6(4)
O(3)	0.25(OH)+0.75 O ²⁻	1.1(3)
where		
MG =	0.83Mg+0.17Al	
MC =	$0.20 \text{Fe}^{3+} + 0.12 \text{Fe}^{2+} + 0.13 \text{Ti}$	
	+0.46Mg+0.09Al	

Tetrahedral site-populations were derived from considerations of mean bond-lengths; the agreement with the curves of Hawthorne & Grundy (1977a) is not good. $Al_{T(1)}$ assigned 0.45, forecast 0.45

Al_{T(2)} assigned 0.11, forecast 0.01

^{iv}Al_{total} analysis 2.25, forecast 1.82 atoms p.f.u.

The reasons for this are not clear. Site occupancies of octahedral sites were determined from Fourier maps, and thus no standard deviations are available. Site occupancies from the X-ray study (Kitamura & Tokonami 1971) were determined in terms of the joint scattering species MG (Mg+Al) and Fe ($Fe^{2+}+Fe^{3+}+Ti$). The authors discussed the distribution of these joint species, but the discussion has no meaning as the ordering patterns of the different chemical species within a given scattering species are not necessarily correlated. A subsequent 2-D neutron structure-refinement (Kitamura et al. 1975) showed Ti to be strongly ordered in the M(1) site. However, the relative ordering of Mg-Al and Fe²⁺-Fe³⁺ is not known.

Tirodite(41)

M(1)	Mg	0.89	Ų
M(2)	Мg	1.00	
M(3)	Mg	0.96	
M(4)	0.49Mn+0.19Ca+0.01Fe		

+0.28Mg+0.03Na 1.36

X-ray-diffraction data collected at 270°C, well above the $P2_1/m \rightarrow C2/m$ transition at 100°C. Material identical with (27), site populations were assigned by analogy with the room-temperature structure and confirmed by site-occupancy refinement. The similarity of the octahedral-cation temperature-factors supports the assigned occupancies.

Magnesio-hornblende(42)

T(1)	0.68Si+0.32Al	0.33(8) Å ²
T(2)	1.00Si	0.22(8)
M(1)	$0.29 \mathrm{Fe}^{2+} + 0.71 \mathrm{Mg}$	0.61(11)
M(2)	0.33Al+0.67Mg	0.59(11)
M(3)	1.00Mg	0.38(14)
M(4)	0.80Ca + 0.20Na	0.40(8)
A	0.27Na + 0.10K	
O(3)	1.00(OH)	0.33(23)

Tetrahedral site-occupancies assigned on the basis of mean bond-lengths. The R index is not sensitive to the site occupancies (Litvin *et al.* 1971b) in this crystal, and the refinement was completed with the cation species statistically distributed over the octahedral sites. Octahedral site-occupancies assigned on the basis of observed mean bond-lengths. The unit formula was supposedly calculated on the basis of 13 cations but the sum of the tetrahedral- and octahedral-type cations equals 12.96, and the formula agrees with that calculated on the basis of 24(O, OH).

These results show poor agreement with the curves of Hawthorne & Grundy (1977a) and Hawthorne (1978a). The total observed ^{iv}Al is 1.27 atoms p.f.u.; the value forecast from the grand mean tetrahedral bond-length is 0.60 atoms p.f.u. Similarly, the agreement for the octahedral sites is not good.

Tremolite(43)

T(1)	0.95Si+0.05Al	0.30(5) Å ²
T(2)	1.00Si	0.27(5)
M(1)	$0.89 Mg + 0.09 Fe^{2+} + 0.02 Fe^{3+}$	0.66(8)
M(2)	$0.89Mg + 0.09Fe^{2+} + 0.02Fe^{3+}$	0.52(8)
M(3)	$0.89Mg + 0.09Fe^{2+} + 0.02Fe^{3+}$	0.38(10)
M(4)	0.79Ca+0.03Mn+0.18Fe ²⁺	0.33(50)
Α	0.15Na + 0.02K	` ´

Tetrahedral site-occupancies assigned on the basis of mean bond-lengths. Octahedral sitepopulations statistically distributed during structure refinement (Litvin 1973). The values are in good agreement with the curves of Hawthorne (1978a):

<m(1)-o></m(1)-o>	obs.	2.089	Å,	calc.	2.081	Å
<m(2)-o></m(2)-o>	obs.	2.086	Å,	calc.	2.088	Å
<m(3)-o></m(3)-o>	obs.	2.076	Å,	calc.	2.073	Å

Even better agreement can be obtained by assigning all Fe^{3+} to M(2). Chemical analysis includes 0.14 P₂O₅.

Hastingsite(44)

71
€2
79
74
74

Tetrahedral site-populations assigned on the basis of mean bond-lengths; there is no direct evidence for tetrahedral occupancy of Ti. There is no information on the cation distribution assumed during refinement.

Site occupancies of octahedral cations derived from mean bond-lengths, by assuming ideal mean bond-lengths for complete occupancy by a single cation and then proportionally assigning the cations. Agreement with the curves of Hawthorne (1978a) is as follows, *assuming* complete occupancy of O(3) by hydroxyl:

< M(1)-O> obs. 2.145 Å, calc. 2.133 Å < M(2)-O> obs. 2.077 Å, calc. 2.092 Å < M(3)-O> obs. 2.080 Å, calc. 2.079 Å Chemical analyses include 0.33 and 0.45 wt. % SO₃, and 0.11 and 0.52 wt. % P₂O₅ respectively. Kukovskii & Litvin (1970) give the infrared spectrum of this amphibole, #9 in Appendix G.

Magnesio-hornblende(45)

T(1)	0.70Si + 0.30Al	0.65(3) Å ²
T(2)	1.00Si	0.70(3)
M(1)	$0.41Mg + 0.46Fe^{2+} + 0.08Fe^{3+}$	
	+0.05A1	0.72(3)
M(2)	$0.51Mg + 0.35Fe^{2+} + 0.07Fe^{3+}$	
	+0.07Al	0.71(8)
M(3)	$0.38Mg + 0.48Fe^{2+} + 0.09Fe^{3+}$	
	+0.05A1	0.51(4)
M(4)	0.95Ca+0.05Na	0.90(3)

Α	0.08Na+0.10K	4.0(8)
O(3)	1.00(OH)	0.76(12)

Tetrahedral site-occupancies assigned on the basis of mean bond-lengths. Site populations of Mg* (Mg+^{vi}Al) and Fe* (Fe²⁺+Fe³⁺+Mn+Ti) derived by manual adjustment during refinement procedure; chemical species within these two groups were assumed to be disordered over all three sites. Using the site populations given above together with the curves of Hawthorne (1978a):

< M(1) - 0 >	obs.	2.102 Å, calc.	2.088 Å
<m(2)-o></m(2)-o>	obs.	2.058 Å, calc.	2.086 Å
<m(3)-o></m(3)-o>	obs.	2.095 Å, calc.	2.081 Å

Much better agreement is obtained if the same Mg^*/Fe^* populations are retained but the trivalent cations are assumed to be ordered in the M(2) site.

M (1)	$0.41 Mg + 0.59 Fe^{2+}$	calc.	2.110 Å
M(2)	$0.51 Mg + 0.20 Fe^{3+} + 0.0$)5Ti	
	$+0.10A1+0.14Fe^{3+}$	calc.	2.063 Å
M(3)	0.38Mg+0.62Fe ²⁺	calc.	2.103 Å
Chem	ical analyses include —	and 0.1	18 wt.%
SO ₃ at	nd 0.14 and 0.11 wt. %	P ₂ O ₅ , res	pectively.

Magnesio-hornblende(46)

T(1)	0.68Si + 0.32Al	0.34(8) Å ²
T(2)	1.00Si	0.33(8)
$\hat{\mathbf{M}(1)}$	$0.51 Mg + 0.49 Fe^{2+}$	0.69(9)
M(2)	$0.43Mg + 0.42Fe^{2+} + 0.15Al$	0.66(9)
M(3)	$0.35 Mg + 0.27 Fe^{2+} + 0.38 Fe^{3+}$	0.43(8)
M(4)	0.85Ca + 0.15Na	0.37(?)
Α	0.03Na + 0.10K	
0(3)	1.00(OH)	0.70(27)
0(3)		

Site populations assigned as for (44). Agreement with the curves of Hawthorne (1978a) is not good:

< M(1)-O > ob	s. 2.119	Å, calc.	2.104 A
<m(2)-o> ob</m(2)-o>	s. 2.027	Å, calc.	2.082 Å
<m(3)-o> ob</m(3)-o>	s. 2.071	Å, calc.	2.059 Å
In particular, the	agreemen	t for the	M(2) site
is very poor; the	curves ind	dicate a m	ean con-
stituent-cation ra	dius of ~	-0.64 as c	compared
with the value of	of 0.717 c	alculated	from the
site-population gi	ven. The a	cell conten	ts would
not appear to allo	w the con-	stituent M(2) cation
radius to be tha	t small n	o matter	what the
cation distribution	n, and the	duplicate	chemical
analyses support	the Fe ³⁺ /J	Fe ²⁺ used;	thus the
source of this d	iscrepancy	is not cl	ear. The
chemical analyses	indicate 0	.12 and 0.1	30 wt. %
SO ₃ and 0.11 and	0.23 wt. %	P_2O_5 , resp	pectively.
This amphibole ha	s been exar	mined by M	Iössbauer
and P.M.R. spec	troscopy ()	Kalinichenl	so et al.

1977), and a comparison of the site-occupancy results is given below:

	PMR	Mössbauer	X-ray
M(1)	0.59Fe	0.53Fe ²⁺	0.49Fe ²⁺
M(2)	0.38Fe	0.34Fe ²⁺	0.42Fe ²⁺
M(3)	0.61Fe	0.51Fe ²⁺	$0.30 \mathrm{Fe}^{2+} + 0.35 \mathrm{Fe}^{3+}$

The infrared vibrational spectrum is given by Kukovskii & Litvin (1970), #8 in Appendix G.

Tschermakite(48)

T(1)	0.54Si+0.45Al+0.01Ti	0.87 Å ²
T(2)	1.00Si	0.77
M(1)	0.48Mg+0.52Fe ²⁺	0.98
M(2)	$0.35Mg + 0.05Fe^{3+} + 0.60Al$	1.41
M(3)	$0.48Mg + 0.52Fe^{2+}$	0.26
M(4)	0.92Ca + 0.08Na	0.96
Α	0.07K	<u> </u>

Site populations as for (44). The isotropic temperature-factors at the three octahedral sites are very disparate, and suggest too much scattering power at M(2) and insufficient scattering power at M(3). However, this appears inconsistent with the fact that the Fe content of M(2) is very low; it is difficult to see how the scattering power at the M(2) site could be significantly reduced without resorting to vacancies, a possibility that is very unlikely on crystallochemical grounds. The agreement with the curves of Hawthorne (1978a) is as follows:

<m(1)-o></m(1)-o>	obs.	2.116, calc.	2.106 Å
<m(2)-o></m(2)-o>	obs.	2.013, calc.	1.997 Å
<m(3)-o></m(3)-o>	obs.	2.116, calc.	2.097 Å

Ferro-tschermakitic hornblende(49)

T(1)	0.38A1+0.62Si	0.30 Å ²
T(2)	1.00Si	0.13
M (1)	$0.3Mg + 0.7Fe^{2+}$	0.52
M(2)	$0.4Mg + 0.1Fe^{3+} + 0.5Al$	1.26
M(3)	0.4Mg+0.6Fe	0.17
M(4)	0.86Ca+.14Na	0.06
Α	0.02Na + 0.05K	

Site populations assigned as for (44). If the site populations quoted above were used in the last stages of refinement, the disparity in the octahedral cation temperature-factors does not support this distribution. However, the large isotropic temperature-factor for the M(2)cation(s) suggests a smaller scattering power at this site, and it is difficult to see how this could occur. The very small isotropic temperature-factor for the M(3) cation(s) suggests a larger scattering power at this site. The very small temperature-factor of the M(4) cation(s) could be a misprint. Agreement with the curves of Hawthorne (1978a) is as follows:

<m(1)-o></m(1)-o>	obs.	2.122,	calc.	2.116	Å
<m(2)-o></m(2)-o>	obs.	1.988,	calc.	2.009	Å
<m(3)-o></m(3)-o>	obs.	2.103,	calc.	2.102	Å
Agreement is	good fo	r the M	(1) and	M(3) sit	es,
the disparity b	etween	the M(2) values	is diffic	ult
to evaluate l	because	of sim	ilar dis	parities	in
other structur	es.				

Tschermakitic hornblende(50)

T(1)		0.94 Å ²
T(2)	·	0.30
M(1)	$0.4Mg + 0.6Fe^{2+}$	0.29
M(2)	$0.3Mg + 0.1Fe^{3+} + 0.6A1$	1.60
M(3)	$0.6Mg + 0.4Fe^{2+}$	0.99
M(4)	0.88Ca+0.12Na	0.96
Α	0.04 Na + 0.05 K	<u> </u>

Site populations assigned as for (44). The isotropic temperature-factors do not support this distribution, but any redistribution of cations would probably not lead to equal isotropic temperature-factors at the octahedral sites. Agreement with the curves of Hawthorne (1978a) is as follows:

<m(1)o></m(1)o>	obs.	2.114,	calc.	2.11	1 Å
<m(2)-o></m(2)-o>	obs.	1.958,	calc.	1.99	5 Å
<m(3)–o></m(3)–o>	obs.	2.093,	calc.	2.09	1 Å
As with (49),	the ag	greement	for the	M(1)	and
M(3) sites is	extrem	ely close,	with a	large	dis-
parity betweer	n the N	A(2)-site	values.	-	

Potassian ferri-taramite(51)

T(1)	0.43Al+0.03Ti+0.54Si	0.79(9) Å ²
T(2)	1.00Si	0.84(9)
M(1)	$0.85 \mathrm{Fe}^{2+} + 0.09 \mathrm{Mn} + 0.06 \mathrm{Mg}$	0.53(9)
M(2)	$0.18 Fe^{2+} + 0.69 Fe^{3+}$	• •
	+0.09Mg+0.04A1	0.52(8)
M(3)	$0.85 \text{Fe}^{2+} + 0.07 \text{Fe}^{3+} + 0.08 \text{Al}$	1.05(13)
M(4)	0.64Ca+0.36Na	1.16(13)
Α	0.55Na+0.45K	3.79(48)
O(3)	0.92(OH)+0.08(O ²⁻)	1.98(51)

Site populations assigned from refinement together with a consideration of mean bond-lengths and a cosmetically appealing Mössbauer spectrum. The isotropic temperature-factor for the M(3) cation(s) is a trifle large for comfort. Agreement with the curves of Hawthorne (1978a) is as follows:

<m(1)-o></m(1)-o>	obs.	2.14, calc.	2.136 Å
<m(2)–o></m(2)–o>	obs.	2.06, calc.	2.048 Å
<m(3)o></m(3)o>	obs.	2.10, calc.	2.099 Å
As can be seen	, the ag	greement is clo	se. Kukovskii
& Litvin (197	0) gav	e the infrare	d vibrational

spectrum for this amphibole, #10 in Appendix G.

Potassian ferri-tschermakitic hornblende(52)

No precise cation site-occupancies were given by Kawahara *et al.* (1972); "T(1) contains more Al than T(2)" but $\langle T-O \rangle$ is not consistent with ^{iv}Al from the cell contents. The mean atomic numbers of the cations at the M sites are: M(1) 17.6, M(2) 13.8, M(3) 16.3, M(4) 19.8; Fe was considered to be ordered at the M(1) and M(3) sites, with Mg ordered at M(2).

Tremolite(53)

M(1)	Mg	1.02(3) Å ²	1.38(4) Å ²
M(2)	Mg	0.95(3)	1.38(4)
M(3)	Mg	0.97(4)	1.34(5)
M(4)	Ca	1.53(2)	2.27(4)
O(3)	1.0(OH)	1.26(6)	1.79(8)

Amphibole identical with (29), site populations assigned by analogy and confirmed by equality of isotropic temperatures at the octahedrally co-ordinated sites. Structure refinements done at 400 and 700°C.

Ferro-tschermakite(54)

T(1)	0.45A1+0.55Si	0.59(2) Å ²
T(2)	0.05A1+0.95Si	0.59(2)
M(1)	0.610(5)Fe ²⁺ + 0.390 Mg	0.65(2)
M(2)	0.15Fe ³⁺ +0.05Ti+0.65Al	
	0.050(5)Fe ²⁺ + 0.100 Mg	0.55(2)
M(3)	0.780(7)Fe ²⁺ + 0.220 Mg	O.60(2)
M(4)	0.93Ca+0.05Na+0.01Mn	
	+0.10(6)Mg	0.85(2)
Α	0.23Na + 0.14K	
O(3)	1.0(OH)	0.99(5)

Tetrahedral site-occupancies assigned by method 2 of Papike *et al.* (1969). Trivalent cations assigned to M(2) site on the basis of mean bond-lengths, Mg–Fe²⁺ site-populations derived by constrained least-squares refinement. Comparison of the observed <M(1)–O> and <M(3)–O> with the values forecast from the equations of Hawthorne (1978a):

< M(1)-O> obs. 2.123 Å, calc. 2.112 Å < M(3)-O> obs. 2.132 Å, calc. 2.112 Å suggest that there may be an error in the chemical analysis, although the structure looks satisfactory in all other respects.

Potassian oxy-kaersutite(55)

T(1)	0.47(4)A1+0.53Si	0.47(2) Ų
T(2)	0.06A1+0.94Si	0.48(2)
M(1)	0.343(9)Fe ³⁺ + 0.657 Mg	0.66(4)

M(2)	0.056(9)Fe ³⁺ + 0.502 Mg	
• •	+0.185Al+0.257Ti	0.63(4)
M(3)	0.235(14)Fe ³⁺ +0.765Mg	0.64(6)
M(4)	0.958Ca+0.009Mn	
	+0.010(15)Fe ³⁺ $+0.025$ Mg	0.84(3)
Α	0.543Na+0.434K	—
O(3)	$0.25(OH) + 0.03F + 0.72 O^{2-}$	0.94(7)

Tetrahedral site-populations derived by constrained least-squares refinement of occupancies; the standard deviation is unreasonably low and probably results from site refinement with temperature factors held constant. Octahedral site-populations were derived as follows: it was assumed that this amphibole crystallized as a normal hydroxy-amphibole and oxidized upon eruption; thus prior to oxidation, octahedral trivalent cations would be confined to the M(2) site, with Fe²⁺ and Mg occurring at M(1) and M(3). Furthermore, it was assumed that oxidation occurred sufficiently rapidly to prevent a reordering of the octahedral cations. Thus the present arrangement of cations would reflect the preoxidation distribution with the exception that Fe²⁺ was oxidized to Fe³⁺ during the dehydroxylation. Thus Ti was assigned to the M(2) site and Fe^{3+} was refined over the octahedral sites with bulk-chemical constraints operative. The statistical equality of the equivalent isotropic temperature-factors of the cations at the M(1), M(2) and M(3) sites indicates that the scattering power at each site is correct. In a previous refinement of a kaersutitic amphibole, Kitamura & Tokonami (1971) assumed that cation disordering would occur upon oxidation, and suggested preferential ordering of Ti in the M(1) and M(3) sites. X rays cannot distinguish between these two possibilities, but a neutron structure-refinement (Kitamura et al. 1975) showed that the latter is correct. Thus the site-populations given above are not correct. An attempt was made to derive better sitepopulations (this study), but the agreement between the observed and calculated mean bond-lengths is not good.

Tremolite(56)

T(1)	0.94(4)Si + 0.06Al	0.43(1)	0.32(2) Å ²
T(2)	1.00Si + 0.00Al	0.42(1)	0.37(3)
M(1)	1.00Mg	0.54(2)	0.37(3)
M(2)	1.00Mg	0.51(2)	0.39(3)
M(3)	1.00Mg	0.53(2)	0.35(4)
M(4)	$0.910Ca + 0.01Fe^{2}$	+	
	+0.089Na	0.72(2)	0.72(3)
Α	0.185Na+0.119K		
O(3)	0.665(OH)+0.329	F	
. ,	+0.006C1	0.76(3)	0.62(3)

Tetrahedral site-populations were derived by constrained site-occupancy refinement using neutron data. Octahedral site-populations assigned, equality of octahedral cation isotropic temperature-factors for both X-ray (larger values) and neutron (smaller values above) is in agreement with this assignment. The hydrogen position derived from the neutron crystal-structure refinement is: 0.2088(6) 0 0.7628(14), giving an O(3)-H distance of 0.960(6) Å.

Zincian tirodite(57)

T(1)	0.978Si+0.022A1	0.58(1) Å ²
T(2)	$0.99Si + 0.01Fe^{3+}$	0.60(1)
M(1)	0.252(42)Zn $+0.708(80)$ Mg	
	+0.039(65)Mn	0.70(2)
M(2)	$0.165 \mathrm{Fe}^{2+} + 0.020 \mathrm{Fe}^{3+}$	
	+0.034(53)Zn $+0.781(53)$ Mg	0.72(3)
M(3)	0.177(83)Zn $+0.722(98)$ Mg	
	+0.101(91)Mn	0.73(4)
M(4)	$0.710Mn + 0.045Fe^{2+}$	
	+0.140Ca+0.105Na	0.92(1)
O(3)	1.00(OH)	0.72(5)
		• • •

Unconstrained site-population refinement indicated no Mg at M(4). Fe²⁺ was divided between M(4) and M(1, 2, 3) by Mössbauer spectroscopy; thus M(4) site-occupancy was known. The Mössbauer spectra also suggest the presence of ${}^{iv}Fe^{3+}$, which was assigned to T(2) on the basis of bonding arguments and by analogy with ferridiopside (Hafner & Huckenholz 1971). On the basis of mean bond-lengths, Fe^{2+} was assigned to M(2), and the distribution of Zn, Mg and Mn was refined over the octahedral M(1, 2, 3) sites with bulk-chemical constraints operative. The equality of octahedralcation equivalent isotropic temperature-factors supports these site populations. Note the very large standard deviations associated with the full-matrix refinement of three scattering species over the octahedral sites. The chemical analysis includes 6.95% ZnO.

Subsilicic titanian magnesian hastingsite(58)

T(1)	0.51(11)Si $+0.49$ Al	0.46(4) Å ²
T(2)	0.81Si + 0.19A1	0.43(4)
M(1)	0.691(8)Fe* $+0.309$ Mg	0.66(3)
M(2)	0.301(8)Fe*+ 0.214 Mg	
	+0.195Ti+0.290Al	0.62(3)
M(3)	0.839(12)Fe* $+0.161$ Mg	0.64(3)
M(4)	0.870Ca+0.060Na	
	+0.070(15)Fe*	0.81(2)
Α	0.70Na + 0.30K	
O(3)	1.0(OH)	0.91(6)

Ti and Al assigned to M(2) site, Al-Si and

 Fe^*-Mg ($Fe^*=Fe^{2+}+Fe^{3+}+Mn$) distributions determined by constrained least-squares refinement; the equality of the equivalent isotropic temperature-factors supports this distribution. There are several peculiar aspects to the site chemistry of this amphibole, and because of this, no attempt was made to determine the relative ordering of Fe²⁺ and Fe³⁺ over the octahedral sites. The refined tetrahedral sitepopulations are compatible with the mean bondlength arguments of Hawthorne & Grundy (1977a), and the grand mean tetrahedral bondlength is compatible with the unusual tetrahedral site-chemistry. The total Fe³⁺ p.f.u. (0.79) is greater than the refined Fe* (M2) site-population, indicating that some Fe³⁺ must occur at the M(1) or M(3) sites (or both). Supposing that all the Fe at the M(1) and M(3) sites was Fe²⁺, the curves of Hawthorne (1978a) predict the following values:

< M(1) - O >obs. 2.116 Å, calc. 2.116 Å < M(3) - 0 >obs. 2.131 Å, calc. 2.114 Å These results suggest that any Fe^{3+} at the M(1) and M(3) sites in this amphibole should be concentrated in the M(1) site. This conclusion is in agreement with results from other structures; however, the agreement between the observed and calculated < M-O> distances is not good for the M(1) and M(3) octahedra. There is also a significant difference between the observed and calculated < M(2) - O > distance [obs. 1.980(2), calc.(Ti³⁺) 2.023, calc.(Ti⁴⁺) 2.013 Å]; this experimental result was confirmed by a second complete crystal-structure refinement on a different crystal from the same separate.

Potassian ferri-taramite(59)

T(1)	0.57Si-	⊢0.43Al	0.56(1) Å	2
T(2)	0.98Si-	-0.02A1	0.53(1)	
M(1)	0.730(5	$Fe^{2+} + 0.270Mg$	0.84(2)	
M(2)	0.131(5	$Fe^{2+} + 0.654Fe^{3+}$	+	
	0.102M	lg + 0.093Ti + 0.02	0Al 0.66(2)	
M(3)	0.706(8	$Fe^{2+} + 0.153 Mn^{2+}$	÷	
	+0.141	Mg	0.74(2)	
M(4)	0.589C	a+0.395Na		
	+0.016	5Mn	0.89(2)	
A	0.607N	a+0.381K		
O(3)	0.96(O]	$H) + 0.04(F,O^{2-})$	0.94(5)	
Teti	rahedral	site-populations	were assigned	ł
•			A A A A A A A A A A	

using the curves of Hawthorne & Grundy (1977a). The site populations of Fe* (Fe²⁺+ Fe³⁺+Mn+Ti) were determined by constrained least-squares refinement. There is some difference in the equivalent isotropic temperaturefactors at the M(1, 2,3) sites; this suggests slightly too much scattering power at M(1) and slightly too little scattering power at M(2). On the basis of mean bond-lengths, all trivalent cations were assigned to M(2), and Mn^{2+} was *tentatively* assigned to M(3). Consideration of results from a series of amphibole structures led to the proposal that K occupies the A(m) site, and Na occupies the A(2) site. The optical absorption spectra of this amphibole are given by Faye & Nickel (1970).

Potassian tschermakite(60)

T(1)	0.64Si+0.36Al	0.91 Å ²
T(2)	0.89Si + 0.11Al	0.91
M(1)	$0.36 Fe^{2+} + 0.64 Mg$	1.26
M(2)	$0.18 \text{Fe}^{2+} + 0.41 \text{Mg} + 0.16 \text{Fe}^{3+}$	
	+0.14A1+0.11Ti	1.12
M(3)	$0.45 Fe^{2+} + 0.15 Fe^{3+} + 0.40 Al$	0.90
M(4)	0.85Ca+0.15Na	1.09
A	0.19Na + 0.28K	2.55

Site populations were assigned on the basis of mean bond-lengths and equality of isotropic temperature-factors. The agreement with the curves of Hawthorne & Grundy (1977a) and Hawthorne (1978a) is as follows:

^{iv} Al	obs.	1.90, calc.	1.62 atoms
			p.f.u.
<m(1)-o></m(1)-o>	obs.	2.093, calc.	2.092 Å
<m(2)0></m(2)0>	obs.	2.012, calc.	2.060 Å
<m(3)-o></m(3)-o>	obs.	2.091, calc.	2.019 Å

The agreement is reasonable for the M(1) site only; the assignment of considerable amounts of Al to the M(3) site is not in accord with the observed bond-lengths. Assigning all [6]-co-ordinate trivalent cations to the M(2) site, the deviant values are much improved: $\langle M(2)-O \rangle$ obs. 2.012, calc. 2.047 Å; $\langle M(3)-O \rangle$ obs. 2.091, calc. 2.102 Å.

Pargasite(61)

T(1)	0.60Si+0.40Al	—0.08(7) Ų
T(2)	0.84Si+0.16Al	0.12(7)
M(1)	$0.30 \mathrm{Fe}^{2+} + 0.70 \mathrm{Mg}$	0.47(10)
M(2)	$0.07 \text{Fe}^{2+} + 0.08 \text{Fe}^{3+} + 0.11$	Ti
	+0.23Al+0.51Mg	-0.22(10)
M(3)	$0.24 Fe^{2+} + 0.18 Fe^{3+}$	
	+0.58Mg	0.45(11)
M(4)	0.85Ca+0.15Mg	0.39(7)
A	0.76Na + 0.06K + 0.18Ca	5.8(1.1)

Site occupancies were assigned on the basis of mean bond-lengths and similarity of isotropic temperature-factors; however, the observed isotropic temperature-factors do not appear to bear out the latter contention. Agreement with mean bond-length – ionic radius curves is as follows:

ⁱ ^ν Al	obs.	2.22,	calc.	1.79 atoms
				p.f.u.
< M(1) - O >	obs.	2.112,	calc.	2.094 Å
<m(2)-o></m(2)-o>	obs.	2.037,	calc.	2.046 Å
<m(3)-o></m(3)-o>	obs.	2.081,	calc.	2.070 Å

There is some discrepancy, particularly with regard to the tetrahedral Al.

Sodium-fluor-clinoholmquisite(62)

T(1) =	T(2)Si	1.75,	1.71	Ų
M(1)	$0.25 \text{Fe}^{2+} + 0.75 \text{Mg}$	1.92		
M(2)	1.00Al	1.92		
M(3)	$0.30 Fe^{2+} + 0.20 Al$			
	+0.50Mg	3.25		
M(4)	0.90Li+0.10Ca	14.75		
A	0.45Na + 0.04K + 0.05Ca	0.65		

Site populations were assigned on the basis of mean bond-lengths and equality of isotropic temperature-factors at similar sites. The isotropic temperature-factors listed above do not appear satisfactory, but the authors comment on the extremely poor quality of the crystals. The chemical composition is taken from Ginsburg (1965) and includes 3.37 wt. % Li₂O and 1.98 wt. % CO₂. The latter value, together with the high CaO value (3.00 wt. %), suggests that there was some admixture of calcite in the material analyzed. Note that the cell dimensions and space group given in the latter reference are incorrect.

Pargasitic hornblende(63)

T(1)	0.75Si+0.25Al	1.07 Ų
T(2)	$0.85Si \pm 0.15A1$	1.07

Tetrahedral site-occupancies derived from mean bond-lengths; agreement with the curve of Hawthorne & Grundy (1977a) is as follows: ^{ie}Al obs. 1.58, calc. 1.27 atoms p.f.u. During the refinement, octahedral site-populations were assumed to be disordered. From an examination of the mean bond-lengths, small C-type cations were considered to be ordered at M(2); however, the authors suggested that some Al may occur at M(1) or M(3) (or both). The chemical data are taken from Udovkina (1971).

Arfvedsonite(64)

T(1)	0.92Si + 0.08Al	0.55 Å ²
T(2)	1.00Si	0.33
M(1)	1.00Fe ²⁺	0.07
M(2)	$1.00 \mathrm{Fe}^{3+}$	0.07
M(3)	$0.67 \mathrm{Fe}^{2+} + 0.17 \mathrm{Fe}^{3+} + 0.03 \mathrm{Mg}$	
• •	+0.05Li+0.08Ti	0.77

The authors commented that the high standard deviations make assignment of cation site-populations on the basis of mean bondlengths rather difficult. The site occupancies above were derived from both X-ray and Mössbauer data; a comparison of X-ray and Mössbauer results is given below:

M(1) X-ray: Fe²⁺ 0.92, Mössbauer: Fe²⁺ 2.00 M(3) X-ray: Fe²⁺ 0.97, Mössbauer: Fe²⁺ 0.67 Fe³⁺ analysis: Fe³⁺ 2.04, Mössbauer: Fe³⁺ 2.17

The authors noted also that the mean bondlengths are not in close agreement with those expected for these occupancies; similar results are obtained using the mean bond-length - ionic radius curves of Hawthorne (1978a). Note that the isotropic temperature-factors at the M(1, 2, 3) sites are not satisfactory. However, any rearrangement of the C-type cations does not lead to any improvement in the situation.

Potassium-arfvedsonite(65)

T(1)	0.88Si + 0.12Al	0.35 Å ²
T(2)	1.00Si	0.24
M (1)	$0.93 \mathrm{Fe}^{2+} + 0.07 \mathrm{Fe}^{3+}$	0.01
M(2)	$0.34 Fe^{2+} + 0.54 Fe^{3+}$	0.01
	+0.08A1+0.04Ti	0.36
M(3)	$0.88 Fe^{2+} + 0.12 Fe^{3+}$	2.93
M(4)	0.86Na+0.14Ca	1.54
Α	0.77K + 0.14Na	

As with arfvedsonite(63), high standard deviations make assignment of cation site-occupancies on the basis of mean bond-lengths rather difficult. Mössbauer studies showed that Fe^{2+} occurred in the M(1), M(2) and M(3) sites and that the Fe³⁺/Fe²⁺ ratio obtained from the chemical analysis was incorrect. The Fe³⁺ content by Mössbauer spectroscopy (chemical analysis) is 1.35 (2.02) atoms p.f.u. Comparison of the X-ray and Mössbauer site-occupancies is as follows:

M(1)X-ray: Fe²⁺ 0.93, Mössbauer: Fe²⁺ 0.97 M(2) X-ray: Fe²⁺ 0.34, Mössbauer: Fe²⁺ 0.19 M(3) X-ray: Fe²⁺ 0.88, Mössbauer: Fe²⁺ 1.00

The mean bond-lengths show good agreement with calculated values according to the method of Litvin (1973) and reasonable agreement with the curves of Hawthorne (1978a). The isotropic temperature-factors at the M(1), M(2) and M(3) sites are in poor agreement; however, this cannot be improved by any redistribution of the C-type cations over these three sites.

Potassium-arfvedsonite(66)

T(1) =	= T(2) Si	0.41, 0.46, Å ²
M(1)	$0.75 Fe^{2+} + 0.25 Mn$	0.17
M(2)	$1.00 Fe^{3+}$	0.09
M(3)	1.00Na	7.57
M(4)	1.00Na	3.12
Α	1.00(Na+K)	

This is a very peculiar amphibole, and the assigned name does not really reflect the unusual chemical composition. The isotropic temperature-factors suggest that Na is ordered at the M(3) site, as indicated by the authors. Fourier sections through the M(3) site show very anisotropic density elongate along Z. R indices for non-split- and split-site models are 16.9% and 15.5%, respectively, with corresponding isotropic temperature-factors of 7.57 Å² and 4.12 Å². However, the authors' confidence in the split-atom model is low because of the high R-index, and only the single-site refinement results are given. The authors suggest that the mean bond-lengths are not compatible with the cell contents calculated from the results of a chemical analysis, and suggest the site occupancies given above on the basis of mean bondlengths.

The < M(3)-O> value of 2.05 Å observed here cannot be compatible with complete occupancy of Na, which would involve a mean bond-length of ~2.4 Å. In fact the mean bond-lengths at the M(1), M(2) and M(3) sites are not compatible with significant occupancy of these sites by Na. Additional confirmatory chemical data for this amphibole are required.

Potassimu-arfvedsonite(67)

T(1)	0.96Si+0.04Al	0.46(2) Å ²
T(2)	1.00Si	0.48(2)
M(1)	1.00Fe ²⁺	0.66(2)
M(2)	$0.460 \mathrm{Fe}^{3+} + 0.420 \mathrm{Fe}^{2+}$	
	+0.073A1+0.047Ti	0.60(2)
M(3)	$0.760 \text{Fe}^{2+} + 0.130 \text{Mn}$	
	+0.110Mg	0.65(3)
M(4)	0.921Na+0.079Ca	1.23(5)
Α	0.293Na + 0.707K	
O(3)	$0.88(OH) + 0.05E + 0.07(O^{2-})$	0.74(7)

$$D(3) = 0.88(OH) + 0.05F + 0.07(O^{2-}) = 0.74(7)$$

Tetrahedral site-occupancies assigned. Octahedral site-populations in terms of Fe* $(Fe^{2+}+Fe^{3+}+Mn)$ were determined by constrained least-squares refinement. Slight negative occupancies of Mg occurred at the M(1) and M(2) sites; however, these were found to be within one standard deviation (0.006) of zero and hence not significant. Thus the Mg occupancies of M(1) and M(2) were set equal to zero

for the final cycle of refinement. The equality of the equivalent isotropic temperature-factors supports this distribution. On the basis of the observed mean bond-lengths and the curves of Hawthorne (1978a), all octahedral trivalent cations were assigned to M(2), and Mn^{+2} was *tentatively* assigned to M(3).

Hawthorne & Grundy (1978) proposed a slightly different composition for this arfvedsonite, using the microprobe value for Na₂O instead of the average value (Hawthorne 1976) because of the possibility of contamination of the separate by aenigmatite. This gives a unit formula $(K_{0.694} Na_{0.200})$ (Na_{1.871}Ca_{0.128}) (Ca_{0.081} Mg_{0.108} Mn_{0.128} Fe²⁺_{3.562} Fe³⁺_{0.908} Ti_{0.093} Al_{0.170}) (Al_{0.144} Sir.856) O₂₂ (OH)_{1.754} F_{0.107} O_{0.139} with refined A(m) and A(2) occupancies of 0.62 and 0.05 Na, respectively. The other results are not materially affected.

Fluor-riebeckite(68)

T(1)	0.95Si+0.05Al	0.51(2) Å ²
T(2)	0.99Si+O.01Al	0.50(2)
M(1)	$0.066 Fe^{3+} + 0.934 Fe^{2+}$	0.63(2)
M(2)	0.057Al+0.943Fe ³⁺	0.42(1)
M(3)	0.336Li+0.182Mn	
	$+0.482 Fe^{2+}$	0.70(4)
M(4)	0.007Ca+0.993Na	1.32(4)
A	0.037Na+0.290K	
O(3)	0.892(OH) + 1.253F	0.96(6)

Tetrahedral site-occupancies assigned on the basis of bulk chemistry and the curves of Hawthorne & Grundy (1977a). Octahedral sitepopulations in terms of Li and Fe* (Fe²⁺+Fe³⁺ +Mn) were determined by constrained leastsquares refinement. The Li occupancy of M(1) was found to be equal to zero within one standard deviation (0.004) and thus was set to zero. Remaining occupancies (Fe²⁺-Fe³⁺-Mn) were assigned according to mean bond-length criteria and are thus tentative. Chemical analysis includes 0.54 wt. % Li₂O, and the formula unit includes 0.334 Li, which is included in the Σ^{*i} value.

Ferro-glaucophane(69)

T(1)	0.99Si + 0.01Al	0.45(1) Å ²
T(2)	1.00Si	0.45(1)
M(1)	0.585(6)Fe ²⁺ + 0.348 Mg	
	+0.067A1	0.60(2)
M(2)	0.156(6)Fe ³⁺ + 0.844Al	0.58(3)
M(3)	0.795(9)Fe ²⁺ + 0.205 Mg	0.61(3)
M(4)	0.860Na+0.075Ca	
• • •	+0.065Mg	1.27(5)
	· ·	

The occupancies of the M sites in terms of

 Fe^* ($Fe^{2+} + Fe^{3+} + Mn$) and Mg, with Al assigned to M(2) and Na+Ca assigned to M(4); the Mg occupancy of M(2) became negative with the Fe content of the M(2) site exactly equal to the Fe³⁺ content of the unit formula. The refinement was completed with M(2) occupied by Fe* and Al only, the final results indicating a small amount of Al resident at M(1) or M(3) (or both). On the basis of mean bond-lengths, the M(2) site appears completely occupied by trivalent cations; by the same criterion, any ^{vi}Al not occurring at M(2) will be strongly ordered at M(1), although the author suggests that this result is rather tentative. In fact, using the equations of Table 27, it seems unlikely that any Al occurs at the M(1) or M(3) sites. Thus the cell contents of this amphibole may be slightly in error.

Pargasitic hornblende(70)

- T(1) 0.61Si+0.39Al
- T(2) 1.00Si
- M(1) $0.17 \text{Fe}^{2+} + 0.83 \text{Mg}$
- M(2) $0.15 Fe^{3+} + 0.53 Mg + 0.32 Al$
- M(3) $0.22Fe^{2+} + 0.05Fe^{3+} + 0.73Mg$
- M(4) $0.91Ca + 0.06Na + 0.03Fe^{2+}$
- A 0.56Na+0.10K

The chemical analysis of this amphibole was derived from the site occupancies calculated according to the method of Ungaretti *et al.* (1981) that is outlined on page 263. It can be argued that the small amount of Fe^{3+} at M(3) is due to a postcrystallization post-cation-equilibration process (see text on Fe^{3+} distributions). Atomic co-ordinates and bond lengths are from Ungaretti (pers. comm.).

Pargasite(71)

- T(1) 0.54Si + 0.46Al
- T(2) 1.00Si
- M(1) $0.19 Fe^{2+} + 0.81 Mg$
- M(2) $0.11 \text{Fe}^{3+} + 0.25 \text{Al} + 0.58 \text{Mg} + 0.06 \text{Ti}^{4+}$
- M(3) $0.16Fe^{2+}+0.12Fe^{3+}+0.72Mg$
- M(4) $0.95Ca + 0.03Na + 0.02Fe^{2+}$

A 0.74Na+0.07K

The chemical analysis of this amphibole was derived from the site occupancies calculated according to the method of Ungaretti *et al.* (1981) outlined on page 263. It can be argued that the small amount of Fe^{3+} at M(3) is due to a post-cation-equilibration process (see section on Fe^{3+} distribution).

Magnesio-hastingsite(72)

T(1) 0.56Si + 0.44Al
- T(2) 1.00Si
- M(1) $0.17 Fe^{2+} + 0.79 Mg + 0.04 Fe^{3+}$
- M(2) $0.16Fe^{3+}+0.18Al+0.66Mg$
- M(3) $0.08F^{2+} + 0.21Fe^{3+} + 0.71$ Mg
- M(4) $0.92Ca + 0.04Na + 0.04Fe^{2+}$

A 0.82Na+0.05K

The chemical analysis of this amphibole was derived from the site occupancies calculated according to the method of Ungaretti *et al.* (1981) that is outlined on page 263. It can be argued that the Fe^{3+} at M(1) and M(3) is the result of post-cation-equilibration oxidation (see section on Fe^{3+} distribution).

Ferroan pargasitic hornblende(73)

T(1)	0.60Si + 0.40Al	0.53(2)	Ų
T(2)	0.98Si + 0.02Al	0.54(2)	
M(1)	$0.32 Fe^{2+} + 0.68 Mg$	0.67(4)	
M(2)	$0.07 Fe^{2+} + 0.14 Fe^{3} + 0.04 Ti$		
	+0.42A1+0.33Mg	0.54(4)	
M(3)	$0.45 \mathrm{Fe}^{2+} + 0.55 \mathrm{Mg}$	0.56(5)	
M(4)	0.71Ca+0.07Na+0.17Fe ²⁺	. ,	
	+0.05Mg	1.15(3)	
Α	0.46Na+0.02K	_`_`	

Tetrahedral site-occupancies assigned on the basis of bulk chemistry and the curves of Hawthorne & Grundy (1977a). Octahedral site-populations were determined by constrained least-squares refinement in terms of Mg and Fe^{*} (Fe²⁺+Fe³⁺+Mn) with Al and Ti assigned to M(2). The ratio Fe³⁺/(Fe²⁺+Fe³⁺) was not known from chemical analysis; the refinement was done for a series of cell contents with different Fe³⁺/(Fe²⁺+Fe³⁺) ratios, the final

solution giving a ratio of 0.15 and best overall agreement with the data and a variety of crystalchemical criteria.

Potassian titanian magnesio-hastingsite(74)

T(1)	0.60Si+0.40Al	0.44 Å ²
T(2)	0.89Si + 0.11Ai	0.44
M(1)	$0.290 \mathrm{Fe}^{2+} + 0.710 \mathrm{Mg}$	0.97
M(2)	$0.059 \mathrm{Fe}^{2+} + 0.572 \mathrm{Mg}$	
	$+0.264 \text{Fe}^{3+}+0.105 \text{Ti}$	0.99
M(3)	$0.059 \mathrm{Fe}^{2+} + 0.572 \mathrm{Mg}$	
-	$+0.264 Fe^{3+}+0.105 Ti$	0.93
M(4)	0.950Ca+0.050Na	0.82
A(2)	0.170Na+0.075K	1.89
A(m)	0.145Na+0.100K	1.84
~ ·		

Site occupancies are from Walitzi (pers. comm.). Tetrahedral site-occupancies assigned on the basis of bulk chemistry and the curves of Hawthorne & Grundy (1977a). There is some discrepancy between the sum of the site occupancies and the cell content from the chemical analysis. The agreement with the bond-length – ionic radius curves of Table 27 is as follows, assuming O(3) = (OH):

<m(1)-o></m(1)-o>	obs.	2.071, calc	2.108 Å
<m(2)-o></m(2)-o>	obs.	2.047, calc	2.060
<m(3)-o></m(3)-o>	obs.	2.073, calc	2.058

The isotropic temperature-factors suggest that the relative scattering-powers at the M(1, 2, 3)sites are correct; the bond-length comparisons suggest more trivalent and quadrivalent cations at M(1) and M(2), which would suggest that the amphibole has undergone partial oxidation and dehydroxylation.

		APPENDIX	B4. CATION	-ANION AND	CATION-CATIO	N DISTANCES	(Å)	
		(21)	(22)	(24)	(26)	(28)	(29)	(30)
T(1)-0(1) T(1)-0(5) T(1)-0(6) T(1)-0(7) \langle T(1)-0 \rangle		1.619(7) 1.614(7) 1.628(7) <u>1.613(7)</u> <u>1.619</u>	1.637(4) 1.627(5) 1.630(4) <u>1.613(2)</u> <u>1.627</u>	1.666(4) 1.679(4) 1.665(5) <u>1.658(2)</u> <u>1.667</u>	1.618(6) 1.616(7) 1.621(6) <u>1.611(3)</u> <u>1.616</u>	1.610(3) 1.622(4) 1.633(3) <u>1.616(2)</u> <u>1.620</u>	1.602(4) 1.633(5) 1.620(5) <u>1.635(2)</u> <u>1.622</u>	1.602(2) 1.632(2) 1.629(2) <u>1.616(1)</u> <u>1.620</u>
T(2)-0(2) T(2)-0(4) T(2)-0(5) T(2)-0(6) ∠T(2)-0⊳		1.625(7) 1.609(7) 1.639(7) <u>1.643(7)</u> <u>1.629</u>	1.633(4) 1.604(4) 1.611(5) <u>1.638(5)</u> <u>1.622</u>	1.646(4) 1.607(4) 1.645(4) <u>1.659(4)</u> 1.639	1.618(6) 1.594(3) 1.637(7) <u>1.654(7)</u> <u>1.626</u>	1.618(3) 1.594(3) 1.634(3) <u>1.655(4)</u> <u>1.625</u>	1.622(4) 1.583(4) 1.676(5) <u>1.704(5)</u> <u>1.646</u>	1.616(2) 1.586(2) 1.653(2) <u>1.672(2)</u> <u>1.632</u>
M(1)-0(1) M(1)-0(2) M(1)-0(3) ՀM(1)-0>	x2 x2 x2	2.064(7) 2.128(7) 2.091(7) 2.094	2.082(5) 2.160(4) <u>2.122(4)</u> 2.121	2.047(4) 2.142(4) 2.041(4) 2.077	2.078(6) 2.082(6) 2.100(5) 2.087	2.071(3) 2.124(3) <u>2.092(3)</u> <u>2.096</u>	2.066(4) 2.051(4) <u>2.073(4)</u> <u>2.063</u>	2.064(2) 2.078(2) <u>2.083(2)</u> <u>2.075</u>
M(2)-0(1) M(2)-0(2) M(2)-0(4) <m(2)-0></m(2)-0>	x2 x2 x2	2.134(7) 2.083(7) <u>2.033(7)</u> <u>2.083</u>	2.161(5) 2.128(4) <u>2.075(4)</u> 2.121	2.092(4) 2.070(4) <u>1.980(4)</u> 2.047	2.038(6) 1.943(6) <u>1.849(6)</u> <u>1.943</u>	2.148(3) 2.092(3) <u>2.024(3)</u> <u>2.088</u>	2.183(4) 2.095(4) <u>1.998(4)</u> 2.092	2.133(2) 2.083(2) <u>2.014(2)</u> 2.077
M(3)-0(1) M(3)-0(3) ՀM(3)-0≫	x4 x2	2.099(7) 2.073(7) 2.083	2.118(5) 2.103(6) 2.113	2.084(4) 2.068(5) 2.079	2.103(5) 2.077(5) 2.094	2.089(3) 2.063(5) 2.080	2.069(4) 2.024(6) 2.054	2.070(2) 2.057(3) 2.066
M(4)-0(2) M(4)-0(4) M(4)-0(5) M(4)-0(6) <m(4)-0>[8] ⟨M(4)-0>[6]</m(4)-0>	x2 x2 x2 x2 x2	2.164(7) 2.023(7) 3.143(7) <u>2.691(7)</u> <u>2.505</u> <u>2.293</u>	2.135(5) 1.988(4) 3.298(5) <u>2.757(5)</u> <u>2.545</u> <u>2.293</u>	2.394(4) 2.328(5) 2.665(4) <u>2.582(5)</u> <u>2.492</u> <u>2.435</u>	2.411(6) 2.337(6) 2.798(6) 2.446(6) 2.498 2.398	2.204(3) 2.109(4) 3.101(3) 2.592(4) 2.502 2.302	2.431(4) 2.414(5) 2.822(4) <u>2.604(4)</u> <u>2.568</u> <u>2.483</u>	2.397(2) 2.321(2) 2.767(2) 2.539(2) 2.506 2.419
A-0(5) A-0(6) A-0(7) A-0(7) <a-0> [12] <a-0> [10]</a-0></a-0>	x4 x4 x2 x2	2.824(4) 3.278(5) 2.295(8) 3.845(9) 3.057 2.900	2.801 3.333 2.327 <u>3.887</u> <u>3.080</u> 2.919	3.049(5) 3.086(4) 2.459(8) <u>3.714(7)</u> <u>3.074</u> 2.946	2.814(6) 3.216(5) 2.519(10) <u>3.666(8)</u> <u>3.041</u> 2.916	2.828(3) 3.303(3) 2.340(6) <u>3.791(6)</u> <u>3.066</u> 2.920	2.945(7) 3.152(8) 2.605(12) <u>3.605(13)</u> <u>3.067</u> <u>2.960</u>	2.970(2) 3.156(2) 2.486(3) <u>3.672(3)</u> <u>3.068</u> 2.948
M(1)-M(1) M(1)-M(2) M(1)-M(3) M(1)-M(4) M(2)-M(3) M(2)-M(4)		3.163(3) 3.118(4) 3.091(4) 3.129(3) 3.216(3) 3.047(4)	3.230 3.156 3.120 3.119 3.299 3.031	3.103(3) 3.129(2) 3.074(1) 3.468(3) 3.210(2) 3.211(2)	3.221(4) 3.091(2) 3.099(2) 3.307(6) 3.206(3) 3.153(3)	3.151(3) 3.118(2) 3.089(2) 3.191(2) 3.207(2) 3.080(2)	3.196(4) 3.109(2) 3.088(1) 3.414(3) 3.234(2) 3.185(2)	3.169(2) 3.086(2) 3.077(1) 3.423(2) 3.187(2) 3.204(1)
T(1)-T(2) ¹ T(1)-T(2) ² T(1)-T(1)		3.083(4) 3.054(4) 3.055(3)	3.091 3.066 3.075	3.099(2) 3.068(2) 3.092(2)	3.110(3) 3.003(3) 3.090(3)	3.094(3) 3.060(2) 3.046(2)	3.083(2) 3.065(2) 3.063(2)	3.086(2) 3.051(2) 3.030(2)

¹through 0(6): ²through 0(5).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c} T(1) - 0(1) & 1.582(6) & 1.594(6) & 1.614(3) & 1.618(4) & 1.663(3) & 1.670(4) & 1.677(9) \\ T(1) - 0(5) & 1.625(6) & 1.636(7) & 1.628(3) & 1.643(4) & 1.663(3) & 1.6694(4) & 1.668(9) \\ T(1) - 0(7) & 1.656(3) & 1.631(4) & 1.666(2) & 1.621(2) & 1.663(2) & 1.6694(4) & 1.668(9) \\ T(1) - 0(7) & 1.651(2) & 1.631(4) & 1.606(2) & 1.621(2) & 1.663(2) & 1.6694(4) & 1.668(9) \\ T(2) - 0(2) & 1.651(5) & 1.627(7) & 1.623(3) & 1.614(3) & 1.631(2) & 1.6694(4) & 1.661(9) \\ T(2) - 0(2) & 1.625(6) & 1.627(7) & 1.623(3) & 1.614(3) & 1.663(2) & 1.6694(4) & 1.6618(9) \\ T(2) - 0(5) & 1.635(7) & 1.660(8) & 1.648(4) & 1.651(4) & 1.642(3) & 1.6694(4) & 1.6618(9) \\ T(2) - 0(5) & 1.635(7) & 1.660(8) & 1.648(4) & 1.651(4) & 1.642(3) & 1.6694(4) & 1.6616(9) \\ T(2) - 0(5) & 1.635(7) & 1.660(8) & 1.648(4) & 1.651(4) & 1.642(3) & 1.6694(4) & 1.663(6) \\ T(2) - 0(5) & 1.635(7) & 1.660(6) & 2.078(7) & 2.051(3) & 2.0996(4) & 2.055(3) & 2.055(4) & 2.005(9) \\ T(1) - 0(1) & x2 & 2.060(6) & 2.078(7) & 2.051(3) & 2.0990(4) & 2.055(3) & 2.055(4) & 2.005(9) \\ T(1) - 0(3) & x2 & 2.060(5) & 2.077(7) & 2.051(3) & 2.0990(4) & 2.055(3) & 2.005(4) & 2.005(9) \\ T(1) - 0(3) & x2 & 2.039(6) & 2.036(7) & 2.034(4) & 2.115(3) & 2.111(2) & 2.135(4) & 2.008(9) \\ T(1) - 0(3) & x2 & 2.039(6) & 2.026(7) & 2.077(3) & 2.114(4) & 2.074(3) & 2.082(4) & 2.005(9) \\ T(2) - 0(1) & x2 & 2.186(6) & 2.212(6) & 2.146(4) & 2.151(3) & 2.069(3) & 2.008(4) & 2.008(2) \\ T(2) - 0(2) & x2 & 2.039(6) & 2.026(7) & 2.077(3) & 2.114(4) & 2.074(3) & 2.082(4) & 2.045(9) \\ T(2) - 0(2) & x2 & 2.039(6) & 2.016(7) & 2.040(4) & 2.038(3) & 2.046(3) & 1.976(3) & 1.977(9) \\ T(2) - 0(2) & x2 & 2.186(6) & 2.031(7) & 2.077(3) & 2.114(4) & 2.074(3) & 2.082(4) & 2.045(9) \\ T(4) - 0(2) & x2 & 2.036(6) & 2.037(7) & 2.040(4) & 2.038(3) & 2.046(3) & 2.038(4) & 2.005(6) \\ T(4) - 0(2) & x2 & 2.045(6) & 2.037(7) & 2.040(4) & 2.038(3) & 2.046(3) & 2.098(6) & 2.098(7) \\ T(4) - 0(2) & x2 & 2.045(6) & 2.397(7) & 2.040(4) & 2.388(3) & 2.046(4) & 2.0498(4) & 2.049(6) \\ T(4) - 0(2) & x2 & 2.046(6) & 2.397(7) & 2.040$		(34)	(35)	(36)	(37)	(38)	(39)	(40)
$ \begin{array}{c} r(1) - 0(5) & 1 & 627(5) & 1 & 626(7) & 1 & 628(3) & 1 & 643(3) & 1 & 603(5) & 1 & 668(4) & 1 & 668(3) \\ r(1) - 0(7) & 1 & 636(3) & 1 & 624(7) & 1 & 628(3) & 1 & 663(3) & 1 & 6682(4) & 1 & 6684(4) \\ r(1) - 0(7) & 1 & 636(3) & 1 & 631(4) & 1 & 6632(4) & 1 & 6624(4) & 1 & 6684(4) & 1 & 6684(4) \\ r(1) - 0(7) & 1 & 636(3) & 1 & 627(7) & 1 & 587(6) & 1 & 662(2) & 1 & 6624(4) & 1 & 661(9) \\ r(2) - 0(2) & 1 & 625(6) & 1 & 622(7) & 1 & 587(6) & 1 & 668(2) & 1 & 6684(6) & 1 & 668(9) \\ r(2) - 0(2) & 1 & 658(7) & 1 & 660(8) & 1 & 648(4) & 1 & 661(3) & 1 & 669(2) & 1 & 669(4) & 1 & 668(9) \\ r(2) - 0(5) & 1 & 658(7) & 1 & 660(8) & 1 & 648(4) & 1 & 651(4) & 1 & 669(2) & 1 & 669(4) & 1 & 663(9) \\ r(2) - 0(5) & 1 & 658(7) & 1 & 660(8) & 1 & 648(4) & 1 & 651(3) & 1 & 669(2) & 1 & 669(4) & 1 & 663(9) \\ r(2) - 0(5) & 1 & 668(6) & 2 & .078(7) & 2 & .051(3) & 2 & .090(4) & 2 & .055(3) & 2 & .055(4) & 2 & .005(9) \\ r(1) - 0(1) & x2 & 2 & .069(5) & 2 & .007(7) & 2 & .014(4) & 2 & .011(2) & 2 & .055(4) & 2 & .005(9) \\ r(1) - 0(3) & x2 & 2 & .069(5) & 2 & .027(7) & 2 & .144(4) & 2 & .017(2) & 2 & .055(4) & 2 & .005(9) \\ r(1) - 0(3) & x2 & 2 & .069(5) & 2 & .027(7) & 2 & .144(4) & 2 & .016(3) & 2 & .005(4) & 2 & .005(9) \\ r(1) - 0(3) & x2 & 2 & .016(6) & 2 & .016(7) & 2 & .046(4) & 2 & .008(6) & 2 & .005(3) & 2 & .008(4) & 2 & .004(7) \\ r(2) - 0(2) & x2 & 0 & .016(6) & 2 & .016(7) & 2 & .004(2) & 2 & .008(6) & 2 & .005(3) & 2 & .008(4) & 2 & .004(7) \\ r(3) - 0(3) & x2 & 2 & .001(6) & 2 & .008(7) & 2 & .004(2) & 2 & .088(3) & 2 & .007(3) & 2 & .0076(3) & 2 & .0076(4) & 1 & .977(8) \\ r(3) - 0(3) & x2 & 2 & .001(6) & 2 & .007(7) & 2 & .014(4) & 2 & .0096(3) & 2 & .005(4) & 1 & .977(8) \\ r(4) - 0(4) & x2 & 2 & .036(6) & 2 & .097(7) & 2 & .004(4) & 2 & .088(3) & 2 & .007(6) & 2 & .005(4) & 1 & .977(8) \\ r(4) - 0(1) & x2 & 2 & .005(6) & 2 & .097(7) & 2 & .004(4) & 2 & .088(3) & 2 & .007(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .005(6) & 2 & .$	T(1)-0(1)	1.582(6)	1,594(6)	1.614(3)	1 618(4)	1 663(3)	1 670(4)	1 (77(0)
$ \begin{array}{c} T(1) - 0(6) & 1.421(7) & 1.423(7) & 1.423(7) & 1.633(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.683(2) & 1.663(2) & 1.657(6) & 1.657(6) & 1.652(1) & 1.651(2) & 1.663(2) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(6) & 1.657(7) & 1.587(3) & 1.587(4) & 1.608(2) & 1.608(4) & 1.661(9) & T(2) - 0(5) & 1.657(7) & 1.587(3) & 1.587(4) & 1.608(2) & 1.608(4) & 1.618(9) & T(2) - 0(5) & 1.657(7) & 1.657(7) & 1.587(3) & 1.587(4) & 1.608(2) & 1.663(5) & 1.618(9) & 1.636(9) & 1.976(4) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.976(8) & 1.977(8) & 1.086(1) & 1.096(1) & 1.976(8) & 1.0977(8) & 1.096(1) & 1.0977(8) & 1.096(1) & 1.0$	T(1) - 0(5)	1,625(6)	1.636(7)	1.628(3)	1 6/3(4)	1,003(3)	1.670(4)	1.6//(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T(1) - O(6)	1.641(7)	1 624(7)	1 630(4)	1 632(4)	1.073(3)	1,090(4)	1.083(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1) = O(7)	1 636(3)	1 624(7)	1.606(2)	1.032(4)	1.082(3)	1.682(4)	1.684(9)
$\begin{array}{c} 1.624 \\ (2)$	<pre><r></r> </pre>	$\frac{1.030(3)}{1.621}$	$\frac{1.031(4)}{1.621}$	$\frac{1.606(2)}{1.620}$	$\frac{1.621(2)}{1.622}$	$\frac{1.663(2)}{1.663(2)}$	$\frac{1.663(2)}{1.663(2)}$	1.659(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~~~~~	1.021	1.021	1.620	1.628	1.6/5	1.678	1.676
$\begin{array}{c} T(2)-0(4) \\ T(2)-0(4) \\ T(2)-0(5) \\ 1.658(7) \\ 1.660(8) \\ 1.661(8) \\ 1.651(4) \\ 1.651(4) \\ 1.652(3) \\ 1.662(3) \\ 1.662(3) \\ 1.662(3) \\ 1.663(5) \\ 1.663(6) \\ 1.633(1) \\ 1.633 \\ 1.633 \\ 1.633 \\ 1.652 \\ 1.633 \\ 1.653 \\ 1.653 \\ 1.653 \\ 1.653 \\ 1.664 \\ 1.633 \\ 1.642 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.633 \\ 1.640 \\ 1.664 \\ 1.642 \\ 1.664 \\ 1.642 \\ 1.664 \\ 1.642 \\ 1.664 \\ 1.640 \\ 1.633 \\ 1.640 \\$	T(2)-0(2)	1,625(6)	1.626(7)	1.623(3)	1.614(3)	1.631(2)	1.640(4)	1.661(9)
$\begin{array}{c} T(2)-0(5) \\ T(2)-0(6) \\ (-681(6) \\ (-7(2)-0) \\ \hline 1.636 \\ (-7(2)-0) \\ \hline 1.636 \\ (-7(2)-0) \\ \hline 1.636 \\ \hline 1.636 \\ \hline 1.636 \\ \hline 1.636 \\ \hline 1.659(3) \\ \hline 1.659(3) \\ \hline 1.659(3) \\ \hline 1.636 \\ \hline 1.640 \\ \hline 1.636 \\ \hline 1.640 \\ \hline 1.636 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.636 \\ \hline 1.640 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.633 \\ \hline 1.640 \\ \hline 1.636 \\ \hline 1.640 \\$	T(2) - 0(4)	1.578(5)	1.572(7)	1.587(3)	1.587(4)	1.608(2)	1.608(4)	1.618(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T(2)-0(5)	1.658(7)	1.660(8)	1.648(4)	1.651(4)	1.642(3)	1.643(5)	1.618(9)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T(2) - 0(6)	1.681(6)	1.674(7)	1.659(3)	1.679(4)	1.662(3)	1.669(4)	1.636(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<t(2)-0></t(2)-0>	1.636	1.633	1.629	1.633	1.636	1.640	1.633
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(1)-0(1) x2	2.060(6)	2.078(7)	2.05*(3)	2,090(4)	2 056(3)	2 055(4)	2 005 (0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(1) - 0(2) = x^2$	2.031(6)	2.036(7)	2.054(4)	2.115(3)	2.030(3)	2.000(4)	2.003(9)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$M(1) - O(3) = x^2$	2.069(5)	2.077(6)	2.057(3)	2 11/(3)	$2 \cdot 1 + 1 (2)$	2.130(4)	2.100(0)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<m(1)-0></m(1)-0>	2.053	2.064	2 054	$\frac{2 \cdot 11 + (4)}{2 \cdot 106}$	2.097(2)	$\frac{2.032(4)}{2.091}$	2.040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.100	2:000	2.081	2.040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(2) - O(1) = x^2$	2.186(6)	2.212(6)	2.146(4)	2.151(3)	2.069(3)	2.085(4)	2.131(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(2) = 0(2) \times 2$	2.059(6)	2.082(7)	2.077(3)	2.114(4)	2.074(3)	2.082(4)	2.045(9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(2) - O(4) = x^2$	<u>2.011(6)</u>	2.008(7)	2.024(4)	2.022(4)	1.966(3)	1.976(4)	1,977(8)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(2)-0></m(2)-0>	2.085	2.101	2.082	2.096	2.036	2.048	2.051
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X(2) 0(1)					<u> </u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(3) = O(1) \times 4$	2.0/1(5)	2.068(6)	2.055(3)	2.100(3)	2.076(3)	2.079(4)	2.089(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(3) = U(3) = XZ	2.028(6)	$\frac{2.017(8)}{2.017(8)}$	2.011(4)	<u>2.093(5)</u>	<u>2.080(3)</u>	<u>2.093(6)</u>	2.001(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(3)-0 <="" td=""><td>2.057</td><td>2.051</td><td>2.040</td><td>2.098</td><td>2.077</td><td>2.084</td><td>2.060</td></m(3)-0>	2.057	2.051	2.040	2.098	2.077	2.084	2.060
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4)-0(2) x2	2.405(6)	2.397(7)	2,400(4)	2,388(3)	2.414(2)	2.410(4)	2 /20(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4)-0(4) x2	2.336(6)	2.338(6)	2.308(3)	2,301(4)	2.358(3)	2348(4)	2 313(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4)-0(5) x2	2.846(6)	2.851(7)	2.756(3)	2.823(5)	2.625(2)	2.635(4)	2 689(8)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4)-0(6) x2	2.582(5)	2,577(6)	2.514(3)	2.561(4)	2.563(2)	2.000(4) 2.582(4)	2.009(0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(4)-0> [8]</m(4)-0>	2.542	2.541	2.459	2.518	2,490	2 / 9/	2 488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<₩(4)-0> [6]	2.441	2.437	2.407	2.417	2.445	2 4 4 7	2 400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u></u>				2.445	2.447	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \sim 0(5) \times 4$	2.866(5)	2.886(6)	2.971	2.977	3.060(4)	3 .0 70(8)	3.037(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A=0(6) x4	3.114(6)	3.153(7)	3.172	3.195	3.080(4)	3.065(8)	3.108(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A = 0(7) = x^2$	2.413(9)	2.432(10)	2.447	2.516	2.486(8)	2.582(14)	2.409(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A=U(7) x2	3.684(10)	3.690(11)	3.662	<u>3.701</u>	<u>3.69</u> 3(7)	3.719(12)	3.724(11)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(A-0) [12]	3.010	3.033	<u>3.066</u>	3.094	3.076	3.095	3.071
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<a-0> [10]</a-0>	2.875	2.902	2.947	2.972	2.953	2.970	2.940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-M(1)	3,218(8)	3.227(8)	3,187(4)	3,230(2)	3,240	3,133	2.875(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-M(2)	3.077(3)	3.097(3)	3.067(2)	3.116(1)	3 082	3 118	2.075(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-M(3)	3.084(2)	3.091(2)	3.076(1)	3.105(1)	3 111	3 085	3 010(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-M(4)	3.345(5)	3.339(5)	3, 395(3)	3.424(2)	3 430	3 479	3.010(2) 3.570(E)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M(2)-M(3)	3.204(4)	3,238(3)	3.168(2)	3,724(2) 3,250(1)	3 183	3 106	3.3/0(3)
T(1)-T(2) $3.088(4)$ $3.076(4)$ $3.088(2)$ $3.103(2)$ $3.116(1)$ $3.109(2)$ $3.099(6)$ $T(1)-T(2)$ $3.031(4)$ $3.046(4)$ $3.045(2)$ $3.069(2)$ $3.068(1)$ $3.070(2)$ $3.061(6)$ $T(1)-T(1)$ $3.029(5)$ $3.034(3)$ $3.002(2)$ $3.057(2)$ $3.089(1)$ $3.094(2)$ $3.080(5)$	M(2) - M(4)	3.161(3)	3,145(3)	3,200(2)	3 200(1)	3 967	J.170 2 997	3+190(4) 3 313/3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3.200(I)	J•44/	3.431	3.213(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1) - T(2)	3.088(4)	3.076(4)	3.088(2)	3.103(2)	3.116(1)	3.109(2)	3.099(6)
$\frac{T(1)-T(1)}{3.029(5)} 3.034(3) 3.002(2) 3.057(2) 3.089(1) 3.094(2) 3.080(5)$	T(1)-T(2)	3.031(4)	3.046(4)	3.045(2)	3.069(2)	3.068(1)	3.070(2)	3.061(6)
	T(1) - T(1)	3.029(5)	3.034(3)	3.002(2)	3.057(2)	3.089(1)	3.094(2)	3.080(5)

	(41)	(42)	(43)	(44)	(45)	(46)	(48)
T(1)_0(1)	1 613(4)	1 630	1 586	1.687	1,640	1,649	1.670
T(1) = O(1) T(1) = O(5)	1.013(4)	1 660	1 6/8	1 694	1.668	1,683	1.693
T(T) = O(S)	1 627(5)	1 6/6	1 63/	1 658	1.663	1,669	1.686
T(1) = O(0)	1.027(3)	1 620	1 612	1 630	1.632	1,626	1,635
T(T) = O(7)	$\frac{1.01}{(2)}$	1.644	1 621	1 667	1.651	1.657	1.672
$\langle T(1)=0\rangle$	1.01/	1.044	1.021	1.007	1.091		
T(2)-0(2)	1.625(4)	1.608	1.614	1.609	1.633	1.636	1.629
T(2)-0(4)	1,588(5)	1.606	1.577	1.586	1.592	1.599	1.626
T(2)-0(5)	1.646(5)	1.641	1.644	1.641	1.655	1.640	1.62/
T(2)-0(6)	1.658(5)	1.657	1.654	1.664	1.649	1.653	1.628
⟨T(2)-0⟩	1.629	1.628	1.622	1.625	<u>1.632</u>	1.632	1.628
$M(1) = O(1) = x^2$	2,063(4)	2,085	2.079	2.112	2.075	2.107	2.060
$M(1) - O(2) = x^2$	2.112(5)	2.125	2,106	2.169	2.117	2.169	2.176
$M(1) = O(3) = x^2$	2.087(4)	2.081	2.083	2.154	2.113	2.080	2.112
<pre><m(1)-0></m(1)-0></pre>	2.087	2.097	2.089	2.145	2.102	2.119	2.116
N(0) 0(1)0	2 1/1/5	2 044	2 124	2 001	2,102	2.046	1,990
M(2) - O(1) = X2	2.141(3)	2.044	2.134	2 138	2.086	2.059	1.991
M(2) = O(2) = X2	2.002(4)	1 044	2.090	2.002	1.987	1,976	1,912
$M(2) = O(4) \times 2$	$\frac{2.031(3)}{2.094}$	2 012	2.035	2.002	2.058	2,027	1.964
(Z)-07	2.004	2.013	2.000	2.077	2.050		
M(3)-0(1) x4	2.084(4)	2.062	2.078	2.064	2.099	2.089	2.132
$M(3) - O(3) = x^2$	<u>2.072(6)</u>	2.076	2.071	$\frac{2.112}{2.112}$	2.086	2.035	2.10/
〈 M(3)−0 〉	2.080	2.067	2.076	2.080	2.095	2.0/1	2.124
M(4)-0(2)	2,215(4)	2.412	2.396	2.439	2.413	2.421	2.419
M(4) - O(4)	2.109(5)	2.357	2.330	2.396	2.349	2.365	2.329
M(4) - 0(5)	3.090(5)	2.677	2.775	2.737	2.722	2.689	2.611
M(4) - 0(6)	2.584(5)	2.533	2.567	2.551	2.575	2.542	2.522
<m(4)-0>[8]</m(4)-0>	2.500	2.495	2.517	2.530	2.515	2.504	2.470
< M(4)−0> [6]	2.303	2.434	2.431	2.462	2.446	2.443	2.423
A-0(5) x4	2.828	2,992	2,976	3.037	3.013	3.025	3.045
A = 0(6) x4	3.301	3.114	3.147	3.167	3.136	3.153	3.138
$A = 0(7) = x^2$	2.350	2,483	2.505	2.552	2.547	2.531	2.542
A-0(7) x2	3.775	3.727	3.691	3.704	3.679	3.703	<u>3.733</u>
<a-0> [12]</a-0>	3.064	3.070	3.074	3.111	3.085	3.098	3.107
(A-0) [8]	2.922	2.939	2.950	2.992	2.969	2.977	2,982
M(1) - M(1)	3,147(6)	3,155	3,168	3.284	3.216	3.137	3.238
M(1) - M(2)	3.109(2)	3.089	3.091	3.120	3.110	3.126	3.094
M(1) - M(3)	3.085(1)	3.081	3.079	3.133	3.108	3.087	3.116
M(1) - M(4)	3,202(4)	3.424	3.443	3.480	3.453	3.498	3.427
M(2)-M(3)	3.195(3)	3.171	3.191	3.259	3.226	3.212	3.196
M(2)-M(4)	3.089(2)	3.218	3.216	3.256	3.231	3.241	3.242
	0.007/01	2 001	2 002	2 117	3 10%	3 19%	3 1 3 1
T(1) - T(2)	3.08/(2)	3.091	3.083	3 104	3 079	3,066	3.046
T(1) - T(2)	3.005(2)	3.052	2.00T	3.104	3,079	3,072	3.116
T(T) - T(T)	3.020(3)	3.002	3+030	5.000	5.070	5.012	

	(49)	(50)	1241	(50)				
	(42)	(Su)	(21)	(52)	(53a)	(53b)	(54)	(55)
T(1)-0(1)	1.689	1.647	1.63	1.69	1.604(2)	1,605(3)	1 668(4)	1 684(4)
T(1) = 0(5)	1.657	1.665	1.73	1 69	1 620(2)	1 626 (2)	1 602(4)	1 600(4)
$T(1) \sim 0(6)$	1.686	1 672	1 71	1 67	1 620(2)	1.020(3)	1.092(4)	1.009(4)
T(1) = 0(7)	1 644	1 657	1 67	1.07	1,020(3)	1.020(3)	1.679(4)	1.082(5)
I(I) = O(I)	1.044	1.057	1.0/	1.67	$\frac{1.616(1)}{1.616(1)}$	1.620(2)	1.656(2)	<u>1.665(2)</u>
~ I(I)=07	1.009	1.000	30.1	1.68	1.620	1.620	1.674	1.680
T(2)-0(2)	1.639	1.658	1.64	1.67	1.615(2)	1.612(3)	1,640(4)	1.644(4)
T(2)-0(4)	1.611	1.580	1.59	1.65	1.586(2)	1,587(3)	1,620(4)	1.615(4)
T(2) - 0(5)	1.634	1 659	1 64	1 65	1.653(3)	1 658(3)	1 636(4)	1 651 (5)
T(2) - O(6)	1.632	1,650	1.60	1.69	1.676(2)	1 679(3)	1 656(4)	1 663(4)
$\langle T(2) - 0 \rangle$	1,629	1.637	1.62	1 67	1 633	1 634	1 638	$\frac{1.003(4)}{1.643}$
					1.055	1.0.04	1.030	1.045
$M(1) - 0(1) \times 2$	2.088	2.074	2.13	2.05	2.068(2)	2.071(3)	2.067(5)	2.037(5)
$M(1) = 0(2) \times 2$	2.160	2.172	2.17	2.16	2.089(2)	2.100(3)	2.170(5)	2.173(5)
$M(1) - 0(3) = x^2$	2.118	2.095	2.13	2.05	2.094(2)	2.110(4)	2.131(4)	1,988(5)
〈M(1)-0〉	2.122	2.114	2.14	2.09	2.084	2.094	2.123	2.066
$M(2) = O(1) = v^2$	1,993	1 000	2 09	2 1 2	2 1/5/21	2 161 (2)	2 01474	2 106/5
M(2) = O(2) = 2	2.046	1 067	2.00	2.13	2.143(2)	2.101(3)	2.014(4)	2.100(5)
M(2) = O(4) = 2	1 02/	1 000	2.09	2.05	2.094(2)	2.105(3)	2.029(5)	2.085(5)
M(2) = 0(4) = X2	1 000	1.909	2.01	2.01	$\frac{2.024(2)}{2.024(2)}$	$\frac{2.033(4)}{2.033(4)}$	1.928(5)	1.981(5)
X (2)-07	1.900	1.938	2.06	2.06	2.088	2.100	1.990	2.057
M(3)-0(1) x4	2.110	2.093	2.12	2.07	2.082(2)	2,093(3)	2.141(4)	2.070(4)
$M(3) = 0(3) \times 2$	2.089	2.094	2.07	1.96	2.065(3)	2.061(4)	2.115(6)	2,060(6)
<m(3)-0></m(3)-0>	2.103	2.093	2.10	2.03	2.076	2.082	2.132	2.067
M(4)-0(2) -2	2 208	2 / 10	2 60	3 (3	2 (0((2))	0 (01 (0)	0 (10(())	0. (0/(5)
$M(4) = O(4) = \pi^2$	2.390	2.413	2.40	2.42	2.400(2)	2.421(3)	2.410(4)	2.424(5)
M(h) = O(5) = 2	2.504	2.307	2.41	2.20	2.328(2)	2.331(3)	2.330(5)	2.351(5)
M(4) = 0(6) = 122	2.079	2.037	2.09	.4.07	2.814(2)	2.841(4)	2.636(6)	2.642(6)
AM(4)_0(0) X2	2. 140	2.330	2.59	2.39	2.538(2)	$\frac{2.544(3)}{2.544(3)}$	$\frac{2.519(4)}{2.519(4)}$	$\frac{2.560(4)}{2.560(4)}$
(**(*)-0/ [0] (M(/)-0) [6]	2.405	2.490	2.34	2.49	2.521	2.534	2.4/4	2.494
/(+)_0 [0]	2.437	2.452	2.49	2.43	2.424	2.432	2.420	2.445
A-0(5) x4	3.028	3.017	3.01	3.07	2.957(2)	2,956(3)	3.056(4)	3.068(4)
A-0(6) ×4	3.141	3.113	3.11	3.07	3.190(2)	3.215(4)	3.159(3)	3.079(3)
A-0(7) x2	2.528	2.497	2.52	2.37	2.516(3)	2.530(4)	2,518(4)	2,456(4)
A-0(7) x2	3.693	3.732	3.77	3.76	3.673(3)	3.680(5)	3.735(4)	3,700(4)
(A-0) [12]	3.093	3.082	3.09	3.07	3.081	3.091	3.114	3.075
<a-0> [10]</a-0>	2.973	2.951	2.95	2.93	2,962	2,974	2,990	2,950
- L-	<u></u>					<u> </u>	21000	21/50
M(1) - M(1)	3.232	3.252	3.26	2.97	3.178(3)	3.196(4)	3.266(2)	2.950(4)
m(1)-m(2)	3.103	3.089	3.14	3.16	3.099(1)	3.111(2)	3.106(1)	3.163(1)
m(⊥)→m(3)	3.113	3.118	3.14	3.05	3.084(1)	3.093(1)	3.126(1)	3.038(1)
$M(\perp) - M(4)$	3.439	3.414	3.50	3.53	3.440(2)	3.455(3)	3.448(2)	3.563(3)
M(2)-M(3)	3.214	3.196	3.28	3.19	3.208(1)	3.230(2)	3.226(2)	3.192(2)
M(2)~M(4)	3.236	3.237	3.26	3.22	3.210(1)	3.215(1)	3.247(1)	3.234(1)
T(1)-T(2)	3.132	3.114	3,10	3,13	3,093	3.100	3,140(2)	3,106(2)
T(1) - T(2)	3.051	3,056	3.10	3.13	3,059	3,063	3 060(2)	3 077/2)
		3.030	3.10	0.10	3.039	0.000	5.000(2)	5.011(2)
T(1)-T(1)	3.117	3,117	3.11	3 06	3.039	3 047	3 130(3)	3 001 (3)

	(56a)	(56b)	(57)	(58)	(59)	(60)	(61)
T(1)_0(1)	1 611 (2)	1 607(2)	1 618(3)	1 675(3)	1 666(2)	1,662	1.648
	1.(27(2))	1 607(2)	1.626(3)	1 609(2)	1.683(2)	1.667	1.697
T(1) = 0(5)	1.037(2)	1.037(2)	1.020(3)	1.000(3)	1.003(2)	1 673	1.654
T(1) - U(6)	1.639(2)	1.637(2)	1.632(1)	1.692(4)	1.000(2)	1 620	1 642
T(1)-0(7)	1.629(1)	<u>1.628(2)</u>	1.624(2)	1.669(2)	$\frac{1.664(1)}{1.664(1)}$	1.029	1.042
<t(1)-0></t(1)-0>	1.629	<u>1.627</u>	1.625	1.681	<u>1.673</u>	1.658	1.660
T(2) = O(2)	1.613(2)	1,617(2)	1,623(3)	1,660(3)	1,630(2)	1.623	1.650
T(2) = O(4)	1589(2)	1586(2)	1.600(3)	1,630(3)	1,604(2)	1.629	1.613
T(2) = O(4) T(2) = O(5)	1.509(2)	1,500(2)	1,627(3)	1 661(4)	1.646(2)	1.654	1.637
T(2) = O(3)	1.002(2)	1.000(2)	1.037(3)	1 669(2)	1.658(2)	1.660	1.674
1(2) - 0(0)	$\frac{1.075(2)}{1.075}$	$\frac{1.001(2)}{1.005}$	1.030(3)	1.000(3)	1 625	1 642	1.644
$\chi_{1}(2) = 0$	1.635	1.635	1.630	1.033	1.035	1.042	
M(1)-0(1) x2	2.061(2)	2.063(1)	2.069(4)	2.065(4)	2.072(2)	2.058	2.102
M(1) - 0(2) = x2	2.071(2)	2.072(2)	2.129(4)	2.163(4)	2.153(2)	2.130	2.127
M(1) = O(3) = x2	2.082(2)	2.087(2)	2.096(4)	2.120(3)	2.113(2)	2.092	2.103
(M(1)-0)	2.071	2.074	2.097	2,116	2.113	2.093	2.111
(II(I) 0)	<u>, , , , , , , , , , , , , , , , , , , </u>	2.07-					
$M(2) - 0(1) = x^2$	2.143(2)	2.146(2)	2.155(4)	2.023(4)	2.096(2)	2.058	2.056
$M(2) = O(2) \times 2$	2.091(2)	2.087(1)	2.092(4)	2.010(4)	2.080(2)	2.055	2.079
$M(2) = O(4) = x^2$	2.018(2)	2.018(2)	2.026(4)	1,907(4)	1.962(2)	1.922	1.975
(2) = 0	2 084	2 084	2.091	1.980	2.046	2.012	2.037
(11(2)) 07		2:004					
M(3) - 0(1) = x4	2.071(2)	2.070(1)	2.092(3)	2.135(2)	2.130(2)	2.112	2.081
M(3) = O(3) = x2	2.047(2)	2.054(2)	2,069(5)	2.122(5)	2.117(3)	2.059	2.081
$\langle M(3) - 0 \rangle$	2.063	2.065	2.084	2.131	2.126	2.094	2.081
				<u></u>	<u> </u>		
M(4) - 0(2) = x2	2.415(2)	2.413(2)	2.195(4)	2.425(4)	2.437(2)	2.445	2.386
M(4) - 0(4) = x2	2.336(2)	2.337(2)	2.099(4)	2.345(4)	2.368(2)	2.378	2.340
M(4) - 0(5) = x2	2.766(2)	2.770(2)	3.109(5)	2.602(6)	2.729(3)	2.696	2.640
M(4) - O(6) = x2	2,548(1)	2.552(2)	2.630(3)	2.551(3)	2.552(3)	2.502	2.602
$\langle M(4) - 0 \rangle$ (8]	2,516	2,518	2,508	2.481	2.522	2.505	2.492
(M(4)-0> [6]	2 433	2.434	2,308	2.440	2.454	2.441	2.443
(11(4) 0) [0]		20454	21300				
A-0(5) ×4	2.973(2)	2,968(1)	2,835(4)	3.055(4)	3.008(2)	3.015	3.063
A = 0(6) x4	3,148(2)	3.146(1)	3,289(4)	3,101(4)	3.152(2)	3.136	3.082
$\lambda_{-0}(7) = \pi^{2}$	2 480(3)	2 488 (2)	2 327(5)	2 504(5)	2.520(4)	2.532	2.428
$A = 0(7)$ X_2	2.400(3)	2 676(2)	3 800(5)	3 775(6)	3,739(4)	3.684	3.816
	$\frac{3.060(4)}{2.067}$	3.070(3)	3.000(3)	2,000	3 007	3.086	3.089
$\langle A - 0 \rangle$ [12]	3.007	3.005	3.002	3.099	2 069	2,967	2.944
	2.944	2.943	2.915	2.903	2.900	2:507	
M(1)-M(1)	3.184(2)	3.186(4)	3.158(2)	3.270(2)	3.244(2)	3.197	3.200
M(1) - M(2)	3.088(1)	3.090(2)	3.122(1)	3.114(1)	3.139(1)	3.106	3.094
M(1) - M(3)	3.085(1)	3.086(1)	3.092(1)	3.137(1)	3.129(1)	3.100	3.099
M(1) - M(4)	3,425(1)	3.422(3)	3.179(1)	3,444(1)	3.461(1)	3.468	3.437
M(2) - M(3)	3,191(1)	3,195(2)	3.216(1)	3,225(1)	3.263(1)	3.208	3.191
M(2)_M(2)	2 010/1V	2 200(2)	3 072(1)	3 256(1)	3,237(1)	3.242	3.232
m(2)=m(4)	3.2T7(T)	3.209(2)	3.013(T)	J+2JU(1)	J. 2J/(T)		
T(1) - T(2)	3.091(1)	3.095(3)	3.094(1)	3.143(1)	3.123(1)	3.110	3.114
T(1) - T(2)	3,061(1)	3.057(3)	3.063(1)	3,066(1)	3.079(1)	3.084	3.067
T(1) - T(1)	3.038(1)	3.041(3)	3.055(2)	3.132(2)	3.127(2)	3.074	3.056
	5.555(2)		2				

		(62)	(63)	(64)	(65)	(6.6)	(67)	(68)	(69)
T(1) - 0(1)		1.60	1,652	1.67	1 5 8	1 61	1 508(4)	1 622/21	1 695/91
T(1) = 0(5)		1.69	1.649	1 65	1 60	1 66	1 634(4)	1 627(3)	1.023(3)
T(1) = 0(6)		1.55	1 654	1 67	1 61	1 62	1 622(4)	1.027(3)	1.013(3)
T(1) = 0(7)		1 61	1 625	1 50	1 60	1 64	1.032(4)	1.030(3)	1.623(3)
$\frac{1}{2}$		$\frac{1.01}{1.61}$	1 649	1.59	1.62	1.04	$\frac{1.641(2)}{1.641(2)}$	$\frac{1.628(2)}{1.628(2)}$	$\frac{1.61}{(1)}$
		1.01	1.048	1.65	1.63	1.64	1.626	1.627	1.620
T(2)-0(2)		1.72	1.643	1.65	1.63	1.63	1.615(4)	1.627(3)	1.631(3)
T(2)-0(4)		1.60	1.592	1.62	1.59	1.62	1.585(4)	1.598(3)	1.596(3)
T(2)-0(5)		1.58	1.657	1.62	1.61	1.64	1.667(4)	1.652(3)	1.651(3)
T(2)-0(6)		1.64	1.682	1.61	1.69	1.63	1.680(4)	1,656(3)	1.655(3)
Հ Τ(2)−0>		1.64	1.644	1.63	1.63	1.63	1.637	1.633	1.633
M(1)-0(1)	x 2	2.14	2.049	2.15	2.23	2.27	2.110(3)	2,106(3)	2 (193(2))
M(1) - 0(2)	x2	2.05	2.089	2.06	2.06	2.14	2.10(3)	2.100(3)	2.093(2) 2.101(2)
M(1) = O(3)	x2	2.07	2.082	2.00	2.00	2.14	$2 \cdot 100(4)$	2.100(3)	2.101(2)
<m(1)-0></m(1)-0>		2.09	2 073	2 15	$\frac{2.12}{2.14}$	2.00	$\frac{2.130(3)}{2.115}$	$\frac{2.130(3)}{2.114}$	$\frac{2 \cdot 124(2)}{2 \cdot 100}$
		2.07	2.075	2.15	<u>2•14</u>	2.10	2.115	<u>Z.II4</u>	2.100
M(2)-0(1)	x 2	1.95	2.096	2.06	2.11	2.06	2.161(4)	2.121(3)	2.030(3)
M(2)-0(2)	x 2	1.99	2.098	2.09	2.11	2.00	2,084(4)	2.034(3)	1.950(2)
M(2)-0(4)	x 2	1.85	2.007	1.88	1.94	1.93	1,953(4)	1,926(3)	1.850(3)
<m(2)-0></m(2)-0>		1.93	2.067	2.01	2.05	2.00	2.066	2,027	1.943
							21000	2:027	1.745
M(3) - 0(1)	x 4	2.07	2.078	2.03	2.13	1.98	2.138(4)	2.121(3)	2.138(2)
M(3) - O(3)	x2	1.97	2.092	2.10	2.09	2.17	2.103(5)	2.098(4)	2.090(4)
<m(3)-0></m(3)-0>		2.04	2.083	2.05	2.12	2.04	2.126	2.113	2.122
M(4) - 0(2)	x 2	2.49	2.377	2.57	2 / 8	2 54	2 410(4)	2 / 22 (/)	2 602(2)
M(4) = O(4)	x 2	2.25	2.306	2 58	2.40	2.5	2.419(4)	2.432(4)	2.403(3)
M(4) = O(5)	x2	2.80	2.650	2.50	2 00	2.33	2.374(4)	2.337(3)	2.332(3)
M(4) = O(6)	x2	2.13	2,611	2.05	2.50	2.13	$2 \cdot 3 37(4)$ 2 614(4)	2.900(3)	2.020(3)
(M(4)-0>[8]		2.42	2 486	2 61	2.57	2 50	$\frac{2.014(4)}{2.596}$	$\frac{2.504(4)}{2.550}$	$\frac{2.437(3)}{2.505}$
$M(4) = 0 \times 161$		2 20	2 431	2.01	2.01	2.50	2.460	2.550	2.303
		2.27	<u>2.4JI</u>	2.55	2.51	2.51	2.409	2.431	2.397
A-0(5)	x 4	2.66	3.066	2.89	2.89	2.83	2.755(3)	2.832(3)	2.809(3)
A-0(6)	x4	3.32	3.063	3.23	3.23	3.20	3.212(3)	3.252(3)	3.244(3)
A-0(/)	x2	2.32	2.446	2.60	2.59	2.53	2.629(2)	2.550(3)	2.549(4)
A-0(/)	x 2	<u>3.80</u>	<u>3.742</u>	<u>3.74</u>	3.75	3.67	3.720(2)	3.700(4)	3.690(4)
<a-0> [12]</a-0>		3.01	3.074	3.10	3.10	3.04	3.047	3.070	3.058
<a-0> [10]</a-0>		2.86	2.940	2.97	2.97	2.92	2.913	2.944	2.931
M(1)-M(1)		3.15	3.174	3, 31	3, 33	3,07	3, 328/21	3 267(2)	3 272(2)
M(1) - M(2)		3.06	3,088	3 1/	3 14	3 14	3.320(2)	$3 \cdot 207(2)$	$3 \cdot 2/2(2)$
M(1) - M(3)		3.07	3,086	3,14	3 15	3.06	3 1/3/1)	3 19//1)	3 1 0 1 (1)
M(1) - M(4)		3,55	3.425	3./0	3 /1	3 50	3 360(3)	3+124(1) 2 277/2)	3.121(1) 2.207(2)
M(2) - M(3)		3,13	3,178	2 21	3.4T	3 00	3.300(3)	3.3//(3)	3.307(2)
M(2) - M(4)		3 30	3 220	3 JY J'JT	2.33	2.22	3+334(L)	3.29U(1)	3.24U(L)
(4) 41(4)		J.JU	J.220	3.24	2.12	3.23	3.13/(2)	3.1/1(2)	3.12/(1)
T(1)-T(2)		3.05	3.112	3.10	3.11	3.06	3.098(2)	3.100(2)	3.117(1)
T(1) - T(2)		3.02	3.057	3.08	3.06	3.03	3.059(2)	3.041(2)	3.012(1)
T(1) - T(1)		3.09	3.050	3.04	3.09	3.09	3.116(2)	3.093(2)	3.114(2)
								· · · · · · · · · · · · · · · · · · ·	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	terror and the second secon						
$ \begin{split} & \begin{array}{rrrr} (1) - 0(1) & 1.650(1) & 1.657(1) & 1.654(1) & 1.664(4) & 1.677(6) \\ & 1.671(1) - 0(5) & 1.671(1) & 1.677(1) & 1.675(1) & 1.677(4) & 1.688(7) \\ & \begin{array}{rrrr} (1) - 0(6) & 1.668(1) & 1.677(1) & 1.675(1) & 1.677(4) & 1.688(7) \\ & \begin{array}{rrrr} (1) - 0(6) & 1.668(1) & 1.677(1) & 1.676(1) & 1.677(4) & 1.691(7) \\ & \begin{array}{rrrr} (1) - 0(6) & 1.668(1) & 1.667(1) & 1.667(1) & 1.677(4) & 1.691(7) \\ & \begin{array}{rrrr} (1) - 0(6) & 1.668(1) & 1.663(1) & 1.666(1) & 1.663(1) & 1.664(3) & 1.655(4) \\ & \begin{array}{rrrr} (1) - 0(2) & 1.631(1) & 1.602(1) & 1.597(1) & 1.605(4) & 1.605(4) & 1.604(1) & 1.662(1) & 1.662(1) & 1.662(4) & 1.655(6) \\ & \begin{array}{rrrr} (2) - 0(4) & 1.664(1) & 1.645(1) & 1.664(1) & 1.664(4) & 1.654(6) \\ & \begin{array}{rrrr} (2) - 0(6) & 1.655(1) & 1.659(1) & 1.663(1) & 1.660(4) & 1.663(7) \\ & \begin{array}{rrrr} (7(2) - 0) & 1.634 & 1.634 & 1.634 & 1.632 & 1.6632 \\ & \begin{array}{rrrr} 1.634 & 1.634 & 1.634 & 1.632 & 1.6632 \\ & \begin{array}{rrrr} 1.642 & 2.055(1) & 2.050(1) & 2.051(1) & 2.055(4) & 2.032(6) \\ & \begin{array}{rrrr} (1) - 0(1) & x2 & 2.053(1) & 2.050(1) & 2.005(1) & 2.096(4) & 2.044(6) \\ & \begin{array}{rrrr} 2.088 & 2.088 & 2.088 & 2.096 & 2.094 & 2.071 \\ & \begin{array}{rrrr} 2.088 & 2.088 & 2.086 & 2.094 & 2.071 \\ & \begin{array}{rrrr} 2.094(1) & 2.094(1) & 2.095(1) & 2.065(1) & 2.065(4) & 2.085(6) \\ & \begin{array}{rrrr} 2.004 & 2.093(1) & 2.064(1) & 2.057(4) & 2.071(6) \\ & \begin{array}{rrrr} 2.024 & 2.030 & 2.047 & 2.032 & 2.047 \\ & \begin{array}{rrrr} 2.004 & 2.032 & 2.047 & 2.048(6) \\ & \begin{array}{rrrr} 2.093(1) & 2.084(1) & 2.075(1) & 2.088(4) & 2.076(5) \\ & \begin{array}{rrrr} 3.093(1) & 2.084(1) & 2.077(5) & 2.068(4) & 2.064(6) \\ & \begin{array}{rrrr} 4.0 - 0(3) & x2 & 2.073(2) & 2.072 & 2.068(2) & 2.067(5) \\ & \begin{array}{rrrr} 3.093(1) & 3.045(1) & 3.045(1) & 3.045(1) & 3.068(3) & 3.081(8) \\ & \begin{array}{rrrr} 4.0 - 0(5) & x4 & 3.030(1) & 3.045(1) & 3.045(1) & 3.045(1) & 3.045(3) & 3.081(4) \\ & 3.064(2) & 2.487 & 2.$			(70)	(71)	(72)	(73)	(74)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1) = O(1)		1.650(1)	1.657(1)	1.654(1)	1.664(4)	1.676(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T(1) = 0(5)		1 671(1)	1 679(1)	1 675(1)	1.677(4)	1.688(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T(1) O(3)		1 669(1)	$1^{\prime} 677(1)$	1.676(1)	1 675(4)	1 601(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T(T) = O(0)		1.652(1)	1.077(1)	1.070(1)	1.66/(3)	1.656(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(1) = O(7)		$\frac{1.053(1)}{1.053(1)}$	<u>T.039(1)</u>	$\frac{1.003(1)}{1.003(1)}$	$\frac{1.004(3)}{1.670}$	$\frac{1.000(4)}{1.670}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<t(1)-0></t(1)-0>		1.661	1.668	1.66/	1.670	1.0/8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T(2) = O(2)		1,631(1)	1,630(1)	1,626(1)	1,632(4)	1.644(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T(2) = O(4)		1 604(1)	1.602(1)	1.597(1)	1.605(4)	1,605(6)
$\begin{array}{c} 1(2) - 0(6) & 1.037(1) & 1.037(1) & 1.037(1) & 1.037(1) & 1.037(1) \\ 1.656(1) & 1.656(1) & 1.660(4) & 1.660(4) & 1.660(4) \\ 1.61(1) & 1.630(1) & 1.660(4) & 1.660(4) & 1.660(4) \\ 1.620(1) & 1.631(1) & 1.632 & 1.635 & 1.642 \\ \hline \\ m(1) - 0(1) & x2 & 2.053(1) & 2.050(1) & 2.051(1) & 2.054(4) & 2.032(6) \\ m(1) - 0(2) & x2 & 2.116(1) & 2.119(1) & 2.114(1) & 2.132(4) & 2.137(6) \\ m(1) - 0> & 2.088 & 2.088 & 2.086 & 2.094(1) & 2.096(4) & 2.044(6) \\ m(2) - 0(1) & x2 & 2.048(1) & 2.055(1) & 2.068(1) & 2.065(4) & 2.085(7) \\ m(2) - 0(2) & x2 & 2.048(1) & 2.055(1) & 2.068(1) & 2.065(4) & 2.0057(4) \\ m(2) - 0(2) & x2 & 2.048(1) & 2.055(1) & 2.068(1) & 2.065(4) & 2.0057(4) \\ m(2) - 0(2) & x2 & 2.048(1) & 2.055(1) & 2.068(1) & 2.057(4) & 2.071(6) \\ m(2) - 0(2) & x2 & 2.048(1) & 2.055(1) & 2.068(1) & 2.057(4) & 2.071(6) \\ m(3) - 0(1) & x4 & 2.093(1) & 2.084(1) & 2.075(1) & 2.088(4) & 2.076(5) \\ m(3) - 0(3) & x2 & 2.073(2) & 2.072(2) & 2.065(2) & 2.077(6) & 2.068(9) \\ m(4) - 0(4) & x2 & 2.396(1) & 2.399(1) & 2.395(1) & 2.388(4) & 2.412(5) \\ m(4) - 0(4) & x2 & 2.396(1) & 2.399(1) & 2.395(1) & 2.388(4) & 2.412(5) \\ m(4) - 0(6) & x2 & 2.579(1) & 2.588(1) & 2.605(1) & 2.290(4) & 2.334(6) \\ m(4) - 0(6) & x4 & 3.030(1) & 3.045(1) & 3.044(1) & 3.058(3) & 3.081(8) \\ A - 0(6) & x4 & 3.087(1) & 3.045(1) & 3.044(1) & 3.058(3) & 3.081(8) \\ A - 0(6) & x4 & 3.087(1) & 3.068(1) & 3.055(1) & 3.081(4) & 3.064(7) \\ A - 0(7) & x2 & 2.3749 & 3.748 & 3.761 & 3.778(3) & 3.746(8) \\ A - 0(6) & x4 & 3.087(1) & 3.068(1) & 3.055(1) & 3.081(4) & 3.064(7) \\ A - 0(7) & x2 & 2.3749 & 3.748 & 3.761 & 3.778(3) & 3.746(8) \\ A - 0(6) & x4 & 3.087(1) & 3.068(1) & 3.055(1) & 3.081(3) & 3.064(7) \\ A - 0(7) & x2 & 3.749 & 3.748 & 3.761 & 3.778(3) & 3.746(8) \\ A - 0(7) & x2 & 3.749 & 3.746 & 3.061 & 3.075 & 3.084(3) \\ (1) - m(1) & 3.218 & 3.216 & 3.212 & 3.217(3) & 3.113(8) \\ (1) - m(4) & 3.100 & 3.099 & 3.096 & 3.101(1) & 3.084(3) \\ (1) - m(4) & 3.107 & 3.108 & 3.003 & 3.114(2) & 3.114(4) \\ (1) - T(2) & 3.063 & 3.066 & 3.073 & 3.088(3) & 3.084(4) \\ \end{array}$	T(2) = 0(5)		1 645(1)	1.645(1)	1.646(1)	1 - 644(4)	1 654(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T(2) = O(3)		1 656(1)	1.040(1)	1.661(1)	1 660(4)	1.663(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(2) - 0(0)		$\frac{1.000(1)}{1.600}$	$\frac{1.039(1)}{1.624}$	$\frac{1.001(1)}{1.622}$	$\frac{1.000(4)}{1.625}$	$\frac{1.003(7)}{1.642}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<1(2)=0>		1.034	1.034	1.032	1.033	1.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(1) - 0(10)	x 2	2,053(1)	2,050(1)	2.051(1)	2.054(4)	2.032(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(1) = O(2)	x 2	2.116(1)	2,119(1)	2.114(1)	2.132(4)	2.137(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(1) = O(3)	x 2	2.094(1)	2.094(1)	2.093(1)	2.096(4)	2.044(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<m(1)-0></m(1)-0>		2 088	2 088	2.086	2.094	2.071
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(2)-0(1)	x 2	2.065(1)	2.068(1)	2.086(1)	2.065(4)	2.085(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(2) - 0(2)	x 2	2.048(1)	2.055(1)	2.064(1)	2.057(4)	2.071(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(2) - 0(4)	x 2	1,959(1)	1.967(1)	1.980(1)	1.973(4)	1.985(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(2)-0></m(2)-0>		2.024	2.030	2.043	2.032	2.047
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(3)-0(1)	x 4	2.093(1)	2.084(1)	2.075(1)	2.088(4)	2.076(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(3) - 0(3)	x 2	2.073(2)	2.072(2)	2.065(2)	2.077(6)	2.068(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(3)-0></m(3)-0>		2.086	2.080	2.072	2.084	2.073
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>	<u></u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4) - 0(2)	x 2	2.396(1)	2.399(1)	2.395(1)	2.388(4)	2.412(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4) - 0(4)	x 2	2.304(1)	2.313(1)	2.300(1)	2.290(4)	2.334(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4) - 0(5)	x2	2.658(1)	2.641(1)	2.651(1)	2.646(4)	2.624(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(4) - O(6)	x2	2.579(1)	2,588(1)	2.605(1)	2,592(4)	2.580(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(4)=0> [8]</m(4)=0>	1	2.484	2.485	2.488	2.479	2.487
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<m(4) 0="" ==""> [6]</m(4)>	1	2 426	2 433	2.433	2.423	2.442
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-0(5)	x 4	3.030(1)	3.045(1)	3.044(1)	3.058(3)	3.081(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-0(6)	x 4	3.087(1)	3.068(1)	3.055(1)	3.081(4)	3.064(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-0(7)	x 2	2.438(1)	2.432(2)	2.404(2)	2.411(3)	2.467(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A - 0(7)	x 2	3.749	3.748	3.761	3.758(3)	3.746(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<a-0> Γ1</a-0>	21	3.070	3.068	3.061	3.075	3.084
M(1) -M(1) 3.218 3.216 3.212 $3.217(3)$ $3.113(8)$ M(1) -M(2) 3.086 3.085 3.084 $3.091(1)$ $3.124(4)$ M(1) -M(3) 3.100 3.099 3.096 $3.101(1)$ $3.084(3)$ M(1) -M(4) 3.400 3.411 3.403 $3.411(3)$ $3.473(6)$ M(2) -M(3) 3.191 3.188 3.190 $3.198(2)$ $3.191(6)$ M(2) -M(4) 3.214 3.221 3.211 $3.217(1)$ $3.235(4)$ T(1) -T(2) 3.107 3.108 3.103 $3.114(2)$ $3.114(4)$ T(1) -T(2) 3.052 3.056 3.056 $3.055(2)$ $3.072(4)$ T(1) -T(1) 3.083 3.080 3.073 $3.088(3)$ $3.084(4)$	<a=0> [1</a=0>	01	2 934	2,931	2,920	2,938	2,951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.•]	2.754	2.JJL			
M(1)-M(2)3.0863.0853.0843.091(1)3.124(4)M(1)-M(3)3.1003.0993.0963.101(1)3.084(3)M(1)-M(4)3.4003.4113.4033.411(3)3.473(6)M(2)-M(3)3.1913.1883.1903.198(2)3.191(6)M(2)-M(4)3.2143.2213.2113.217(1)3.235(4)T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(1) - M(1)		3.218	3.216	3.212	3.217(3)	3.113(8)
M(1)-M(3)3.1003.0993.0963.101(1)3.084(3)M(1)-M(4)3.4003.4113.4033.411(3)3.473(6)M(2)-M(3)3.1913.1883.1903.198(2)3.191(6)M(2)-M(4)3.2143.2213.2113.217(1)3.235(4)T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(1) - M(2)		3.086	3.085	3.084	3.091(1)	3.124(4)
M(1)-M(4)3.4003.4113.4033.411(3)3.473(6)M(2)-M(3)3.1913.1883.1903.198(2)3.191(6)M(2)-M(4)3.2143.2213.2113.217(1)3.235(4)T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(1) - M(3)		3.100	3.099	3.096	3.101(1)	3.084(3)
M(2)-M(3)3.1913.1883.1903.198(2)3.191(6)M(2)-M(4)3.2143.2213.2113.217(1)3.235(4)T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(1) - M(4)		3.400	3.411	3.403	3.411(3)	3.473(6)
M(2)-M(4)3.2143.2213.2113.217(1)3.235(4)T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(2) - M(3)		3.191	3.188	3,190	3.198(2)	3.191(6)
T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	M(2) - M(4)		3,214	3,221	3.211	3.217(1)	3,235(4)
T(1)-T(2)3.1073.1083.1033.114(2)3.114(4)T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	(<i>4)</i> II(4)		J • 4 1 T	J • 44 L	т. • • т.	J (-/	31-35(1)
T(1)-T(2)3.0523.0563.0563.055(2)3.072(4)T(1)-T(1)3.0833.0803.0733.088(3)3.084(4)	T(1)-T(2)		3.107	3.108	3.103	3.114(2)	3.114(4)
T(1)-T(1) 3.083 3.080 3.073 3.088(3) 3.084(4)	T(1)-T(2)		3.052	3.056	3.056	3.055(2)	3.072(4)
	T(1)-T(1)		3.083	3.080	3.073	3.088(3)	3.084(4)

APPEND	<u>LX B4</u>	(ADDENDUM).	CATION-A	NION DI	STANCES	(A) FOR SPI	LIT A-	SITE MODELS	
		(24)	(29)	(38)	(39)	(40)	(51)	(54)	(55)
∆(m) -0(5)	x 2	3,022(11)	2,911(5)	3,032	3.034	3,030(12)	2.98	3.042(4)	3.026(6)
A(m) = O(5)	x2	3.121(11)	2.996(5)	3,124	3,131	3.095(11)	3.06	3.114(4)	3.210(7)
A(m) = 0(6)	v 2	2.829(9)	2.940(6)	2.847	2.870	2.836(12)	2.93	2,905(5)	2.705(8)
A(m) = O(6)	w2	3,364(10)	3,351(8)	3, 332	3.272	3,405(14)	3.30	3.433(6)	3.507(11)
A(m) = O(7)	A-	2.464(19)	2,598(8)	2.490	2.486	2,369(22)	2.53	2.504(7)	2.515(11)
A(m) = 0(7)		2.510(18)	2.649(9)	2.527	2.494	2.511(24)	2.54	2.584(7)	2.527(11)
A(m) = 0(7)		3,376(14)	3,356(9)	3.387	3.471	3,367(16)	3.55	3.391(8)	3.204(12)
A(m) = O(7)		4.059(14)	3.883(13)	4.004	3.972	4.155(15)	4.02	4.084(10)	4.104(12)
	I	3,090	3.074	3.090	3.086	3.094	3.10	3.129	3.104
ZA-ON VI	II	2.865	2.868	2.878	2.881	2.850	2.88	2.901	2.864
				. <u></u>	منتقدي ت				
A(2)-0(5)	x 2	-	-	_	_	-	-	2.739(27)	2.945(11)
A(2) - O(5)	x 2	-	-	-	-	-	-	3.388(30)	3.192(12)
A(2) - 0(6)	x 2	-	-	-	-	-	-	2.901(22)	2.978(11)
A(2) - 0(6)	x 2	- '	_	-	-	-	-	3.441(27)	3.185(12)
A(2) - O(7)	x2	-	-	-	-	-		2.548(9)	2.460(7)
A(2) - O(7)	x 2	-	-	-	-	-	-	3.756(9)	<u>3.703(9)</u>
(A-0) XI	I	-	-	_	-	-	-	3.129	3.077
<a-0> X</a-0>		-	-	-	-	-	-	3.003	2.952
		·····							

	-	(56a)	(56b)	(58)	(59)	(61)	(62)	(65)	(67)
A(m)-0(5)	x 2	2.94(1)	2.95(2)	3.057(9)	2.974(5)	3.059	2.599	2.849	2.846(5)
A(m)-0(5)	x 2	3.10(1)	3.11(2)	3.146(11)	3.145(5)	3.118	2.778	2.980	2.923(5)
A(m)-0(6)	x 2	2.78(1)	2.73(3)	2.737(19)	2.773(6)	2.833	3.036	2.919	3.037(5)
A(m)-0(6)	x 2	3.56(1)	3.62(3)	3.510(14)	3.580(7)	3.354	3.625	3.586	3.397(5)
A(m)-0(7)		2.49(2)	2.49(4)	2.501(15)	2.554(8)	2.299	2.355	2.572	2.616(8)
A(m)-0(7)		2.58(2)	2.63(4)	2.620(17)	2.609(8)	2.603	2.359	2.685	2.666(8)
A(m)-0(7)		3.19(2)	3.11(4)	3.273(19)	3.231(9)	3.445	3.438	3.325	3.491(7)
A(m)-0(7)		4.10(2)	4.11(4)	4.285(19)	4.261(9)	4.185	4.168	<u>4.175</u>	<u>3.950(8)</u>
<a-0> X11,</a-0>		3.09	3.10	3.132	3.133	3.105	3.033	<u>3.119</u>	3.094
<a-0> VIII</a-0>		2.84	2.84	2.875	2.868	2.865	2.692	2.844	2.862
					-				
A(2)-0(5)	x 2	2.83(3)	2.82(5)	2.834(8)	2.845(8)	-	-	-	-
A(2)-0(5)	x 2	3.12(3)	3.12(5)	3.285(8)	3.177(8)	-	-	-	-
A(2)-0(6)	x 2	3.03(2)	3.02(4)	2.921(8)	3.017(7)	-	-	-	-
A(2)-0(6)	x 2	3.27(2)	3.27(5)	3.295(8)	3.294(7)	-	-	-	-
A(2)-0(7)	x 2	2.486(4)	2.495(6)	2.519(6)	2.528(4)	-	-	-	-
A(2)-0(7)	x 2	3.684(3)	3.681(4)	3.785(8)	3.744(4)	-	-	-	-
$\langle A-0 \rangle \frac{X11}{v}$		3.070	3.068	3,107	3.101	-	-	-	-
<a-0> ^</a-0>		2.947	2.945	2.971	2.972	-	-	-	-

••••••••••••••••••••••••••••••••••••••		(68)	(70)	(71)	(72)	(73)	(74)
A(m) = 0(5)	x 2	2.788(7)	3.058(1)	3.055(1)	3.047(1)	3.05(2)	3.06(3)
A(m) = 0(5)	x 2	2.964(7)	3.073(1)	3.113(1)	3.121(1)	3.15(2)	3.21(3)
A(m) - 0(6)	x2	2.894(7)	2.769(1)	2.731(1)	2.713(1)	2.72(3)	2.69(3)
A(m) - 0(6)	x 2	3.646(9)	3.439	3.441	3.435	3.48(4)	3.49(3)
A(m) = O(7)		2,556(12)	2.360(2)	2.392(2)	2.378(2)	2.40(4)	2.51(5)
A(m) - 0(7)		2.645(11)	2.597(2)	2,565(2)	2,528(2)	2.53(4)	2.56(5)
A(m) - 0(7)		3.225(11)	3.296(2)	3.281(2)	3.293(2)	3.27(5)	3.24(5)
A(m) - 0(7)		4.183(12)	4.266	4.289	4.308	4.25(5)	4.27(4)
(A-0) XII		3.099	3.100	3.100	3.095	3.10	3.09
<a-0> VIII</a-0>		2.812	2.845	2.854	2.834	2.85	2.87
		·					
A(2)-0(5)	x 2		2.668(1)	2.631(1)	2.640(1)	2.715(16)	2.92(2)
A(2)-0(5)	x 2	-	3.414	3.488	3.476	3.421(18)	3.25(3)
A(2)-0(6)	x 2	-	2.799(1)	2.738(1)	2.734(1)	2.806(13)	2.93(2)
A(2)-0(6)	x 2	-	3.412	3.445	3.422	3.388(15)	3.20(2)
A(2)-0(7)	x 2	-	2.479(2)	2.487(2)	2.457(2)	2.448(7)	2.48(1)
$A(2) - 0(7)_{}$	x 2	-	3.776	3.784	3.795	3.783(8)	3.75(1)
$\langle A-0 \rangle$		-	3.091	3.096	3.087	3.094	3.09
<a-0> ^</a-0>		-	2.954	2.959	2.946	2.956	2.96

ł

APPENDIX B5. ANION-ANION DISTANCES (Å)								
		(21)	(22)	(24)	(26)	(28)	(29)	(30)
0(1)-0(5)		2.654(6)	2.656(6)	2.764(6)	2.648(8)	2,660(5)	2,705(5)	2.681(3)
0(1)-0(6)		2.656(6)	2.669(6)	2.747(5)	2.659(7)	2.661(4)	2.687(6)	2.666(3)
0(1)-0(7)		2.652(7)	2,664(6)	2.742(7)	2.638(8)	2.652(5)	2,657(5)	2.649(2)
0(5)-0(6)		2.638(8)	2,682(6)	2.682(7)	2,646(9)	2,629(5)	2.634(6)	2.602(3)
0(5) - 0(7)		2.626(5)	2,629(5)	2.690(5)	2.627(7)	2.628(4)	2.604(5)	2.638(2)
0(6)-0(7)		2.630(6)	2.638(6)	2.718(6)	2.617(8)	2.642(5)	2.594(6)	2.639(2)
(0-0) T(1)		2.643	2.656	2.726	2 639	2.645	2 647	2.646
			2:050	2.720	2:039	2:045	2:047	2:040
0(2)-0(4)		2.748(6)	2.733(6)	2.767(6)	2,745(8)	2.725(5)	2.767(5)	2.736(2)
0(2)-0(5)		2.642(6)	2.633(6)	2.687(5)	2.635(8)	2.638(4)	2.692(6)	2.670(3)
0(2)-0(6)		2.653(7)	2.657(6)	2,683(6)	2.636(9)	2.664(5)	2.684(5)	2.665(3)
0(4)-0(5)		2.654(6)	2.649(6)	2.662(6)	2.640(8)	2.652(5)	2.682(6)	2.645(2)
0(4)-0(6)		2,562(6)	2.536(6)	2.576(6)	2,588(8)	2.542(5)	2,590(6)	2.560(2)
0(5)-0(6)		2.693(6)	2.668(6)	2.682(7)	2,666(8)	2.695(5)	2,673(7)	2.702(3)
<0−0> T(2)		2.659	2.646	2.676	2.652	2.653	2.681	2,663
$0(1^{-})-0(2^{-})$	x 2	2.818(7)	2.865	2.764(4)	2.639	2.836	2.811(5)	2.815(2)
$0(1^{-})-0(2^{-})$	x 2	3.101(8)	3.121	3.100(6)	3.186	3.101	3.061(6)	3.070(3)
$0(1^{-}) - 0(3^{-})$	x 2	2.790(7)	2.831	2.745(5)	2.804	2.783	2.719(5)	2.765(3)
0(1~)-0(3~)	x 2	3.084(7)	3.115	3.079(7)	3.133	3.085	3.063(7)	3.056(3)
0(2)-0(2)		2.938(8)	2.952	2,908(8)	3.026	2.919	2.885(9)	2.867(3)
0(2)-0(3)	x2	3.123(8)	3.193	3.124(4)	3.047	3.118	3.059(3)	3.090(2)
0(3)-0(3)		2.737(13)	2.751	2.660(11)	2.695	2.753	2.642(11)	2.704(3)
<0-0≻ M(1)		2.959	2.995	2.933	2.945	2,960	2.913	2,908
0(1) 0(1)								
0(1) - 0(1)		2./52(9)	2.725	2.678(8)	2.621	2.769	2.758(8)	2.741(3)
0(1) - 0(2)	x2	2.819(7)	2.865	2.764(4)	2.639	2.836	2,811(5)	2.815(2)
0(1) - 0(2)	x2	3.037(8)	3.076	3.025(6)	2.805	3.057	3.032(6)	3.037(3)
0(1) - 0(4)	x2	3.024(7)	3.134	2.928(5)	2.749	3.009	3.016(5)	3.006(2)
$0(2^{-})-0(4^{-})$	x 2	2.814(7)	2.852	2.935(5)	2.815	2.863	3,076(5)	2.982(3)
0(2°)-0(4°)	x 2	3.090(7)	3.188	2.869(6)	2.693	3.040	2.869(7)	2.904(3)
0(4)-0(4)		2.964(12)	2.960	2.975(8)	2.852	2.991	3.024(9)	2,970(3)
<0−0> M(2)		2.940	2.993	2.891	2.740	2.948	2.949	2.922
o(1 ^u) o(1 ^d)								
0(1) - 0(1)	XZ	2.751(9)	2.725	2.6/8(8)	2.621	2.769	2.758(8)	2.741(3)
0(1) - 0(1)	x2	3.1/1(9)	3.245	3.195(7)	3.289	3.130	3.085(6)	3.104(2)
0(1) - 0(3)	X 4	2.789(14)	2.831	2.745(5)	2.804	2.783	2.719(5)	2.765(3)
0(1) - 0(3)	X 4	3.102(15)	3.132	3.115	<u>3.100</u>	3.083	<u>3.063(7)</u>	<u>3.064(3)</u>
<0−0> M(3)		2.951	2.983	2.932	2.953	2.939	2.901	2.892
0(2)-0(2)		2.938	2.952	2.908(8)	3.026	2.919	2.885(9)	2.867(3)
0(2,)-0(4,)	x 2	2.814	2.852	2.935(5)	2.815	2.863	3.076(5)	2.982(3)
$0(2^{u}_{1}) - 0(4^{u}_{1})$	x 2	2.996	3.001	3.131(6)	3.258	3.020	3.212(7)	3.133(3)
$0(2^{u}_{}) - 0(5^{u}_{})$	x 2	3.741	3.859	3.494(5)	3.590	3.738	3.726(5)	3.626
$0(4^{u}) - 0(5^{u})$	x 2	3.273	3.297	3.375(5)	3.351	3.350	3.567(5)	3,424
$0(4^{u}_{}) - 0(6^{u}_{})$	x 2	2.562	2.537	2.569(6)	2,587	2.542	2.590(6)	2,560(2)
$0(5^{u}) - 0(6^{d})$	x 2	3.125	3.225	3.027(5)	3.019	3.133	3.162(5)	3.085
$0(5^{u}) - 0(6^{u})$	x 2	2.638	2.682	2.682(7)	2.646	2.629	2.634(6)	2.602
0(6)-0(6)		3.074	3.078	3,530(8)	3,350	3.094	3.578(8)	3.426(3)
(0-0) M(4)		3.019	3.059	3.053	3.057	3,035	3,150	3 070
·······						<u></u>	<u></u>	3.070

		(34)	(35)	(36)	(37)	(38)	(39)	(40)
0(1)~0(5)		2.695(8)	2.702(9)	2.680(4)	2.685(5)	2.789(4)	2.789(5)	2.785(12)
0(1) - 0(6)		2.661(9)	2.662(9)	2.664(5)	2.673(5)	2.747(4)	2.768(6)	2.722(10)
0(1) - 0(7)		2.663(8)	2.655(9)	2.651(5)	2.667(5)	2.750(4)	2.746(5)	2.750(13)
0(5) - 0(6)		2.654(10)	2.633(11)	2.578(5)	2.621(6)	2.694(4)	2,703(6)	2.697(13)
0(5) - 0(7)		2 570(6)	2.000(11)	2.570(5)	2.658(4)	2.004(4) 2.607(3)	2.706(4)	2,697(9)
0(3) = 0(7)		2.570(0)	2.332(7)	2+041(4)	2.030(4)	2.097(3)	2.700(4)	2.007(0)
		2.022(0)	2.02/(0)	$\frac{2.047(4)}{2.047(4)}$	2.030(3)	2.729(4)	2.724(0)	2 722
		2.044	2.043	2.044	2.001	2.734	2.730	2.133
0(2)-0(4)		2.735(8)	2.725(8)	2.732(4)	2.723(5)	2.762(3)	2.768(5)	2.790(12)
0(2) - 0(5)		2.684(9)	2.687(10)	2.666(5)	2.666(5)	2.665(3)	2.688(5)	2.642(10)
0(2) - 0(6)		2.673(8)	2.676(9)	2.652(4)	2.681(5)	2.683(3)	2.692(5)	2.679(12)
0(4) - 0(5)		2.674(7)	2.647(9)	2.642(4)	2.650(5)	2.657(4)	2.646(6)	2.656(12)
0(4) - 0(6)		2 594(7)	2 579(9)	2 543(4)	2.551(5)	2.567(4)	2.579(5)	2,549(11)
0(5) - 0(6)		2 633(11)	2.575(3)	$2 \cdot 3 + 3 (+)$ 2 715(5)	2,331(3) 2,711(6)	2.675(4)	2.680(6)	2.658(13)
Z0_0\ m(2)		2.033(11)	2 663	2 659	2.62	2 668	2.676	2.662
1 (2)		2.000	2.005	2.030	2.005	2.000	2.070	2.002
$0(1^{u}_{}) - 0(2^{d}_{})$	x 2	2,803(6)	2.831(7)	2.818(4)	2.865(5)	2.782(4)	2.779(5)	2.721
$0(1^{u}) - 0(2^{u})$	x2	3.059(10)	3.069(12)	3.064(5)	3.102(5)	3.125(3)	3.111(6)	3.059
$0(1^{u}) - 0(3^{u})$	x2	2.720(6)	2.721(8)	2.694(4)	2.826(6)	2.753(4)	2.759(6)	2.660
$0(1^{u}) - 0(3^{u})$	x 2	3.020(10)	3.048(11)	3.040(5)	3.088(6(3.085(4)	3.071(7)	3.059
0(2) - 0(2)		2.896(12)	2.898(14)	2.867(6)	2.915(7)	2.940(5)	2.920(7)	2.889
0(2) - 0(3)	x 2	3,038(5)	3.048(6)	3.069(3)	3,149(3)	3.138(2)	3.129(3)	3.077
0(3) - 0(3)		2.602(13)	2.615(15)	2.600(7)	2.728(10)	2.664(6)	2.649(11)	2.618
(0-0) M(1)		2,898	2.912	2,903	2.973	2.948	2,939	2.888
40 07 m(1)		21070	2	2.703				
0(1) - 0(1),		2.801(12)	2.796(13)	2.757(6)	2.741(7)	2.654(5)	2.667(8)	2.739
$0(1^{u}) - 0(2^{u})$	x 2	2.803(6)	2.831(7)	2.818(4)	2.865(5)	2.782(4)	2.779(5)	2.721
$0(1^{u}) - 0(2^{u})$	x 2	3.007(10)	3.017(12)	3.036(5)	3.051(5)	3.020(3)	3.030(6)	3.043
0(1) - 1(4)	×2	2,995(7)	3,029(8)	3.015(4)	3.034(5)	2,908(3)	2,926(5)	2.922
$0(2^{u}) - 0(4^{d})$	x2	3.016(8)	3.043(9)	2,984(5)	3.003(5)	2.932(3)	2.945(5)	2.918
$0(2^{u}) - 0(4^{u})$	v 2	2,892(9)	2,914(10)	2.914(5)	2,943(5)	2.826(4)	2.859(6)	2.881
0(4) = 0(4)	A4	3.061(12)	3.052(13)	2 007(7)	2.977(8)	2,936(5)	2,959(7)	2.991
(4) (4)		2 9/1	2 960	2 0/1	2 050	2 877	2,892	2.892
(0-07 M(2)		<u> </u>	2.900	2.941	2.335	2.077	2.072	<u></u>
$0(1^{u}_{}) - 0(1^{d}_{})$	x 2	2.801(12)	2.796(13)	2.757(6)	2.741(7)	2.654(5)	2.667(8)	2.739
$0(1^{u}_{}) - 0(1^{u}_{})$	x 2	3.051(9)	3.049(12)	3.049(6)	3.183(7)	3.193(5)	3.190(7)	3.142
$0(1^{u}) - 0(3^{u})$	x 4	2.720(6)	2,720(8)	2.694(4)	2.825(6)	2.753(4)	2.759(6)	2.660
$0(1^{u}) - 0(3^{u})$	x 4	3:068(10)	3.048(11)	3.054(5)	3.098(6)	3.114(4)	3.129(7)	3.110
<0-0> M(3)		2.905	2.897	2.884	2.962	2.930	2.939	2.904
0(2) 0(2)		2,005(12)	2 000(1/)	2.067(6)	2 015 (7)	2.040(5)	2 020(5)	2 990
	•	2.895(12)	2.898(14)	2.80/(0)	2.913(7)	2.940(3)	2.920(3)	2.007
0(2) - 0(4)	x 2	3.010(8)	3.043(9)	2.984(5)	3.003(5)	2.932(3)	2.943(3)	2.710
$0(2) - 0(4^{-})$	x2	3.157(9)	3.167(10)	3.113(2)	3.128(6)	5.143(4)	3.139(0)	3.133
$0(2^{-})-0(5^{-})$	x 2	3.728(7)	3.725(8)	3.619(5)	3.646	3.451(3)	3.463(5)	3.333
$0(4^{-})-0(5^{-})$	x2	3.488(7)	3.467(9)	3.414(5)	3.428	3.364(3)	3.359(5)	3.3/0
0(4) - 0(6)	x 2	2.594(7)	2.597(9)	2.543(4)	2.551(5)	2.567(4)	2.579(5)	2.548
0(5,)-0(6,)	x 2	3.066(6)	3.074(8)	3.072(3)	3.131	3.014(3)	3.013(5)	2.989
0(5)-0(6)	x 2	2.654(11)	2.633(11)	2.578(5)	2.621	2.694(4)	2.703(6)	2.698
0(6)-0(6)		3.418(11)	3.394(12)	3.386(6)	3.437(8)	3.586(5)	<u>3.561(8)</u>	3.468
<0-0> M(4)		3.107	3.107	3.057	3.086	3.054	3.055	3.046
						کردی خد عد بعد		

		(41)	(42)	(43)	(44)	(45)	(46)	(48)	(49)	(50)	(51)
0(1)-0(5)		2.657(6)	2.711	2.674	2,750	2,725	2,721	2,751	2 715	2 720	2 751
0(1)-0(6)		2.663(6)	2.722	2.650	2.780	2.710	2.738	2.732	2 763	2 756	2 791
0(1)-0(7)		2.654(6)	2.672	2.622	2.738	2.695	2.702	2.711	2 761	2.733	2.701
0(5)-0(6)		2,618(6)	2.652	2.636	2.676	2.678	2.665	2.698	2.697	2.733	2.734
0(5) - 0(7)		2.620(5)	2.659	2.649	2.711	2 694	2 711	2.090	2.027	2.000	2.703
0(6) - 0(7)		2.638(6)	2.680	2 647	2 677	2.004	2 6 9 9	2.735	2.713	2.004	2.000
< 0−0> T(1)		2.641	2 683	2 646	2.077	2.007	2.000	2.744	2.701	2.099	2.752
			2.005	2.040	2.722	2.095	2.704	2.729	2.725	2./12	2.748
0(2)-0(4)		2.741(6)	2.752	2.705	2.665	2,741	2.730	2.761	2.737	2.738	2.672
0(2) - 0(5)		2.645(6)	2.641	2.656	2.647	2.681	2.666	2.643	2.661	2.660	2.664
0(2)-0(6)		2.672(6)	2.650	2.651	2.664	2.660	2.670	2.657	2.643	2.697	2.634
0(4)-0(5)		2.656(8)	2.638	2.629	2.640	2.647	2.634	2.643	2.661	2.609	2.676
0(4)-0(6)		2.538(7)	2.597	2.564	2.598	2.574	2.586	2.553	2.602	2.614	2.583
0(5)-0(6)		2.699(6)	2.688	2.680	2.703	2.680	2.699	2.682	2.673	2.709	2.620
<0−0> T(2)		2.658	2.661	2.648	2.653	2.664	2.664	2.657	2.663	2.671	2.642
$0(1^{u}) - 0(2^{d})$	x 2	2,821	2 769	2 8/7	2 884	2 804	2 790	2 607	2 72/	2 701	2 0 2 0
$0(1^{u}) - 0(2^{u})$	x2	3,087	3 153	3 001	2.004	2.004	2.700	2.07/	2 1 0 2	2.701	2.030
$0(1^{u}) - 0(3^{d})$	*2	2 770	2 782	2 700	J.17J	3.TTO	3.1/3	3.200	2.103	3.240	3.200
$0(1^{u}) - 0(3^{u})$	w2	3 067	3 1/02	2.790	2.02/	2.003	2.104	2.021	2.810	2.781	2.82/
0(2) - 0(2)	~~	2 006	2 065	2 002	3.000	2.110	3.130	3.143	3.189	3.140	3.212
0(2) - 0(3)	~ 2	3 108	2.303	2.000	2,000	2.920	2.903	3.033	2.9/0	3.059	3.053
0(3) - 0(3)	A L	3.100	2 712	2.110	3.200	3.143	3.134	3.1/5	3.181	3.1/6	3.182
$\sqrt{0} - 0 \sqrt{3}$		2.752	2.713	2.700	2.789	2.735	2.738	2.701	2.736	2.649	2.732
(0-0/ M(1)		2.949	2.961	2.951	3.029	2.968	2.992	2.986	2.993	2.983	3.025
$0(1) - 0(1)_{d}$		2.764	2.605	2.749	2.578	2.691	2.605	2.601	2.545	2.554	2.625
$0(1^{-}) - 0(2^{-})$	x 2	2.821	2.769	2.847	2.884	2.804	2.788	2.697	2.734	2.701	2.838
0(1°)-0(2°)	x 2	3.058	2.941	3.041	3.035	3.024	2.950	2,901	2.933	2.883	2,960
$0(1) - 0(4)_{4}$	x 2	3.010	2.865	3.021	2.989	2.957	2.907	2.786	2,803	2.845	2.899
$0(2^{u}) - 0(4^{u})$	x 2	2.862	2.925	2.999	3.046	2.968	2.945	2.819	2.876	2.850	3.036
0(2 [°])-0(4 [°])	x 2	3.034	2.790	2.901	2.858	2.869	2.816	2.728	2.768	2.661	2.849
0(4)-0(4)		2.978	2.928	2.988	2.998	2,954	2.946	2.864	2,910	2.811	3,104
<0-0≻ M(2)		2.943	2.843	2.946	2,933	2,907	2.864	2.777	2,807	2.770	2,908
o (ru) o (rd)	_		Contraction of the local data								<u>====</u>
0(1) - 0(1)	x 2	2./64	2.605	2.749	2.578	2.691	2.605	2.601	2.545	2.554	2.625
$0(1^{-})-0(1^{-})$	x 2	3.120	3.195	3.117	3.225	3.216	3.268	3.379	3.365	3.314	3.326
$0(1^{-})-0(3^{-})$	x 4	2.779	2.782	2.790	2.827	2.805	2.782	2.821	2.816	2.781	2.827
$0(1^{-})-0(3^{-})$	x 4	3.090	3.063	3.071	3.073	3.105	3.046	3.165	3.110	3.129	3.090
<0−0> M(3)		2.937	2.915	2.931	2.934	2.955	2.922	2.992	2.960	2.948	2.964
0(2) - 0(2).		2,906	2,965	2.889	3,009	2,923	2.964	3,053	2,967	3,059	3,053
$0(2^{u}) - 0(4^{d})$	x 2	2.862	2,925	3.000	3.045	2.968	2.946	2.819	2.876	2.850	3.036
$0(2^{u}) - 0(4^{u})$	x 2	3.024	3.161	3,136	3.158	3,159	3,181	3,201	3,156	3,290	3,171
$0(2^{u}) - 0(5^{u})$	x2	3.743	3.487	3.615	3,540	3,555	3,502	3 370	3.445	3,407	3,572
$0(4^{u}) - 0(5^{d})$	x2	3,353	3.377	3.431	3 457	3 405	3 383	3 28/	2 2 2 1	3.317	3 464
$0(4^{u}) - 0(6^{u})$	×2	2.543	2.597	2 562	2 596	2.403	2 584	2.204	2.201	2 61/	2.404
$0(5^{u}) - 0(6^{d})$	x2	3,134	3.035	3 112	3 1 2 1	3 000	2.000	2 003	2.002	2.014	2.003
$0(5^{u}) - 0(6^{u})$	x2	2.617	2.652	2 636	2.141 2.676	2 672.	2.020	2 605	2.002	2.014 2.660	2.001 2.702
0(6) - 0(6)	an <u>Co</u>	3.096	3 /00	2.030	2 5 2 1	2 550	2.003	2.090	2.02/	2.000	2.703
$\langle 0-0\rangle M(4)$		3 025	3 050	3 00F	3.331 3.100	2.00/	3.313	3.3/9	3.3/4	3.344	3.082
			5.050	3.085	3.100	5.084	3.071	2.03T	3.002	3.038	3.120

		(52)	(53a)	(53b)	(54)	(55)
0(1)-0(5)		2.800	2.676(3)	2.674(4)	2.748(5)	2,803(5)
0(1)-0(6)		2.748	2.664(3)	2.661(4)	2.741(9)	2.770(9)
0(1)-0(7)		2.780	2.649(3)	2.657(5)	2.750(6)	2.755(6)
0(5)-0(6)		2.680	2.603(3)	2.601(4)	2.677(5)	2.688(6)
0(5)-0(7)		2.690	2.635(3)	2.633(4)	2.730(4)	2.707(4)
0(6) - 0(7)		2.721	2.638(3)	2.640(4)	2.745(5)	2.731(5)
<0-0> T(1)		2.737	2.644	2.644	2.732	2.742
0(2)-0(4)		2.830	2.736(3)	2.735(4)	2,763(5)	2.782(5)
0(2) - 0(5)		2.678	2.667(3)	2.668(4)	2.673(8)	2.688(9)
0(2) - 0(6)		2.740	2.668(3)	2.666(4)	2.679(5)	2.683(5)
0(4) - 0(5)		2.703	2.648(3)	2,655(5)	2.655(5)	2.667(5)
0(4) - 0(6)		2.610	2.554(3)	2,553(5)	2.563(5)	2.579(5)
0(5) - 0(6)		2.706	2.704(3)	2.713(4)	2.704 (5)	2.684(6)
<0−0> T(2)		2.711	2.663	2.668	2.673	2.680
$0(1^{u}) - 0(2^{d})$	x 2	2.747	2,829(3)	2.846(4)	2.733(5)	2.764(5)
$0(1^{u}) - 0(2^{u})$	x2	3.100	3.073(3)	3.077(4)	3.178(5)	3.079(6)
$0(1^{u}) - 0(3^{d})$	x2	2,683	2.785(3)	2.794(5)	2.844(5)	2.718(5)
$0(1^{u}) - 0(3^{u})$	x 2	3,157	3.066(4)	3.083(5)	3,153(6)	3.064(6)
0(2) - 0(2)	AL	2,912	2.881(4)	2.903(6)	3.007(11)	2.896(10)
0(2) - 0(3)	v 2	3.069	3 103(2)	3 117(3)	3,201(3)	3.097(4)
0(3) - 0(3)	A4	2.812	2,727(6)	2756(10)	2.738(11)	2.666(13)
<0-0> M(1)		2.936	2.923	2.940	2.998	2.917
0(1) 0(1)		0. 71 7	0.750(()	2 7(7(())	2 (17(10)	2 (80(10)
	. 0	2.717	2.752(4)	2.767(6)	2.61/(10)	2.009(10)
$0(1^{u}) - 0(2^{u})$	xz	2.747	2.829(3)	2.840(4)	2.733(3)	2.764(5)
0(1) - 0(2)	XZ	3.011	3.045(3)	3.057(4)	2.949(5)	3.049(6)
0(1) = 0(4)	XZ	2.925	3.032(3)	3.037(4)	2.022(5)	2.933(3)
0(2) - 0(4)	XZ	2.910	3.008(3)	3.031(4)	2.847(5)	2.908(0)
0(2) - 0(4)	XZ	2.928	2.915(3)	2.930(4)	2.776(3)	2.001(3)
0(4) - 0(4)		3.070	$\frac{2.908(4)}{2.025}$	$\frac{2.9/2(7)}{2.051}$	$\frac{2.022(11)}{2.012}$	$\frac{2.994(11)}{2.005}$
(0-07 M(2)		2.903	2.935	2.931	2.013	2.905
$0(1^{u}_{})-0(1^{u}_{})$	x 2	2.717	2.752(4)	2.767(6)	2.617(10)	2.689(10)
$0(1^{u}) - 0(1^{u})$	x 2	3.116	3.125(4)	3.141(6)	3.390(7)	3.142(7)
$0(1^{u}_{}) - 0(3^{u}_{})$	x 4	2.683	2.785(3)	2.794(5)	2.844(5)	2.718(5)
$0(1^{u}) - 0(3^{u})$	x 4	3.001	3.073(4)	3.075(5)	3.167(6)	3.107(6)
<0-0> M(3)		2.867	2.906	2.916	3.004	2.914
0(2)-0(2)		2.912	2.881(4)	2.903(6)	3.007(11)	2.896(10)
$0(2^{u})-0(4^{d})$	x 2	2.910	3.008 (3)	3.031(4)	2.847(5)	2.958(5)
$0(2^{u}) - 0(4^{u})$	x 2	3.090	3.153(3)	3.167(4)	3.170(5)	3.128(5)
$0(2^{u}) - 0(5^{u})$	x 2	3.508	3.677	3.707	3.407(5)	3.504(5)
$0(4^{\rm u}) - 0(5^{\rm d})$	x 2	3.373	3.453	3.473	3.314(5)	3.383(6)
$0(4^{u}) - 0(6^{u})$	x 2	2.610	2.554(3)	2.553(5)	2.563(5)	2.579(5)
$0(5^{u}) - 0(6^{d})$	x2	3.005	3.126	3.160	3.026(8)	2.994(8)
$0(5^{u}) - 0(6^{u})$	x 2	2.680	2.603	2.601	2.677(5)	2.688(6)
0(6)-0(6)		3.462	3.433(4)	3.449(6)	3.547(8)	3.519(8)
<0-0≻ M(4)		3.045	3.090	3.109	3.035	3.055

	_							_
		(56a)	(56Ъ)	(57)	(58)	(59)	(60)	(61)
0(1) - 0(5)		2,697(2)	2 696(2)	2 673(4)	2 766(4)	2 750/21	2 716	0 706
0(1) - 0(6)		2 682 (2)	2.090(2)	2.073(4)	2.700(4)	2.750(3)	2./10	2.736
0(1) - 0(7)		2.002(2)	2.000(2)	2.007(0)	2.1/2(8)	2.750(3)	2.753	2.121
0(1) - 0(7)		2.0/1(3)	2.664(2)	2.668(4)	2.767(4)	2.755(4)	2.722	2.698
0(5) - 0(6)		2.618(3)	2.620(2)	2.637(4)	2.710(4)	2.719(3)	2.664	2.678
0(5)-0(7)		2.632(3)	2.632(1)	2.629(3)	2.698(3)	2.688(3)	2.689	2.682
0(6)-0(7)		2.652(2)	2.644(2)	2.645(4)	2.752(4)	2.720(3)	2.695	2.737
⟨ 0-0⟩ T(1)		2.659	2.656	2,653	2.744	2.732	2 707	2 710
• • • • •						2.752	2.101	2.710
0(2)-0(4)		2.742(2)	2.740(2)	2,737(4)	2,798(4)	2,738(3)	2.776	2.747
0(2)-0(5)		2.675(2)	2.675(2)	2.646(7)	2,707(8)	2.676(3)	2.654	2 690
0(2) - 0(6)		2.663(2)	2.670(2)	2.672(5)	2 709(4)	2.677(3)	2 676	2 683
0(4) - 0(5)		2.656(3)	2 656(2)	2.072(3)	2.705(4)	2.077(3)	2.070	2.005
0(4) - 0(6)		2.000(0)	2.030(2)	2.000(4)	2.003(4)	2.003(3)	2.0/1	2.647
0(5) - 0(6)		2.502(2)	2.300(2)	2.551(4)	2.390(4)	2.5/5(3)	2.604	2.623
		2.090(3)	2.697(2)	2.693(4)	2.707(4)	2.672(3)	2.685	<u>2.706</u>
$\langle 0 - 0 \rangle T(2)$		2.666	2.667	2.659	2.699	2.667	2.678	2.683
$a(1^{u}) a(2^{d})$	1		0.017(0)					
0(1) - 0(2)	XZ	2.817(2)	2.81/(2)	2.840(4)	2.709(4)	2.786(3)	2.748	2.809
0(1) - 0(2)	x2	3.06/(2)	3.072(2)	3.104(4)	3.200(4)	3.147(3)	3.120	3.148
0(1) - 0(3)	x 2	2.747(3)	2.756(2)	2.788(4)	2.823(4)	2.824(3)	2.775	2.811
0(1~)-0(3~)	x2	3.057(3)	3.056(2)	3.081(4)	3.143(4)	3.120(4)	3.129	3.141
0(2)-0(2)		2.884(3)	2.884(3)	2,930(9)	3.024(10)	3,005(4)	2,970	2,915
0(2)-0(3)	x2	3.081(2)	3.082(1)	3,125(3)	3,188(3)	3.168(2)	3 1 28	3 1/9
0(3) - 0(3)		2.685(5)	2.697(4)	2 756(9)	2 600(11)	2 707(6)	3 701	2 720
(0-0) M(1)		2 926	2 0 2 9	2.750(5)	2.033(11)	2.707(0)	2.701	2.730
		2:520	2.920	2.904	2.909	2.984	2.950	2.980
0(1) - 0(1)		2.752(3)	2.753(2)	2.774(9)	2,622(9)	2.685(4)	2.663	2.631
$0(1^{u}) - 0(2^{u})$	x 2	2.817(2)	2.817(2)	2.840(4)	2.709(4)	2,786(3)	2.748	2.809
$0(1^{u}) - 0(2^{u})$	x 2	3.043(2)	3.040(2)	3,060(4)	$2 q_{2}(4)$	3 007(3)	2 072	2.009
0(1)-0(4)		3 007(2)	3 010(2)	2 022(4)	2 7 7 7 (4)	2.007(3)	2.912	2.900
$0(2^{6}) - 0(4^{4})$	~2	3 005 (2)	3.005(2)	3.022(4)	2.797(4)	2.697(3)	2.848	2.892
$0(2^{u}) - 0(4^{u})$	2	3.003(2)	3.003(2)	2.862(4)	2.822(4)	2.963(3)	2.918	2.926
	ХZ	2,909(2)	2.906(2)	3.046(4)	2.757(4)	2.842(3)	2.781	2.849
0(4) - 0(4)		2.992(4)	<u>2,999(3)</u>	<u>2.984(9)</u>	<u>2.890(9)</u>	<u>2.986(5)</u>	2.891	2.969
(0-0) M(2)		2.942	2.942	<u>2.952</u>	2.797	2.888	2.819	2.853
orin original		0 750 (0)						
	x2	2.752(3)	2.753(2)	2,774(9)	2.622(9)	2.685(4)	2.663	2.631
0(1) - 0(1)	x 2	3.097(3)	3.093(2)	3.133(5)	3.370(5)	3.306(4)	3.280	3.226
$0(1^{-})-0(3^{-})$	x 4	2.747(3)	2.756(2)	2.788(4)	2.823(4)	2.824(3)	2.775	2.811
0(1")-0(3")	x 4	3.069(3)	3.068(2)	3.090(4)	3.186(4)	3.172(4)	3.115	3.070
⟨0−0⟩ м(3)		2.914	2.916	2.944	3.002	2,997	2.954	2.937
0(2) - 0(2)		2.884(3)	2.884(3)	2.930(9)	3.024(10)	3.005(4)	2,970	2,915
$0(2^{u}) - 0(4^{u})$	x 2	3.005(2)	3.005(2)	2.862(4)	2.822(4)	2.963(3)	2.918	2,926
$0(2^{u}) - 0(4^{u})$	x 2	3.144(2)	3,147(2)	3.023(4)	3 101 (4)	3 180(3)	2 185	2 110
$0(2^{u}) - 0(5^{u})$	x2	3.638(3)	3 6/0(2)	3 737(4)	2 200(/)	3 E33(3)	3.107	3 770 2.TTO
$0(4^{u}) = 0(5^{d})$		3 444721	3 140(2)	J./J/(4) 2 227/E/	3.300(4)	3.333(3)	3.330	3.440
$0(4^{u}) - 0(5^{u})$	A2 	3+444(3)	J.448(2)	3.33/(3)	3.31/(4)	3.420(3)	3.415	3.359
	xZ	2.302(2)	2.566(2)	2.551(4)	2.590(4)	2.575(3)	2.604	2.623
	x 2	3.082(3)	3.090(3)	3.128(9)	3.017(7)	3.081(3)	3.037	3.051
$0(5) - 0(6^{-1})$	x 2	2.618(3)	2.620(3)	2.637(4)	2.710(4)	2.719(3)	2.664	2.678
U(6)-O(6)		<u>3.457(3)</u>	3.455(3)	3.107(6)	3.615(7)	3,563(5)	3.475	3.559
人0-0> M(4)		3.084	3.086	3.037	3.043	3.094	3.072	3,053
·								

		(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)
0(1)-0(5)		2.654	2.724	2.654	2.616	2.630	2.672(5)	2.667(4)	2.646(3)
0(1) - 0(6)		2.647	2.708	2,790	2.674	2.783	2.677(5)	2.684(4)	2.665(3)
0(1) - 0(7)		2.628	2,699	2.680	2.657	2.653	2,675(5)	2.686(5)	2.657(4)
0(5) - 0(6)		2.657	2.644	2.714	2.713	2.703	2,700(5)	2,670(4)	2.651(4)
0(5) - 0(7)		2.587	2.665	2.648	2.656	2.627	2.600(4)	2.610(4)	2.631(3)
0(6) - 0(7)		2.625	2 698	2 630	2 588	2 573	2.596(5)	2.610(4)	2622(3)
$20-0$ $\pi(1)$		2 633	2 600	2 701	2 651	2 662	$\frac{2.550(5)}{2.653}$	$\frac{2.017(4)}{2.656}$	2 6/6
		2.035	2.090	2.701	2.001	2.002	2.000	2.000	2.040
0(2)-0(4)		2.783	2.753	2.676	2.706	2.685	2.734(5)	2.734(4)	2.748(3)
0(2)-0(5)		2.707	2.702	2.578	2.651	2.648	2.673(5)	2.665(4)	2.664(3)
0(2)-0(6)		2.653	2.667	2.574	2.648	2.651	2.678(5)	2.672(4)	2.652(3)
0(4)-0(5)		2.651	2.667	2.651	2.589	2.620	2.681(5)	2.666(4)	2.653(3)
0(4)-0(6)		2.603	2.579	2.734	2.687	2.711	2.598(5)	2.588(4)	2.591(4)
0(5) - 0(6)		2.621	2.717	2.633	2.651	2.606	2.647(5)	2.666(4)	2.680(4)
(0-0) T(2)		2.670	2,680	2.641	2.655	2.654	2,669	2.665	2.665
· · · · · · · ·									
$0(1^{u}) - 0(2^{u})$	x 2	2.668	2.794	2.739	2.855	2.812	2.813(5)	2.759(4)	2.649(3)
$0(1^{-}) - 0(2^{-})$	x 2	3.161	3.062	3.217	3.196	3.349	3.114(5)	3.173(5)	3.204(3)
$0(1^{-})-0(3^{-})$	x 2	2.750	2.775	2.872	2.908	2.954	2.852(5)	2.849(4)	2.844(4)
$0(1^{\circ}) - 0(3^{\circ})$	x 2	3.250	3.048	3.298	3.250	3.226	3.134(6)	3.148(5)	3.169(4)
0(2)-0(2)		2.806	2.855	3.012	2.983	2.989	3.009(7)	3.018(6)	3.045(5)
0(2)-0(3)	x2	3.066	3.112	3.066	3.101	3.060	3.134(4)	3.107(3)	3.091(2)
0(3)-0(3)		2.688	2.693	2.997	2.618	2.803	2.678(9)	2.735(8)	2.709(7)
<0-0>M(1)		2.940	2.928	3.033	2.988	3.050	2.982	2.985	2.973
0(1) - 0(1)		2.523	2 707	2 1.24	2 641	2 / 23	2 714(7)	2,678(6)	2.621(5)
$0(1^{4}) - 0(2^{4})$.	2.525	2 70/	2.720	2.041	2 9 2 1 2	$2 \cdot 7 \pm 7(7)$	2.070(0)	2.021(3)
$0(1^{u}) - 0(2^{u})$	AZ 0	2.000	2.174	2.137	2.000	2.014	2.013(3)	$2 \cdot 7 \cdot 5 \cdot 5$	2.049(3)
0(1) - 0(2)	D	2.029	2.050	2.04/	2.040	2.724	2.930(3)	2.304(4)	2.003(3)
	x2	2.000	2.937	2.012	2.0/2	2.043	2.929(3)	2.004(4)	$2 \cdot 7 + 2 (4)$
0(2) = 0(4)	XZ	2.033	2.948	3.092	3.09/	3.030	3.030(5)	2.955(4)	2.011(3)
0(2) = 0(4)	x2	2.848	2.919	2.703	2.814	2.667	2.854(5)	2.807(4)	2.699(3)
0(4) - 0(4)		$\frac{2.8/1}{2.8/1}$	2.981	3.033	3.009	3.069	$\frac{3.025(7)}{2}$	2.965(6)	2.846(5)
ζ0-07 M(2)		2.724	2.920	2.820	2.885	2.804	2.909	2.855	2.740
$0(1^{u}) - 0(1^{d})$	x 2	2.523	2.707	2.424	2.641	2.423	2.714(7)	2.678(6)	2.621(5)
$0(1^{u}) - 0(1^{u})$	x 2	3.283	3.153	3.282	3.367	3.144	3.305(7)	3.290(6)	3.378(5)
$0(1^{u}) - 0(3^{u})$	x 4	2.750	2.775	2.872	2.908	2.954	2.852(2)	2.849(4)	2.844(4)
$0(1^{u}) - 0(3^{u})$	x 4	2,960	3.112	2,982	3.066	2,930	3.139(6)	3.112(5)	3.129(4)
∠0-0≻ Μ(3)		2.871	2.939	2.902	2.993	2.889	3.000	2.983	2.991
0(0) 0(0)		0.000	0.055				0.000(7)		
0(2) - 0(2)	•	2.806	2.855	3.012	2.983	2.989	3.009(7)	3.018(6)	3.045(5)
0(2) - 0(4)	x 2	2.635	2.948	3.092	3.097	3.030	3.030(5)	2.953(4)	2.811(3)
$0(2^{-}) - 0(4^{-})$	x2	2.973	3.085	3.300	3.277	3.293	3.217(5)	3.235(4)	3.263(3)
$0(2) - 0(5^{-})$	x2	3.645	3.488	3.740	3.745	3.676	3.733(5)	3./14(4)	3.602(4)
$U(4^{\circ}) - U(5^{\circ})$	x2	3.285	3.368	3.658	3.556	3.582	3.567(5)	3.484(4)	3.359(4)
$0(4^{\circ}) - 0(6^{\circ})$	x 2	2.603	2.579	2.734	2.687	2.711	2.598(5)	2.588(4)	2.591(4)
$0(5^{-})-0(6^{-})$	x 2	3.058	3.050	3.227	3.260	3.158	3.264(5)	3.163(4)	3.049(3)
0(5)-0(6)	x 2	2.657	2.644	2.714	2.713	2.703	2.700(5)	2.670(4)	2.651(4)
0(6)-0(6)		3.058	3.548	3.499	3.542	3.500	3.602(7)	3.433(6)	3.369(5)
<0−0> M(4)		2.974	<u>3.045</u>	3.215	3.223	<u>3.187</u>	3.177	3.129	3.067

		(70)	(71)	(72)	(73)	(74)
0(1) - 0(5)		2 7/2	2 750	3 756	0 756(5)	0 701 (0)
0(1) - 0(6)		2 7 7 2 4	2.730	2.730	2.750(5)	2.791(8)
0(1) - 0(0)		2.724	2.741	2.738	2.742(5)	2.7/3(7)
0(1) - 0(7)		2.726	2.740	2./39	2.754(6)	2.741(8)
0(5) - 0(6)		2.682	2.694	2.694	2.682(6)	2.693(9)
0(5) - 0(7)		2.674	2.677	2.666	2.688(4)	2.702(6)
0(6)-0(7)		2.716	2.727	2.730	2.737(5)	2.734(8)
< 0-0> T(1)		2.711	2.723	2.721	2.727	2.739
0(2)-0(4)		2.758	2.755	2.746	2.754(5)	2 763(7)
0(2) - 0(5)		2.671	2.673	2 669	2.671(5)	2688(7)
0(2) - 0(6)		2.663	2 668	2.005	2.071(5)	2.000(7)
0(4) - 0(5)		2 6/8	2.000	2.007	2.072(J)	2.003(9)
0(4) - 0(6)		2.040	2.049	2.049	2.001(0)	2.002(8)
0(5) - 0(6)		2.570	2.370	2.576	2.5/3(5)	2.5/0(/)
		2.080	2.6/3	2.670	2.689(6)	2.701(9)
1(2)		2.666	2.666	2.663	2.668	2.678
hand.		_				
$U(1) - 0(2^{\circ})$	x 2	2.757	2.766	2.783	2.772(5)	2.749(8)
$0(1^{u}) - 0(2^{u})$	x 2	3.123	3.124	3.117	3.133(6)	3.104(8)
$0(1^{u}) - 0(3^{d})$	x 2	2.769	2.760	2.752	2.769(5)	2.718(9)
0(1 ^u)-0(3 ^u)	x 2	3.092	3.088	3.079	3.096(6)	3.072(9)
0(2)-0(2)		2.956	2.953	2,948	2,959(7)	2.930(7)
0(2)-0(3)	x 2	3.126	3.130	3,124	3.147(3)	3.116(5)
0(3) - 0(3)		2.680	2.682	2.684	2687(11)	2 651(9)
<0-0> M(1)		2,948	2.948	2.945	2 957	$\frac{2.031(5)}{2.025}$
					2.007	2.523
0(1) - 0(1)		2.666	2.660	2 671	2 651(7)	2 671 (7)
$0(1^{u}) - 0(2^{d})$	x 2	2.757	2 766	2 7 8 3	2.001(7) 2.772(5)	2.071(7)
$0(1^{u}) - 0(2^{u})$		2 982	2 00/	2.705	2.172(3)	2.749(0)
0(1) - 0(4)		2.902	2 9 9 9 4	3.000	2.990(0)	3.037(8)
$0(2^{u}) - 0(4)$		2.000	2.090	2.924	2.909(5)	2.920(7)
$0(2^{-}) - 04^{-})$	×2	2.093	2.904	2.921	2.895(5)	2.935(8)
$0(2^{-})=0(4^{-})$	ХZ	2.83/	2.838	2.862	2.855(5)	2.874(8)
0(4) - 0(4)		$\frac{2.935}{2.935}$	2.949	2.969	<u>2.941(8)</u>	<u>2.995(8)</u>
<0-0 M(2)		2.859	2.867	2.886	2.871	2.891
o contra se o de						
$U(1^{u}) - 0(1^{u})$	x 2	2.666	2.660	2.671	2.651(7)	2.671(7)
$0(1^{u}) - 0(1^{u})$	x 2	3.227	3.209	3.176	3.227(8)	3.180(7)
0(1 ^u)-0(3 ^d)	x 4	2.769	2.760	2.752	2.769(5)	2.718(9)
0(1 ^u)-0(3 ^u)	x 4	3.114	3.107	3.093	3.112(6)	3,129(9)
<0-0> M(3)		2.943	2.934	2.923	2.940	2,924
0(2)-0(2)		2.956	2,953	2.948	3.147(3)	2,930(7)
$0(2^{u}) - 0(4^{d})$	x 2	2.893	2,904	2,921	2.895(5)	2 935(8)
$0(2^{u}) - 0(4^{u})$	x 2	3.131	3.125	3,112	3,117(5)	3 133(0)
$0(2^{u}) - 0(5^{u})$	x 2	3.454	3,440	3.453	3.436(5)	3 447(7)
$0(4^{u}) - 0(5^{d})$	x 2	3.329	3,336	3 330	3 315(5)	3 359/71
$0(4^{u}) - 0(6^{u})$	x2	2.576	2.550	J.JJJ 9 576	3.JLJ(J) 2.573/51	3.330(7)
$0(5u) - 0(6^{d})$		3 021	2 000	2.000	2.3/3(3)	2.5/0(7)
$0(5^{u}) - 0(6^{u})$	~~ ~?	2.03T	2.020	3.030	3.022(3)	3.013(/)
	л	2.00/	2.094	2.094	2.682(6)	2.693(9)
		3.343	3.309	<u>3.361</u>	3.542(6)	3.554(9)
·0-07 M(4)		5.044	3.046	3.047	3.048	3.049

THE CANADIAN 'MINERALOGIST

		A	PPENDIX B6	. INTERAT	OMIC ANGLE	<u>s (°)</u>		
		(21)	(22)	(24)	(26)	(28)	(29)	(30)
0(1)-T(1)-O(5)		110.4(2)	108,9(2)	111.4(2)	110.0(3)	110.8(2)	113.5(2)	111.9(1)
0(1) - T(1) - 0(6)		109.7(3)	109.6(2)	110.7(2)	110.4(3)	110.3(2)	113.0(2)	111.1(1)
0(1) - T(1) - 0(7)		110.3(3)	110.1(3)	110.9(3)	109.6(4)	110.6(2)	110.3(2)	110.7(1)
0(5) - T(1) - 0(6)		108.9(3)	110.9(2)	106.4(2)	109.7(3)	107.8(2)	108.1(2)	105.8(1)
0(5) - T(1) - 0(7)		108.9(3)	108.5(3)	107.4(3)	109.0(4)	108.5(2)	105.6(3)	108.5(1)
$0(6) - \tau(1) - 0(7)$		108.7(3)	108.9(3)	109.3(3)	108.2(4)	108.9(2)	105.7(3)	108.7(1)
<0-T(1)-0>		109.5	109.5	109.4	109.5	109.5	109.4	109.4
0 (0) m (0) 0 (()			115 0 (0)	11(2(0)	117 5(2)	116 0(2)	110 6(2)	117 2(1)
U(2) - T(2) - U(4)		110.3(2)	115.2(2)	110.3(2)	109 1(3)	100.0(2)	119.4(2)	$109 \ (1)$
0(2) - 1(2) - 0(5)		108.1(2)	108.5(2)	109.3(2)	108.1(3)	100.4(2)	103.4(2)	109.4(1)
0(2) - T(2) - 0(6)		108.5(2)	108.7(2)	108.6(2)	107.4(3)	109.0(2)	110 0(2)	100.2(1)
0(4) - T(2) - 0(5)		109.6(2)	110.9(2)	109.6(2)	109.6(3)	110.4(2)	110.8(2)	109.4(1)
0(4) - T(2) - 0(6)		103.9(3)	103.0(2)	104.0(3)	105.6(3)	102.9(2)	103.9(2)	103.5(1)
0(5) - T(2) - 0(6)		<u>110.3(2)</u>	110.4(2)	<u>108.9(2)</u>	108.2(3)	110.0(2)	104.5(2)	108.6(I)
< 0-T(2)-0 >		109.5	109.5	109.4	109.4	109.4	109.3	109.4
T(1)-0(5)-T(2)		139.7(3)	142.4(3)	134.4(3)	134.7(4)	140.0(2)	135.7(2)	136.5(1)
T(1) - O(6) - T(2)		141.0(3)	142.1(3)	137.6(3)	143.5(4)	140.4(2)	136.1(2)	138.4(1)
T(1)-0(7)-T(1)		142.4(5)	144.8(4)	137.3(4)	147.2(6)	141.0(3)	139.0(3)	139.3(2)
0(5)-0(6)-0(5)		170.2(2)	172.7(3)	163.5(2)	170.8(3)	172.9(2)	169.8(2)	167.6(1)
$0(1^{u}) - M(1) - O(2^{d})$	x 2	84.5	85.0	82.8(2)	78.7(2)	85.1(1)	86.1(2)	85.6(1)
$0(1^{u}) - M(1) - 0(2^{u})$	x2	95.4	94.8	95.5(2)	100.0(2)	95.3(1)	96.1(2)	95.7(1)
$0(1^{u}) - M(1) - 0(3^{d})$	x2	84.3	84.7	84.5(2)	84.3(3)	83.9(2)	82.1(2)	83.7(1)
$0(1^{u}) - M(1) - 0(3^{u})$	~2 ~2	95.8	95.6	97.8(2)	97.2(3)	95.7(2)	95.5(2)	95.0(1)
0(2) - M(1) - 0(2)	****	87.3	86.3	85.4(2)	93.2(2)	86.8(1)	89.4(2)	87.2(1)
0(2) - M(1) - 0(3)	v 2	95 5	96 7	96.6(2)	93.6(2)	95.4(1)	95.8(2)	95.9(1)
0(2) - M(1) - 0(3)	A4	93.5 81 7	80.0	81 2(2)	79 8(2)	82.3(1)	79.2(2)	81.0(1)
(3) - M(1) - 0(3)		90.0	00.9		90.0	90.0	90.0	90.0
<0-M(1)-0>		90.0	90.0	90.0	90.0			
0(1) - M(2) - 0(1)		80.3	78.2	79.4(2)	80.0(2)	80.3(1)	78.3(2)	80.0(1)
$0(1^{u}) - M(2) - 0(2^{d})$	x 2	83.9	83.8	83.0(2)	83.0(2)	84.0(1)	82.1(1)	83.7(1)
$0(1^{u}) - M(2) - 0(2^{u})$	x 2	92.2	91.7	93.2(2)	89.6(2)	92.3(1)	90.2(2)	92.1(1)
0(1) - M(2) - O(4)	x2	93.0	95.4	91.8(2)	89.9(2)	92.2(1)	92.2(2)	92.8(1)
$0(2^{u}) - M(2) - O(4^{d})$	x2	86.3	85.4	92.9(2)	95.8(3)	88.1(1)	97.4(2)	93.4(1)
$0(2^{u}) - M(2) - O(4^{u})$	x2	97.3	98.7	90.3(2)	90.4(3)	95.2(1)	89.0(2)	90.3(1)
0(4) - M(2) - O(4)	~~~	93.6	91.0	97.5(2)	100.9(3)	95.3(1)	98.4(4)	95.0(1)
<0-M(2)-0>		89.9	90.0	90.0	89.9	89.9	89.9	90.0
$0(1^{u}) \times (2) \times (1^{d})$		91.0		80 2(2)	77 1 (2)	83 0(1)	83.6(2)	82.9(1)
$O(1^{u}) = M(3) = O(1^{u})$	×2	01.9	100.0	00.2(2)	102 9(2)	97 0(1)	96.4(2)	97.1(1)
0(1 u) - m(3) - 0(1 d)	×4	90.1	100.0	99.0(2)	102.9(2)	$\frac{97.0(1)}{84.2(1)}$	83 3(1)	84.1(1)
0(1) - M(3) - 0(3)	×2	05.9	04.2	07 6(2)	04.2(2)	05 8(1)	96 7(1)	95,9(1)
0(1) - M(3) - 0(3)	X 4	90.1	93.0	97.4(2)	95.0(2)	<u>90.0</u>	90.7(1)	<u>90 0</u>
ζ0-M(3)-0>		90.0	90.0	90.0	90.0	90.0	30.0	
0(2) - M(4) - 0(2).		85.5	87.5	74.9	77.7	82.9	72.8(2)	73.5
$0(2^{u}) - M(4) - O(4^{d})$	x 2	84.4	87.4	76.9	72.7	83.1	78.8(1)	78.4
$0(2^{u}) - M(4) - 0(4^{u})$	x 2	91.3	93.3	83.1	86.6	88.1	83.2	83.2
$0(2^{u}) - M(4) - 0(5^{u})$	x2	87.6	87.8	87.1	86.8	87.9	90.0(1)	88.9
$0(4^{u}) - M(4) - 0(5^{d})$	x 2	75.2	72.4	84.6	80.9	77.4	85.5(1)	84.1
$0(4^{u}) - M(4) - 0(6^{u})$	x2	64.0	62.2	62.9	65.5	64.5	62.0(1)	63.4
$0(5^{u}) - M(4) - 0(6^{d})$	x2	64.2	63.6	70.4	69.9	66.1	71.2(1)	70.9
$0(5^{u}) - M(4) - 0(6^{u})$	x?	53.1	51.6	61.2	60.2	54.1	57.9(1)	58.6
0(6) - M(4) - 0(6)	** *	69.7	67.9	86.4	86.5	73.3	86.8(2)	84.9
<pre><(0) M(4)=0(0)</pre>		74.7	74.5	75.9	75.6	74.9	76.0	75.8
-						(0. 0/1)	(0.0/1)	<u> </u>
0(7)-0(7)-0(7)		58.7	59.2	64,5(2)	66.8(2)	6U.3(1)	07.9(I)	02.9(T)
4		0.348	0.342	0.283	0.258	0.330	0.223	0.208

		(34)	(35)	(36)	(37)	(38)	(39)	(40)
0(1) - T(1) - 0(5)		114 3(3)	113 6(4)	111 6(2)	110 8(2)	112 4(1)	111 0(2)	111 0(4)
$0(1) - \pi(1) - 0(6)$		111 2(2)	111 6(4)	110 (2)	110.0(2)	112.4(1)	111 2(2)	111.9(4)
$0(1) - \pi(1) - 0(0)$		111 - 6(3)	110.9(4)	110.4(2)	110.7(2)	110.4(1)	110.0(2)	109.2(5)
$O(1)^{-1}(1)^{-0}(7)$		100 7(0)	10.0(4)	110.8(2)	110.8(2)	111.5(1)	110.9(2)	111.1(5)
		108.7(3)	107.7(4)	104.6(2)	106.3(2)	T02.9(T)	106.2(2)	106.5(4)
U(5) - T(1) - U(7)		104.0(3)	105.0(4)	109.5(2)	109.0(2)	106.9(2)	107.3(2)	107.6(6)
0(6) - T(1) - 0(7)		<u>106.3(4)</u>	<u>107.6(4)</u>	<u>109.7(2)</u>	<u>109.1(2)</u>	109.3(2)	<u>109.0(3)</u>	<u>110.4(6)</u>
ζ0-T(1)-0>		109.4	109.4	<u>109.4</u>	<u>109.5</u>	109.4	109.4	109.5
0(2) - T(2) - 0(4)		117 3(3)	116 0(4)	116 7(2)	116 5(2)	117 0(1)	116 0(2)	116 6(4)
$0(2) - \pi(2) - 0(5)$		100 7(2)	100.7(4)	100.2(2)	100 = (2)	117.0(1)	100.9(2)	100.0(4)
$0(2) - \pi(2) - 0(3)$		107.7(3)	109.7(4)	109.2(2)	109.3(2)	109.1(1)	109.9(2)	108.4(5)
$O(2)^{-1}(2)^{-0}(0)$		107.9(3)	110.3(4)	107.0(2)	109.0(2)	109.1(1)	108.9(2)	108.7(4)
0(4) - 1(2) - 0(3)		111.4(3)		109.5(2)	109.8(2)	109.7(1)	109.0(2)	110.3(5)
0(4) - 1(2) - 0(6)		103.3(3)	105.2(3)	103.1(2)	102.7(2)	103.4(1)	103.8(2)	103.1(5)
(3) = 1(2) = 0(6)		104.1(3)	106.1(3)	110.3(2)	109.0(2)	108.1(1)	108.0(2)	109.5(4)
(2) - 1(2) - 0		109.3	109.4	109.4	109.4	<u>109.4</u>	109.4	109.4
T(1)-0(5)-T(2)		134.9(4)	135.2(5)	136.7(2)	137.4(2)	133,9(2)	133.6(3)	136,0(5)
T(1) - O(6) - T(2)		136.8(4)	137.6(4)	139.7(2)	139.1(2)	137.5(2)	136.2(2)	138.0(5)
T(1) = O(7) = T(1)		135.7(5)	137.0(6)	138 3(3)	141 1(4)	136 5(2)	136 9(3)	136 4 (9)
		10017(0)	15/10(0)	13013(3)	14101(4)	130.3(2)	130.9(3)	13014(3)
0(5)-0(6)-0(5)		169.1(3)	169.2(3)	167.9(2)	168.4(2)	163.2(1)	161.8(2)	164.5(4)
$0(1^{u}_{u}) - M(1) - 0(2^{d}_{u})$	x 2	86.5(2)	87.0(3)	86.5(1)	85.9(1)	83.7(1)	83.0(2)	80.7(3)
$0(1_{u}^{u}) - M(1) - 0(2_{d}^{u})$	x 2	96.8(2)	96.5(3)	96.3(1)	95.1(1)	97.2(1)	95.8(2)	93.6(3)
$0(1^{u}) - M(1) - 0(3^{u})$	x2	82.4(2)	81.8(3)	81.8(1)	84.5(2)	83.1(1)	84.4(2)	84.4(5)
$0(1^{u}) - M(1) - 0(3^{u})$	x 2	94.0(3)	94.4(3)	95.2(1)	94.5(2)	95.9(1)	96.8(2)	101.3(5)
0(2) - M(1) - O(2)		90.9(4)	90.8(4)	88.5(2)	87.1(2)	88.3(1)	86.2(2)	83.0
0(2) - M(1) - O(3)	x 2	95.6(2)	95.6(3)	96.6(1)	96.3(1)	96.4(1)	96 7(2)	96.3
0(3) - M(1) = 0(3)		77.9(3)	78 0(3)	78 4(2)	80 6 (2)	78 9(1)	80 4 (2)	84.6
<0-M(1)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0
					<u> </u>			
0(1) - M(2) - 0(1)		79.7(3)	78.4(3)	80.0(2)	79.1(2)	79.8(1)	79.5(2)	80.6(3)
$0(1^{-}) - M(2) - 0(2^{-})$	x2	82.6(2)	82.4(2)	83.7(1)	84.4(1)	84.4(1)	`83.7(2)	81.2(3)
$0(1^{\circ})-M(2)-0(2^{\circ})$	x2	90.2(2)	89.2(3)	91.9(1)	91.3(1)	93.6(1)	93.5(2)	93.5(3)
0(1) - M(2) - O(4)	x 2	91.0(2)	91.6(2)	92.6(1)	93.2(1)	92.2(1)	92.2(1)	90.6(8)
$0(2^{u}_{})-M(2)-0(4^{u}_{})$	x 2	95.6(2)	96.1(3)	93.3(1)	93.1(2)	93.0(1)	93.0(2)	92,9(4)
$0(2^{u})-M(2)-0(4^{u})$	x 2	90.5(2)	90.9(2)	90.5(1)	90.7(2)	88.7(1)	89.6(2)	91.5(4)
0(4) - M(2) - O(4)		99.1(3)	98,9(4)	95.5(2)	94.8(1)	96.6(1)	97.0(2)	99.2(4)
〈 0-M(2)-0〉		89.9	89.8	90.0	90.0	90.0	90.0	89.9
$0(1^{u}) - w(2) - 0(1^{d})$	2	95 1 (2)	95 0(()	0/ 0/0)	01 5 (0)	70 5 (1)	70.0(0)	00 5 (0)
$0(1^{u}) - M(2) - 0(1^{u})$	ሕረ •••	07.1(3)	05.0(4)	04.2(2)	01.3(2)	/9.3(1)	/9.8(2)	02.3(3)
O(1) - M(3) - O(1)	x2	94.9(3)	95.0(4)	95.8(2)	98.5(2)	100.5(1)	100.2(2)	97.5(3)
O(1) - M(3) - O(3)	X4	83.1(2)	83.5(2)	83.0(1)	84./(1)	83.0(1)	82.8(2)	81.0(3)
0(1) - M(3) - 0(3)	X 4	96.9(2)	96.5(2)	<u>97.0(1)</u>	<u>95.3(1)</u>	97.0(I)	97.2(2)	99.0(3)
<0-M(3)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(2)-M(4)-0(2).		74.0(3)	74.4(3)	73.4(2)	75,2(2)	75.0(1)	74.6(2)	73.5
$0(2^{u}) - M(4) - O(4^{d})$	x 2	79.0(2)	80.0(2)	78.6(1)	79.6(1)	75.8(1)	76.5(1)	76.1
$0(2^{u}) - M(4) - O(4^{u})$	x2	83.5(2)	84.0(2)	83.0(1)	83 7(1)	82.5(1)	82.5(1)	82.9
$0(2^{u}) - M(4) - 0(5^{u})$	x2	90,1(2)	90.0(2)	88.9(1)	88.4	86.3(1)	86.6(1)	87.4
$0(4^{u}) - M(4) - 0(5^{d})$	x?	84.0(2)	83.2(2)	84 2/1	83 3	86 8(1)	84 6/1	84 4
$0(4^{u}) - M(4) - 0(6^{u})$	w?	63.4(2)	63 1 (2)	63 5(1)	63 0/11	62 7/11	62 0(1)	63 3
$0(5^{u}) - M(4) - 0(6^{d})$	~~) ~)	68 6(2)	68 9(2)	71 9/1V	70 0	$\frac{02 \cdot 7(1)}{71 \cdot 0(1)}$	02.9(1) 70 E(1)	60 0
$0(5^{u}) - M(k) - 0(k^{u})$	∿7	58 2(2)	57 0/01	/1.4(1) 50 //1)	70.9 59 0	(1.U(1)	10.3(L)	67.7 67.7
O(6) = M(A) = O(0)	А4	20.2(2) 92 0(1)	J/ • 0(2)	30+4(L) 0/ 7/1	06.0 07.07	02.0(1)	02.4(L)	02.3
20-M(4)-0>		75.7	75.7	$\frac{64.7(1)}{75.9}$	75.8	76.0	75.9	75.8
<u> </u>								
0(7)-0(7)-0(7)		63.8	64.2	64.9	66.3	69.5	67.3	63.0(4)
<u> </u>		0.291	0.287	0.279	0.263	0.228	0.252	0.300

		(41)	(42)	(43)	(44)	(45)	(46)	(48)	(49)	(50)	(51)
0(1) - T(1) - 0(5)		110.8(2)	110.5	111.5	108.8	110.9	109.5	109.7	108.6	110.8	110.1
$0(1) - \tau(1) - 0(6)$		110.5(2)	112.3	110.7	112.5	110.3	111.2	109.0	109.7	112.3	112.5
0(1) - T(1) - 0(7)		110.4(3)	110.2	110.0	111.2	110.8	111.2	110.2	111.6	111.4	112.0
0(5) - T(1) - 0(6)		107.7(2)	106.3	106.8	106.0	107.2	105.3	105.9	107.8	106.2	108.1
0(5) - T(1) - 0(7)		108.5(3)	107.5	108.6	109.3	109.4	110.0	110.5	110.7	107.6	104.8
0(6) - T(1) - 0(7)		108.8(3)	109.9	109.2	109.0	108.1	109.4	111.4	108.4	108.3	109.0
(0-T(1)-0)		109.5	109.5	109.5	109.5	109.5	109.4	109.5	109.5	109.4	109.4
0(2) - T(2) - 0(4)		117.0(2)	116.0	115.9	113.1	116.4	115.1	116.0	114.4	115.5	111.9
0(2) - T(2) - 0(5)		107.8(2)	108.8	109.2	109.1	109.3	109.0	108.5	108.6	106.6	109.0
0(2) - T(2) - 0(6)		108.9(2)	108.5	108.4	108.9	108.2	108.5	109.3	107.6	109.4	108.8
0(4) - T(2) - 0(5)		110.4(2)	108.7	109.4	109.8	109.2	108.8	108.7	110.0	107.2	111.8
0(4)-T(2)-0(6)		102.8(2)	105.4	104.9	106.1	105.2	105.3	103.4	106.5	108.1	107.7
0(5)-T(2)-0(6)		109.5(2)	109.2	108.8	109.8	108.3	<u>110.1</u>	<u>110.9</u>	<u>109.7</u>	109.9	<u>107.5</u>
Հ0− Τ(2)-0>		109.4	109.4	109.4	109.5	109.4	<u>109.5</u>	109.5	109.5	<u>109.5</u>	<u>109.5</u>
					107.0	105 0	10/ 1	100.0	196 1	100 E	196 1
T(1) = O(5) = T(2)		140.2(3)	134.5	130.8	13/.2	132.8	1/0 0	1/1 0	141 5	120 4	128 /
T(1) = U(6) = T(2)		140.0(3)	1/0 1	1/0 (140 2	141 2	140.2	164.0	162.0	140 1	138 2
1(1)-0(7)-1(1)		141.0(4)	140.1	140.0	140.3	141.3	141.0	144.0	142.9	140.1	130.2
0(5)-0(6)-0(5)		173.0(3)	164.8	166.8	165.7	165.4	164.9	163.7	164.7	163.4	164.2
$0(1^{u}) - M(1) - 0(2^{d})$	x 2	85.1	82.2	85.8	84.6	84.0	81.4	79.1	80.2	79.0	82.6
$0(1^{u}) - M(1) - 0(2^{u})$	x 2	95.5	97.0	95.3	96.5	96.1	96.0	98.1·	97.1	99.8	96.2
$0(1^{u}) - M(1) - 0(3^{d})$	x 2	84.1	83.8	84.2	82.9	84.1	83.2	85.1	84.1	83.6	83.3
$0(1^{u}) - M(1) - 0(3^{u})$	x2	95.3	97.0	94.7	95.8	96.0	99.5	97.9	98.7	97.7	98.1
0(2)-M(1)-0(2)		86.9	88.5	86.6	87.8	87.2	86.2	89.2	87.2	89.5	89.2
0(2)-M(1)-O(3)	x 2	95.4	95.1	96.2	95.7	96.0	95.8	95.7	96.2	96.1	95.4
0(3)-M(1)-0(3)		82.4	81.4	81.0	80.7	80.8	82.1	<u>_79.7</u>	80.5	78.3	79.9
(0-M(1)-0)		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(1) - M(2) - 0(1)		80.5	79.2	80.2	76.1	79.5	79.1	81.6	79.5	79.3	78.2
$0(1^{u}_{}) - M(2) - 0(2^{u}_{})$	x 2	83.7	85.1	84.7	85.9	84.0	85.6	85.3	85.3	85.7	85.6
$0(1^{u})-M(2)-0(2^{u})$	x 2	92.7	91.8	92.1	91.8	92.4	91.9	93.5	93.2	93.1	90.2
$0(1) - M(2) - O(4)_{d}$	x 2	92.5	91.9	92.9	93.8	92.6	92.5	91.1	91.5	93.4	90.4
$0(2_{1}^{\alpha}) - M(2) - 0(4_{1}^{\alpha})$	x 2	88.2	94.1	93.4	94.6	93.5	93.7	92.4	92.9	94.6	95.5
$0(2^{\circ})-M(2)-0(4^{\circ})$	x 2	95.1	88.5	89.5	87.3	89.6	88.5	88.6	88.4	86.0	88.0
0(4) - M(2) - 0(4)		94.6	97.7	94.6	97.0	96.1	96.4	96.9	98.3	94.9	101.6
<0-M(2)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.1	09.9
$0(1^{u}) - M(3) - 0(1^{d})$	x 2	83.1	78.4	82.8	77.3	79.9	77.1	75.2	74.2	75.2	76.6
$0(1^{u}) - M(3) - 0(1^{u})$	x2	96.9	101.6	97.2	102.7	100.1	102.9	104.8	105.8	104.8	103.4
$0(1^{u}) - M(3) - 0(3^{d})$	x 4	84.0	84.5	84.5	85.2	84.1	84.8	83.4	84.3	83.3	84.9
$0(1^{u}) - M(3) - 0(3^{u})$	x 4	96.0	95.5	95.5	94.8	95.9	95.2	96.6	95.7	96.7	<u>95.1</u>
<0-M(3)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(2) X(4) 0(2)		00 1	75 0	74.0	76 0	. 74 5	75 5	78 3	76 8	78.5	75.8
$0(2)^{-m}(4)^{-}0(2)$	" ე	02.1 87 9	75.7	79.9	79.1	77 0	76.0	72.8	74.4	72.8	76.8
$0(2^{u}) - M(4) - 0(4^{u})$	×4 ••?	88 7	83 0	23.2	81.6	83.1	83.3	84.7	83.1	86.4	80.8
$0(2^{u}) - M(4) - 0(4^{u})$	*2 *2	88.2	86 /	88 /	86.1	87.4	86.4	84.1	85.3	84.6	85.8
$0(2^{u}) - M(4) - 0(5^{d})$	** **	77.7	84.0	84.0	84.4	84.0	83.8	83.1	84.0	82.5	85.4
$0(4^{u}) - M(4) - 0(6^{u})$	×2	64.7	64.0	62.9	63.3	62.9	63.5	63.4	63.9	63.8	62.1
$0(5^{u}) - M(4) - 0(6^{d})$	x2	66.4	71.2	71.1	72.2	71.2	71.5	71.6	71.7	71.1	71.3
$0(5^{u}) - M(4) - 0(6^{u})$	x2	54.0	61.1	59.0	60.7	60.7	61.2	63.4	62.1	61.9	63.5
0(6)-M(4)-0(6)		73.6	87.1	85.4	87.6	87.4	87.6	90.4	89.1	88.1	90.6
<0-M(4)-0>		75.0	75.9	75.9	76.0	75.9	75.9	75.9	75.9	75.8	76.1
0(7)-0(7)-0(7)		60.8	65 2	66.2	67 0	67.3	66.6	66.6	66.6	65.4	65.4
Δ		0.324	0.276	0.264	0.256	0.252	0.260	0.260	0.260	0.273	0.273
<u>خسم ا</u>			0.210	0.204	0.200	0.434	0.200	0.200	0.200		

		(52)	(53a)	(535)	(54)	(55)	(56a)	(56b)	(57)
0(1) - T(1) - 0(5)		112.3	111 7(1)	111 7(2)	100 8(2)	112 / (2)	112 3(1)	112 4(1)	111 0(2)
0(1) - T(1) - 0(6)		110 0	111 0(1)	110 0(0)	109.0(2)	110 0(2)	111 0(1)	111 / (0)	110 2(0)
$0(1) - \pi(1) - 0(0)$		111 0		110.8(2)	109.9(3)	110.8(3)	111.2(1)	111.4(2)	110.3(2)
0(1) - 1(1) - 0(7)		100.0	110.7(1)	111.0(2)	111.2(3)	110.7(2)	111.1(1)	TT0.9(T)	110.8(2)
U(5) - T(1) - U(6)		106.3	106.1(1)	106.1(2)	105.2(2)	105.8(2)	106.1(1)	106.3(1)	108.1(2)
0(5) - T(1) - 0(7)		106.7	108.5(2)	108.4(2)	109.6(3)	107.6(3)	107.4(1)	107.5(1)	108.0(2)
0(6)-T(1)-0(7)		109.4	108.8(2)	108.7(2)	111.0(3)	109.4(3)	108.6(1)	108.2(2)	108.7(2)
<0-T(1)-0>		109.4	109.5	109.5	109.4	109.5	109.5	109.5	109.5
0(2) - T(2) - 0(4)		117.5	117.5(1)	117.5(2)	115,9(2)	117.2(2)	117.8(1)	117.6(1)	116.3(2)
0(2) - T(2) - O(5)		108.1	109 4(1)	100 6(2)	100 6(2)	100 3(3)	100 5(1)	109 5(1)	108 5(2)
0(2) - T(2) - 0(6)		109 2	100 2(1)	100 9(2)	109.6(2)	100 5(3)	109 2(1)	109 1(1)	100 0(2)
0(4) - T(2) - 0(5)		110 7	100.3(1)	100.2(2)	100.0(2)	100.5(2)	100.2(1)	100.1(1)	110 0(2)
0(4) = 1(2) = 0(3)		102.0	109.7(1)	T03.8(5)	109.1(2)	109.5(2)	109.6(1)	109.9(2)	110.2(2)
0(4) - 1(2) - 0(6)		102.8	103.0(1)	102.8(2)	103.0(2)	103.8(2)	103.4(1)	103.5(1)	103.0(2)
U(5) - T(2) - U(6)		108.2	108.6(1)	108.8(2)	110.5(2)	108.2(2)	<u>107.9(1)</u>	107.7(1)	109.6(2)
<0-T(2)-0>		<u>109.4</u>	109.4	109.4	109.5	109.4	109.4	109.4	109.4
							·		
T(1)-O(5)-T(2)		134.0	137.3(1)	137.6(2)	133.7(2)	134.3(3)	136.2(1)	136.1(1)	139.7(2)
T(1)-0(6)-T(2)		135.9	138.8(1)	139.1(2)	140.7(2)	136.4(2)	137.8(1)	137.7(1)	140.2(2)
T(1) - 0(7) - T(1)		133.1	140.2(2)	140.2(2)	141.9(2)	136.4(3)	137.8(2)	138.2(2)	140.3(3)
				21012(2)		2000 . (0)	10,00(1)		
0(5)-0(6)-0(5)		160.7	169.5(1)	170.4(2)	164.4(2)	162.9(2)	167.6(1)	167.6(1)	172.0(2)
. 11		•			. ,		. ,		
0(1, -M(1) - 0(2, -))	x 2	81.7	85.8(1)	86.0(1)	80.3(1)	82.0(1)	85.9(1)	85.9(1)	85.2(1)
0(1, -M(1) - 0(2, -))	x 2	95.2	95.3(1)	95.1(1)	97.2(1)	94.0(1)	95.8(1)	96.0(1)	95.4(1)
$0(1^{u}) - M(1) - 0(3^{d})$	x2	82.0	84 0(1)	83 9(2)	85 3(2)	84.9(2)	83.1(1)	83.2(1)	84.0(1)
$0(1^{u}) - M(1) - 0(3^{u})$	*2	101 0	04.0(1)	05 0(2)	07 6(2)	00 1 (2)	05 1 (1)	04 9(1)	05 4(1)
0(2) - M(1) - 0(2)		25.0	94.9(1)	93.0(2)	97.4(2)	99.1(2) 99.1(2)	99.1(1)	94.0(1)	97.4(1)
0(2) - M(1) - 0(2)	7	0, 2	0/.2(1)	87.4(2)	8/./(2)	03.0(2)	00.2(1)	00.2(1)	07.0(2)
O(2) - M(1) - O(3)	XL	94.0	95.8(I)	95.5(1)	96.2(2)	96.1(2)	95.8(I)	95.7(1)	95.4(2)
0(3) - M(1) - 0(3)		86.9	81.3(1)	<u>81.6(2)</u>	<u>79.9(3)</u>	84.2(3)	80.3(1)	80.5(1)	_82.2(2)
<0-M(1)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(1) 8(2) 0(1)									
U(1) - M(2) = U(1)	_	79.6	79.8(1)	79.7(2)	81.0(3)	79.4(3)	79.9(1)	79.8(1)	80.1(2)
$0(1^{-}) - M(2) - 0(2^{-})$	x 2	82.3	83.7(1)	83.7(1)	85.1(1)	82.5(1)	83.4(1)	83.4(1)	83.9(1)
$0(1^{-})-M(2)-O(2^{-})$	x 2	92.4	91.8(1)	91.5(1)	93.7(1)	93.4(1)	91.9(1)	91.8(1)	92.2(1)
0(1) - M(2) - 0(4)	x2	90.3	93.3(1)	93.6(1)	91.4(2)	91.7(2)	92.5(1)	92.5(1)	92.5(2)
$0(2^{u}) - M(2) - 0(4^{u})$	x 2	91.8	93.8(1)	94.2(1)	92.0(1)	93.3(2)	94.0(1)	94.1(1)	88.0(1)
$0(2^{u}) - M(2) - 0(4^{u})$	x2	92 6	90 1(1)	00 1 (1)	89 1(1)	00 2(1)	90 1(1)	90 1 (1)	95.4(1)
0(4) - M(2) - 0(4)		100 4	04 2(1)	90.1(1)	06 9(2)	00.2(1)	05 5(2)	05 0(2)	
(-M(2) - 0)		100.4	<u>94.3(1)</u>	93.9(2)	90.0(3)	90.2(3)	<u>93.3(2)</u>	<u>90.9(2)</u>	94.9(2)
(0 m(2) 0/		09.9	90.0	90.0	90.0	90.0	90.0	90.0	
$0(1^{u}) - M(3) - 0(1^{d})$	x 2	82 2	82 7(1)	82 8121	75 3(2)	81 1 (3)	83.2(2)	83.3(2)	83.0(2)
$0(1^{u}) - M(3) - 0(1^{u})$?	07 0	07 9/1	02.0(2)	106 7(2)	00 0(3)	06 0(2)	06 7(2)	07 0(2)
$0(1^{u}) - M(2) - 0(2^{d})$	~~~	97.0	97.3(1)	9/.2(2)	104.7(2)	90.9(3)	90.0(2)	90.7(2)	97.0(2)
$0(1^{u}) \times (2^{u}) = 0(3^{u})$	ж4 /	03.0	84.4(L)	84.5(L)	83.9(L)	82.3(1)	83.8(L)	83.9(I)	04.1(1)
	X 4	96.4	<u>95.6(1)</u>	<u>95.5(1)</u>	96.2(1)	97.7(1)	96.2(1)	<u>96.1(1)</u>	<u>95.9(1)</u>
<0-M(3)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(2)_M(4)_0(2)		70.0	70 (/7)	70 7/0	77 0/0	70 / (0)	70 0/0	70.0(0)	00.0/01
$\alpha(2) = \alpha(4) = \alpha(2)$		/3.8	/3.6(1)	/3./(2)	//.2(2)	73.4(2)	/3.3(2)	73.3(2)	83.8(2)
$U(2) = M(4) = U(4^{-1})$	x2	76.4	78.9(1)	79.3(1)	73.8(1)	76.6(1)	78.6(1)	78.5(1)	83.6(1)
$0(2^{\circ}) - M(4) - 0(4^{\circ})$	x 2	82.0	83.5(1)	83.6(1)	83.9(1)	81.9(1)	82.9(1)	83.0(1)	89.5(1)
$0(2^{u}) - M(4) - 0(5^{u})$	x 2	87.1	89.2	89.2	84.8(2)	87.4(2)	89.0(2)	89.0(2)	87.8(2)
$0(4^{u}) - M(4) - 0(5^{d})$	x 2	85.7	83.8	83.8	83.5(1)	85.1(1)	84.5(1)	84.5(1)	77.0(1)
$0(4^{u}) - M(4) - 0(6^{u})$	x 2	64.5	63.1(1)	63.0(1)	63.7(1)	63.2(1)	63.0(1)	63.1(1)	64.1(1)
$0(5^{u}) - M(4) = 0(6^{d})$	x 2	69.0	71.3	71.6	71.8(2)	70.3(2)	71.0(1)	70.9(1)	65.4(1)
$0(5^{u}) - M(4) - 0(6^{u})$	x2	61 /	57 0	57 5	62 5/11	62 2(1)	58 0/11	58 9/11	53 0/1
0(6) - M(4) - 0(6)	414	01.4	J/ · 9	J/ . J	02.3(1)	02.2(1)	J0.0(T)	J0.0(1)	JJ•7(1) 70 //11
		84.0	<u>82.1(1)</u>	_85.4(2)	89.5(2)	86.8(2)	<u> </u>	<u>-85.2(1)</u>	<u>_/2+4(1)</u>
<0-m(4)-0≯		75.7							/4.9
0(7)-0(7)-0(7)		50 0	66.7	66.0	65.8(1)	64.5(1)	65.8(1)	65,9(1)	59,9(1)
Λ N		72.2	0 250	0 257	0.260	0 283	0.260	0.269	0 334
		0.341	0.237	16210	0.209	0.205	0.209	0.200	0.004

•

		(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)
0(1) - T(1) - 0(5)		110,7(2)	110.9(1)	109.4	109.7	107.7	111.3	106.0	106.5	107.4
0(1) - T(1) - 0(6)		110.8(3)	110.6(1)	111.3	111.4	114.1	110.0	113.8	113.9	119.1
0(1) - T(1) - 0(7)		111.7(2)	111.6(1)	111.6	110.3	109.3	110.3	110.6	112.1	109.9
0(5) - T(1) - 0(6)		106.6(2)	107.9(1)	105.7	106.1	110.3	106.5	109.6	110.9	110.5
0(5) - T(1) - 0(7)		107.0(2)	106.8(1)	109.3	106.9	103.1	108.5	109.1	106.9	105.3
0(6) - T(1) - 0(7)		109.9(2)	108.9(2)	109.4	112.3	111.6	110.2	107.7	106.4	103.9
$\langle 0-T(1)-0 \rangle$		109.5	109.5	109.5	109.5	109.4	109.5	109.5	109.5	109.4
							<u></u>	<u>کنرانت.</u>		
0(2) - T(2) - 0(4)		116.5(1)	115.7(1)	117.3	114.7	113.6	116.6	110.2	115.1	111.5
0(2)-T(2)-O(5)		109.2(2)	109.5(1)	108.2	109.8	110.3	110.0	104.4	109.6	108.4
0(2)-T(2)-0(6)		109.0(2)	109.0(1)	109.2	107.7	104.2	106.7	104.8	106.1	109.2
0(4)-T(2)-O(5)		109.3(2)	110.0(1)	108.9	109.0	112.7	110.3	110.3	108.2	107.4
0(4)-T(2)-0(6)		103.5(2)	104.2(1)	104.7	105.9	106.6	103.9	116.4	110.8	113.7
0(5)-T(2)-0(6)		<u>108.9(1)</u>	108.0(1)	<u>108.3</u>	109.6	<u>109.0</u>	109.0	<u>109.9</u>	106.8	106.4
<0-T(2)-0>		109.4	109.4	109.4	109.5	109.4	<u>109.4</u>	<u>109.3</u>	109.4	109.4
T(1)_0(5)_T(2)		122 6(2)	105 0(1)	126 /	122 7	125 2	135 2	141 1	136 1	133.2
T(1)=0(3)=T(2) T(1)=0(6)=T(2)		1387(2)	133.3(1)	137 8	138 6	145 4	137 7	143.6	141.2	139.9
T(1)=0(0)=T(2) T(1)=0(7)=T(1)		130.7(2)	138.7(2)	1/1 3	137 2	105 0	137 8	145 8	144.3	140.7
1(1)-0(7)-1(1)		139.3(3)	139.9(2)	141.0	137.2	143.4	137.00	143.0	14413	
0(5)-0(6)-0(5)		162.6(2)	166.2(1)	166.7	160.6	172.4	161.4	171.9	169.0	169.1
$0(1^{u}_{u}) - M(1) - 0(2^{d})$	x 2	79.6(1)	82.5(1)	82.0	83.3	79.2	85.0	81.0	83.2	79.5
$0(1_{u}^{u})-M(1)-0(2_{d}^{u})$	x 2	98.4(1)	96.3(1)	96.3	96.2	98.1	95.5	99.5	96.1	99.2
$0(1^{u}) - M(1) - 0(3^{u})$	x 2	84.8(1)	84.9(1)	83.9	83.9	81.6	84.4	81.9	84.0	85.6
$0(1^{u})-M(1)-0(3^{u})$	x 2	97.3(1)	96.4(1)	97.9	96.7	101.2	95.1	97.6	96.8	95.8
0(2)-M(1)-0(2)		88.7(2)	88.5(1)	88.4	86.6	86.5	86.3	93.7	92.3	89.0
0(2)-M(1)-O(3)	x 2	96.2(2)	95.9(1)	95.6	96.3	96.3	96.6	91.0	95.7	93.0
0(3)-M(1)-0(3)		79.1(3)	79.7(1)	80.4	80.9	81.0	80.6	84.4	76.4	84.8
< 0-M(1)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(1) - M(2) - O(1)		80,8(2)	79,7(1)	80.7	79.6	80.7	80.4	72.1	77.6	72.6
$0(1^{u}) - M(2) - 0(2^{d})$	x 2	84.4(1)	83.7(1)	83.9	85.6	85.4	83.6	82.6	85.2	87.8
$0(1^{u}) - M(2) - 0(2^{u})$	x 2	93.7(1)	92.1(1)	92.6	92.6	91.9	93.6	86.7	85.0	84.4
0(1) - M(2) - O(4)	×2	90.7(2)	91.0(1)	91.4	91.7	88.9	92.2	91.0	90.4	91.3
$0(2^{\text{u}}) - M(2) - 0(4^{\text{d}})$	x2	92.1(1)	94.2(1)	94.4	92.3	86.6	91.8	102.2	99.9	100.6
$0(2^{u}) - M(2) - 0(4^{u})$	x2	89.5(1)	89.3(1)	88.7	89.2	95.7	90.6	85.7	88.1	85.3
0(4) - M(2) - O(4)		98.5(2)	99.1(1)	97.6	97.5	101.5	95.9	107.6	102.0	105.3
<0-M(2)-0>		90.0	90.0	90.0	90.0	89.9	90.0	89.7	89.7	89.7
outu was outd	0	75.0(0)	70 2(1)	70.1	70 /		01 0	72 0	76 0	75 3
$O(1^{\rm u}) - M(3) - O(1^{\rm u})$	x2	104 2(2)	10.2(1)	101 0	101 6	10/ 0	01.0	107 1	103.8	104.7
0(1 u) - m(3) - 0(1)	XZ	104.2(2)		101.9	Q5 0	25 0	90./	97 Q	97 0	90.5
$0(1^{\rm u}) - M(3) - 0(3^{\rm u})$	x4	03.1(1)	05.4(1)	05.4	05.0	0/ 2	05.5	07.9	93.0	89.5
$\sqrt{1} - M(3) - 0(3)$	X 4	90.9(1)	90.0(1)	90.0	95.0	94.2	90.0	92.1	90.0	90.0
CO-M(3)-07		90.0	90.0							
$0(2) - M(4) - 0(2)_{3}$		77.1(2)	76.1(1)	74.8	75.3	68.6	73.8	72.0	74.1	71.9
$0(2^{u}_{1}) - M(4) - 0(4^{u}_{1})$	x 2	72.5(1)	76.1(1)	74.5	76.5	67.3	78.0	73.9	77.5	/3.0
$0(2^{u}) - M(4) - 0(4^{u})$	x 2	84.0(1)	82.9(1)	82.7	82.3	77.5	82.4	79.9	82.9	80.5
$0(2^{u}_{1}) - M(4) - 0(5^{u}_{d})$	x2	84.4(2)	86.1(1)	86.6	86.2	86.9	87.7	87.2	87.8	8/.1
$0(4^{-}) - M(4) - 0(5^{-})$	x 2	84.1(1)	84.0(1)	84.4	84.6	80.4	85.3	84.5	82.3	84.2
$0(4^{-}) - M(4) - 0(6^{a})$	x 2	63.7(1)	63.0(1)	64.5	63.9	72.8	62.9	65.8	64.4	7/ 0
$U(5^{-})-M(4)-O(6^{-})$	x 2	71.7(1)	71.3(1)	71.4	71.2	75.4	/0.9	/4.5	12.8	/4.U 61 0
$U(5^{-})-M(4)-O(6^{-})$	x 2	63.4(1)	61.9(1)	61.5	61.4	63.6	60.3	6T.0	59.0	01 / 01 /
U(6) - M(4) - O(6)		90.2(1)	88.6(1)	88.0	86.3	91.7	85.0	91.2	0/.2	76 0
ζU-M(4)-0≻		<u> </u>	75.9	/5.9	/5.9	_/5.5	/5.9		_/3.9	10.0
0(7)-0(7)-0(7)		64.9(1)	69.0(1)	66.9	62.8	60.2	64.0	68.1	67.6	67.4
Δ		0.279	0.233	0.257	0.302	0.331	0.289	0.243	0.249	0.251

		(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)
0(1)_T(1)_0(5)		111 5(2)	110 2(2)	100 5(1)	111 3	111 6	111 8	111 2(2)	112 1(3)
		111.3(2)	110.3(2)	109.3(1)	TTT • 2	111.0	111.0	110 ((0)	110 0(0)
0(1) - T(1) - 0(6)		112.0(2)	111.2(2)	110.3(1)	110.4	110.6	110./	110.4(2)	TT0.9(3)
0(1) - T(1) - 0(7)		111.3(2)	111.4(2)	110.0(2)	111.3	111.5	111.4	111.7(2)	110.6(3)
0(5) - T(1) - 0(6)		111.5(2)	110.1(2)	109.8(1)	106.9	106.8	107.1	106.3(2)	105.7(3)
$0(5) - \tau(1) - 0(7)$		105 1(2)	106 6(2)	109 0(2)	107.1	106.6	106.1	107.1(2)	107.8(4)
0(5) $T(1)$ $0(7)$		105.1(2)	107.0(2)	109.0(2)	100 8	100 6	100 7	110 1(2)	109 5(4)
0(0) - 1(1) - 0(7)		105.0(2)	107.0(2)	108.1(2)	109.0	109.0	109.7	100.1(2)	100.4
L 0-T(1)-0>		109.4	109.4	109.5	109.2	109.5	109.5	109.5	109.4
0(2)_T(2)_0(4)		117 (0)	115 0 (0)	116 0(1)	117 0	117 0	110 0	116 6(2)	116 5/2)
0(2) - 1(2) - 0(4)		11/.4(2)	112.9(2)	TT0.0(T)	117.0	117.0	110.9	110.0(2)	TT0.2(2)
0(2) - T(2) - 0(5)		109.0(2)	108.7(2)	108.5(1)	109.2	109.4	109.3	109.2(2)	109.2(3)
0(2) - T(2) - 0(6)		108.7(2)	108.9(2)	107.6(1)	108.2	108.4	108.4	108.5(2)	108.6(3)
0(4) - T(2) - 0(5)		111.0(2)	110.2(2)	109.6(1)	109.2	109.3	109.6	109.3(2)	109.5(3)
0(4) - T(2) - 0(6)		105 4(2)	105.4(2)	105 7(1)	104 4	104.3	104.5	104.0(2)	103.7(3)
$0(5) - \pi(2) - 0(6)$		100.4(2)	107 4(2)	100 2(1)	109.6	109.0	107.7	100 0(2)	100 1(2)
$(0)^{-1}(2)^{-0}(0)$		104.5(2)	107.4(2)	108.3(1)	100.0	100.0	107.7	109.0(2)	109.1(2)
L (2)-07		109.3	109.4	109.4	109.4	109.4	109.4	109.4	109.4
T(1) = O(5) = T(2)		135.8(2)	136 1(2)	126 5(2)	134 0	133 7	133 0	133.8(2)	133.6(3)
T(1) O(3) T(2)		138.6(2)	1/1 //0)	1/2 0/2)	120 2	127 6	126 0	128 0(2)	136 4(4)
1(1)=0(0)=1(2)		1/2/(2)	141.4(2)	143.9(2)	107 7	10/ 0	105.9	106 1(2)	107 1(6)
T(1) - O(7) - T(1)		143.4(3)	143.6(3)	148.7(3)	13/./	130.3	132.1	136.1(2)	13/.1(0)
0(5) - 0(6) - 0(5)		171.5(2)	173 0/2)	171 2(1)	162.5	161.8	161.3	161.6(2)	161.5(3)
		,,_,	1/3.0(2)	1/102(1)	202.3			(4)	
$0(1^{u}_{u})-M(1)-0(2^{d}_{u})$	x 2	83.8(1)	81.8(1)	78.4(1)	82.8	83.1	83.8	82.9(2)	82.4(2)
$0(1^{u}) - M(1) - 0(2^{u})$	×2	96.6(1)	97.7(1)	99.6(1)	97.0	97.0	96.9	97.0(2)	96.2(2)
$0(1^{u}) - M(1) - 0(3^{d})$		84 4(2)	94 5(1)	0/ 0/1)	83.8	83 5	83.2	83.7(2)	83.6(3)
	~~	05 1 (2)	04.0(1)	04+0(1)	06 4	06 2	06 0	06 5(2)	07 8(3)
U(1) - M(1) - U(3)	x2	95.1(2)	90.0(T)	97.4(1)	90.4	90.3	90.0	90.J(2)	97.0(3)
0(2) - M(1) - O(2)		91.5(2)	91.5(2)	92.9(1)	88.6	88.3	88.4	87.9(2)	86.5(3)
0(2)-M(1)-0(3)	x2	95.4(1)	94.3(1)	94.1(1)	95.9	96.0	95.9	96.2(2)	96.3(2)
0(3) - M(1) - O(3)		77.7(2)	79.9(2)	79.2(1)	79.6	79.7	79.8	79.7(2)	80.8(3)
<0-M(1)-0>		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
0(1) - M(2) - O(1)		77.8(2)	78.3(2)	80.4(1)	80.4	80.1	79.6	79.8(2)	79.7(3)
$0(1^{u}) - M(2) - O(2^{u})$	x 2	83.0(1)	83.2(1)	83.4(1)	84.2	84.3	84.2	84.5(2)	82.8(2)
$0(1^{u}) - M(2) - 0(2^{u})$	v 2	88 3(1)	88 7(1)	89 6(1)	92.9	93.2	92.8	93.2(2)	93.9(3)
0(15) M(2) O(4)			00.0(1)		01 6	01 7	01 0	02 2(2)	91 7
$0(1) - f(2) - 0(4)_{d}$	xz	90.7(2)	90.8(1)	09.0(I)	91.0	91.7	21.2	01 0(2)	02 6(2)
$U(2_{1}) - M(2) - U(4_{1})$	x 2	97.2(2)	96.4(1)	95.4(1)	92.4	92.5	92.4	91.8(2)	92.0(3)
$0(2^{\circ}) - M(2) - 0(4^{\circ})$	x2	89.9(2)	90.3(1)	90.5(1)	90.1	89.8	90.1	90.2(2)	90.2(3)
0(4) - M(2) - 0(4)		101.5(2)	100.7(1)	100.6(1)	97.0	97.1	97.1	96.4(2)	97.5(2)
40-M(2)-0>		89.8	89.8	89.9	90.0	90.0	90.0	90.0	90.0
				<u></u>					
$0(1^{u}_{1}) - M(3) - 0(1^{u}_{1})$	x 2	78.8(2)	78.3(2)	75.6(1)	79.1	79.3	80.1	78.8(2)	80.1(2)
$0(1_{}^{u}) - M(3) - 0(1_{}^{u})$	x 2	101.2(2)	101.7(2)	104.4(1)	100.9	100.7	99.9	101.2(2)	99.9(2)
$0(1^{u}) - M(3) - 0(3^{u})$	x 2	84 5(1)	84.9(1)	84.5(1)	83.3	83.2	83.3	83.3(2)	81.9(2)
$0(1^{u}) - M(3) - O(3^{u})$	*4	05 5 61	95 1(1)	95 5(1)	96.7	96.8	96.7	96.7(2)	98.1(2)
	~7	32,2(1)	<u></u>	<u></u>			00 0		<u>90 0</u>
CO-M(3)-02		90.0	90.0	90.0	30.0	90.0	90.0		
0(2) - M(4) - O(2)		76.9(2)	76.7(2)	78,6(1)	76.2	76.0	76.0	76.6(2)	74.8(2)
$0(2^{4}) - M(4) - 0(4^{4})$	v 2	70 / /1	76 1 (1)	72 8(1)	75.9	76.1	76.9	76.4(2)	76.4(2)
$0(2^{u}) \times ((2^{u}) - 0(4^{u})$	A2	70.4(1)		72.0(1)	, J. J	02 1	00.0	02 5(2)	92 6(2)
0(2) - M(4) - 0(4)	XZ	84.3(1)	82.0(I)	8/.1(1)	03.5	03.1	03.0	03.3(2)	02.0(2)
$U(2_{1}) - M(4) - O(5_{4})$	x2	87.8(1)	87.7(1)	86.6(1)	86.1	85.9	80.2	85.9(2)	80.3(2)
0(4,)-M(4)-0(5,)	x 2	83.6(1)	82.2(1)	80.6(1)	84.0	84.4	84.5	84.0(2)	85.0(2)
$0(4^{u}) - M(4) - 0(6^{u})$	x 2	62.6(1)	64.3(1)	65.5(1)	63.4	63.1	63.0	63.2(2)	62.8(2)
$0(5^{u}) - M(4) - 0(6^{d})$	x ?	71 0/1	71.1(1)	70.0(1)	70.7	70.8	70.4	70.5(2)	70.7(2)
$0(5^{u}) - M(A) - 0(c^{u})$	···2	/1.0(1)	50 C(1)	50 7(1)	61 6	62 0	61 7	61 6(2)	62 3(2)
	X.L	5/.8(1)	20.0(T)	J2./(T)	01.0	02.0	02.1	04.0(2)	97 1/2
U(0) - M(4) - U(6)		<u> 87.1(2)</u>	86.6(2)	86.5(1)	00.8	0/.2	00.3	00.2(2)	07.1(2)
< 0−M(4)−0>		76.0	75.8		75.8	75.9	75.9	/5.8	/5.9
0(7)-0(7)-0(7)		65 7(1)	67 1/1	67 9/9	63 7	63 5	62 6	67 8/31	64 3(4)
		0, (1)	0/.I(I)	07.2(2)	0.000	0.00	02.0	0 200	0 205
Δ		0.270	0.254	0.253	0.292	0.294	0.304	0.302	0.205
	• • • • • •								

	<u> #</u> ₽₀	<u> #</u> E₀> 0	Robs	R ^{øbs}	<u>Ra11</u>	$\frac{R_w^{all}}{R_w^{all}}$	B	Abs	Wts
(21)	1161	1087	7.7	_	10.2	-		No	1
(22)	1505	1216	3.9	3.4	5.8	4.0	A	Yes	1
(24)	_	1122	4.7	3.2	-	-	A	Yes	w
(26)	1389	963	8.0	-	-	-	I	Yes	1
(28)	_	1611	4.8	-	-	-	A	Yes	1
(29)	1511	/985	6.9	-	-	-	I	Yes	1
(30)	-	1701	3.5	-	-	-	A	Yes	1
(34)	~ 1200	959	8.5	-	-		I	No	W
(35)	~1200	971	9.2	-	-	-	I	No	W
(36)	~1200	865	4.2	-	-	-	A	No	Ŵ
(37)	719	633	4.0	-	-	-	I	No	W
(38)	> 885	825	3.0	3.6	-	-	A	Yes	W
(39)	> 736	736	6.2	6.4	-		I	Yes	W
(40)	1072	971	-	-	-	7.9	A	No	W.
(41)	828	753	5.6	4.4	-	-	I	No	W
(42)		860	12.1	-	-	-	I	No	-
(43)		838	11.1	-	-	-	I	No	-
(44)		920	12.8	-	-	-	I	No	-
(45)		927	10.0	-	-	-	I	No	-
(46)		840	11.8	-	-	-	I	No	-
(48)]	L 021	11.5	-	-	-	I	No	-
(49)		480	10.4	-	-	-	I	No	-
(50)		510	9.7	-	-	-	I	No	-
(51)		450	9.3	-	-	-	I	No	-
(52)		-	14.8	-	-	-	A	Yes	-
(53a)	869	818	3.1	3.5	-	-	A	No	1
(53b)	795	732	4.4	4.8	-	-	A	No	Ţ
(54)	1767	1217	4.5	4.9	-	-	A	Yes	1
(55)	1681	1041	4.0	4.7			A	ies	1
(56a)	1640	1376	3.2	3.5	4.4	4.6	A	ies	T 1
(56b)	731	709	2.1	2.7	2.3	3.2	A	NO	1
(57)	1761	1383	3.7	4.5	4.4	-	A	ies	1
(58)	1826	1263	4.1	4.4	-	-	A	ies	1
(59)	1626	1421	3.6	4.1		-	A	ies	Т
(60)	854	818	10.2	-	12.0	-	L T	NO	_
(61)		734	10.2	-		-	Ť	NO	_
(62)	427	369	14.0	-	18.0	-	Ť	NO	_
(63)		650	12.0	-	-	-	L T	NO	1
(64)	-	554	14.9	-	-	-	1 -	No	1
(65)	-	924	11.9	-	-	-	T	NO	1
(66)	-	701	16.9		-	<u> </u>	T T	NO	1
(67)	1565	1193	4.7	4.8	/.0	0.9	A	Veg	1
(68)	1628	1158	3.6	3./	5.0	5.4 / /	A .	Voc	1
(69)	1257	1015	3.2	3.4	4.5	4.4		Vee	
(70)	13/3	1068	2.4	-	3.8	-	A	Ies	1
(71)	13/3	1068	2.4	-	3.8	-	A	Ves	1
(72)	1369	1035	2.5	- 1	4.0	-	A	Ies	1
(73)	155/	1101	4.8	2.1	-	-	A A	Tes	- -
(74)	1/14	TT2T	4./	-	-	_	A	100	

APPENDIX B7. REFINEMENT DETAILS FOR C2/m AMPHIBOLES

B: temperature-factor type, I: isotropic, A: anisotropic, 1: unit weights, w: statistical weights.

APPENDIX C. MODERN DATA FOR ORTHORHOMBIC STRUCTURES (Pnma)

[23] [31] [32] [33] [47]	Anthophyllite Holmquistite Gedrite Gedrite Holmquistite	Finger (1967, 1970a, b) Whittaker (1969), Irusteta & Whittaker (1975 Papike & Ross (1970) Papike & Ross (1970) Litvin <i>et al.</i> (1973a)	D
		PAG	E
Appe	ndix C1.	Chemical compositions and unit-cell data 41	4
Appe	ndix C2.	Atomic positions 41	5
Appe	ndix C3.	Site populations and annotations 41	7
Appe	ndix C4.	Cation-anion and cation-cation distances 42	0

		120
Appendix C5.	Anion-anion distances	422
Appendix C6.	Selected interatomic angles	425
Appendix C7.	Refinement details	428

413

1

APPENDIX C1. CHEMICAL COMPOSITIONS AND UNIT-CELL DATA

* ************************************	[2	3]	[31]	[3	2]	[33]	[47]
Si0	57.14	-	59	•06	44.22	45.52	40.75	-
A1 0	1 04	-	10	.20	- 22 70	0.62	0.25	-
$\frac{1}{2}$	1.94	_	12	• 30	23.79	T0.33	1 22	_
Fe0 3	11 12	_	10	* 30 8/	0.20	9.93	10 20	_
MnO	0.11		10	25	0 16	0 13	0.25	_
MgO	26.82	_	8	• 2.5 • 82	20.69	22.09	13.81	_
CaO	0.64	-	0	.21	0.62	0.22	0.27	
Na ₂ 0	0.27	_	0	.11	-	1.78	1.92	-
κ	0.06	_	Õ	.05	-	_	0.04	_
$H_{2}^{2}O$	2.06	-	2	.16	1.42	_	2.68	-
F [∠]	-	-	0	.18	_ '	-	0.01	-
	100.16	-	99	.95	100.31	98.62	100.38	-
0 – F		-	0	.08			_	-
,Total	100.16	-	99	.87	100.31	98.62	100.38*	-
Si	8.00	7.87	7.89	7.91	6.00	6.25	5.953	8.00
A1	_	0.13	0.11	0.09	2.00	1.75	2.047	-
Σ^{iv}	8.00	8.00	8.00	8.00	8.00	8.00	8.000*	8.00
A1	-	0.05	1.84	1.85	1.78	1.21	1.365	2.09
Ti ₃₊	-	-	0.02		-	0.06	0.026	
$\frac{Fe^{2+}}{2+}$		·	0.24	0.24	0.02	1.14	0.140	0.23
Fe	1.47	1.17	1.21	1.20	1.04		2.351	1.00
Mn	-		0.03	0.03	0.02	0.02	0.031	0.02
Mg	5.53	5.79	1./6	1.75	4.16	4.52	3.009	1.91
Ca Na		0.09	0.03	_	0.09	0.03	0.042	0.11
INA T-f		0.05	1 70	1 00	-	-	-	1 75
₩ vi		7 10	$\frac{1.79}{6.05}$	$\frac{1.02}{6.01}$			<u> </u>	$\frac{1.75}{7.11}$
	7.00	<u>7.10</u>	0.95	0.91	<u> </u>	0.98	0.900*	
Na	-	0.05	-	-	-	0.47	0.544	0.04
K A		<u> </u>	0.01	0.01			0.007	0.02
$\sum \mathbf{r}$		0.05	0.01	0.01	-	0.47	0.551	0.06
Basis			1					
a (Å)	18.56	0(3)	18.2	9	18.53	1(4)	18,601(4)	18.27
b (Å)	18.01	3(2)	17.6	7	17.74	1(4)	17.839(3)	17.67
c (Å)	5.28	18(9)	5.2	8	5.24	9(5)	5.284(2)	5.30
V (Å ³)	1765.	8(7)	1706	• 4	1725.	8(14)	1753.2(6)	1711.0

. •

APPENDIX C2. ATOMIC POSITIONS

		[2	23]	[31]	[32]		
		A-chain	B-chain	A-chain	B-chain	A-chain	B-chain	
01	x	0.1825(2)	0.0685(2)	0.1803(5)	0.0698(5)	0.1796(4)	0.0695(5)	
	y	0.1635(2)	0.1635(2)	0.1562(5)	0.1563(5)	0.1603(4)	0.1584(5)	
	z	0.0573(6)	-0.2746(6)	0.0492(16)	-0.2611(15)	0.0312(15)	-0.2860(17)	
02	x	0.1855(2)	0.0630(2)	0.1848(5)	0.0653(5)	0.1840(5)	0.0622(4)	
	y	0.0777(2)	0.0773(2)	0.0747(5)	0.0744(5)	0.0737(5)	0.0742(4)	
	z	-0.4377(6)	0.2187(6)	-0.4087(17)	0.1971(18)	-0.4436(18)	0.1875(14)	
03	x	0.1822(3)	0.0694(3)	0.1822(8)	0.0683(7)	0.1797(7)	0.0700(6)	
	y	1/4	1/4	1/4	1/4	1/4	1/4	
	z	-0.4437(8)	0.2267(9)	-0.4468(24)	0.2322(24)	-0.4571(27)	0.2087(23)	
04	x	0.1869(2)	0.0668(2)	0.1873(5)	0.0653(5)	0.1868(4)	0.0679(4)	
	y	-0.0011(2)	-0.0065(2)	0.0042(4)	0.0013(5)	0.0022(4)	-0.0046(4)	
	z	0.0721(6)	-0.2920(6)	0.0612(15)	-0.2692(16)	0.0425(16)	-0.2985(16)	
05	x	0.1978(2)	0.0508(2)	0.1943(4)	0.0548(4)	0.1968(5)	0.0549(4)	
	y	-0.1168(2)	-0.1112(2)	-0.1146(5)	-0.1134(5)	-0.1090(5)	-0.1026(4)	
	z	0.3293(6)	0.0570(6)	0.3373(14)	0.0505(15)	0.3206(17)	0.0943(15)	
06	x	0.2009(2)	0.0484(2)	0.2034(4)	0.0462(4)	0.2022(4)	0.0472(5)	
	y	-0.1303(2)	-0.1402(2)	-0.1297(5)	-0.1335(5)	-0.1313(4)	-0.1450(5)	
	z	-0.1739(6)	-0.4493(6)	-0.1686(16)	-0.4494(15)	-0.1752(15)	-0.4097(18)	
07	x	0.2027(3)	0.0450(3)	0.2054(7)	0.0424(7)	0.2030(6)	0.0454(7)	
	y	-1/4	-1/4	-1/4	-1/4	-1/4	-1/4	
	z	0.5397(8)	0.2221(9)	0.5451(21)	0.2424(23)	0.5138(21)	0.2153(26)	
Tl	x	0.23039(7)	0.01863(8)	0.2305(2)	0.0190(2)	0.2315(2)	0.0202(2)	
	y	-0.16540(7)	-0.16626(7)	-0.1621(2)	-0.1622(2)	-0.1631(2)	-0.1645(2)	
	z	-0.4344(2)	0.2760(2)	-0.4327(6)	0.2770(2)	-0.4487(6)	0.2971(6)	
Τ2	x	0.22731(8)	0.02469(8)	0.2262(2)	0.0244(2)	0.2278(2)	0.0266(2)	
	y	-0.07956(7)	-0.08177(7)	-0.0761(2)	-0.0769(2)	-0.0760(2)	-0.0802(2)	
	z	0.0622(2)	-0.2227(2)	0.0735(6)	-0.2146(6)	0.0502(6)	-0.1985(6)	
M1	x	0.12	489(9)	0.124	48(2)	0.124	44(2)	
	y	0.16	329(7)	0.159	90(1)	0.161	11(2)	
	z	0.39	11(3)	0.394	44(6)	0.373	37(8)	
M2	x	0.12	488(9)	0.125	55(2)	0.124	48(2)	
	y	0.07	317(7)	0.068	37(2)	0.073	31(2)	
	z	-0.10	99(3)	-0.104	45(7)	-0.128	31(7)	
M3	x	0.12	579(14)	0.125	55(2)	0.124	49(3)	
	y	1	/4	1/	/4	1/	44	
	z	-0.10	89(5)	-0.106	51(8)	0.124	48(10)	
M4	x	0.12	371(4)	0.122	21(10)	0.118	89(1)	
	y	-0.00	982(4)	-0.008	36(8)	-0.014	5(1)	
	z	0.38	77(2)	0.398	38(37)	0.363	86(5)	
A	x y z		- - -	- -	•	0.115 -1/ 0.853	1(3) 4 3(47)	

_

		[3	3]	[4]	[
		A-chain	B-chain	A-chain	B-chain
01	x	0.1790(4)	0.0701(4)	0.179(1)	0.069(1)
	y	0.1581(4)	0.1568(4)	0.157(1)	0.153(1)
	z	0.0315(15)	-0.2900(15)	0.030(6)	-0.278(5)
02	x	0.1850(4)	0.0635(4)	0.185(1)	0.064(1)
	y	0.0731(4)	0.0739(4)	0.075(1)	0.075(1)
	z	-0.4409(15)	0.1808(15)	-0.420(5)	0.189(5)
03	x	0.1811(6)	0.0701(6)	0.184(2)	0.072(1)
	y	1/4	1/4	1/4	1/4
	z	-0.4662(22)	0.2111(22)	-0.458(8)	0.224(7)
04	x	0.1863(4)	0.0685(4)	0.1883(5)	0.0649(5)
	y	0.0028(4)	-0.0049(4)	0.0106(4)	0.0018(4)
	z	0.0445(16)	-0.2986(15)	0.069(2)	-0.263(2)
05	x	0.1973(4)	0.0545(4)	0.190(1)	0.054(1)
	y	-0.1100(4)	-0.1014(4)	-0.115(1)	-0.117(1)
	z	0.3215(14)	0.0989(14)	0.345(6)	0.051(5)
06	x	0.2030(4)	0.0473(4)	0.201(1)	0.049(1)
	y	-0.1320(4)	-0.1461(4)	-0.130(1)	-0.125(1)
	z	-0.1763(16)	-0.4036(15)	-0.175(5)	-0.439(5)
07	x	0.2050(6)	0.0453(6)	0.208(2)	0.042(1)
	y	-1/4	-1/4	-1/4	-1/4
	z	0.5141(22)	0.2154(21)	0.544(8)	0.229(7)
TL	x	0.2323(1)	0.0199(1)	0.2305(4)	0.0190(5)
	y	-0.1626(2)	-0.1641(2)	-0.1630(4)	-0.1622(4)
	z	-0.4505(6)	0.3018(5)	-0.436(2)	0.277(2)
T2	x	0.2282(1)	0.0268(1)	0.2265(5)	0.0230(4)
	y	-0.0759(2)	-0.0799(2)	-0.0757(4)	-0.0767(4)
	z	0.0509(6)	-0.1947(6)	0.074(2)	-0.206(2)
M1	x	0.12	242(1)	0.1	25(1)
	y	0.10	503(1)	0.1	59(1)
	z	0.3	705(5)	0.4	01(4)
м2	x	0.12	247(1)	0.1	255(5)
	y	0.07	724(2)	0.0	671(3)
	z	-0.12	290(6)	-0.1	10(2)
М3	x y z	0.12	243(2) 1/4 294(7)	0.1	.25(3) 1/4 .05(8)
M4	x	0.1	184(1)	0.1	.20(1)
	y	-0.0	153(1)	0.0	0003(9)
	z	0.3	635(4)	0.3	885(7)
A	x y z	0.1 - 0.8	171(8) 1/4 480(27)		-

Anthophyllite[23]

M1	0.960(3)Mg $+0.040$ Fe	0.54(3) Å ²
M2	0.973(3)Mg + 0.027Fe	0.55(3)
M3	0.966(4)Mg+0.034Fe	0.49(4)
M4	0.349(4)Mg + 0.651Fe	0.78(2)

Cation site-populations determined by constrained least-squares refinement; the equality of the M(1, 2, 3) site-equivalent isotropic temperature-factors supports the site occupancies obtained for these sites. No details of the chemical analysis are given by Finger (1967, 1970b); presumably it is taken from Rabbitt (1948) (sample #30). This anthophyllite has been re-analyzed by Seifert & Virgo (1974, 1975), giving a formula unit of Na_{0.05}Ca_{0.09}Mg_{5.79}Fe²⁺1.17 $(Si_{7.81}Al_{0.18})O_{22}(OH)_2$ as compared with the formula Mg_{5.53}Fe_{1.47}Si₈O₂₂(OH)₂ used in the structure refinement. Seifert & Virgo (1974) listed p values $[p = X^{\text{Fe}}_{\text{M123}} (1 - X^{\text{Fe}}_{\text{M4}}) / X^{\text{Fe}}_{\text{M4}}$ $(1-X^{Fe}_{M128})$] of 0.0186 from the site occupancies given above and 0.0201 from their Mössbauer results (Appendix F, #{76}. If allowance is made in the X-ray results for the small amount of Ca that must occur at M4, a p value of 0.0209 results, in exact agreement with the Mössbauer results. It would thus appear that the X-ray site-populations of Finger (1970b) may be adjusted to give the correct unit-formula and the following site-populations:

- M1 0.967Mg+0.033Fe²⁺
- M2 0.978Mg+0.022Fe²⁺
- M3 $0.972Mg + 0.028Fe^{2+}$
- M4 0.045Ca+0.444Mg+0.511Fe²⁺

In addition, the formula is in reasonable agreement with the relationship between alkali occupancy of the A site and tetrahedral Al demonstrated by Robinson *et al.* (1971). Mao & Seifert (1974) gave polarized optical-absorption spectra for this anthophyllite (details in text).

Holmquistite[31]

The authors give seven sets of site occupancies, all of which are reproduced here. For most sets, the only differences are between M4 occupancies:

1-3	M1	0.59Mg + 0.41Fe	0.63	Ų
1–3	M2	0.92A1+0.08Fe	0.61	
1–3	M3	0.44Mg+0.56Fe	0.69	
1	M4	0.97Li + 0.03Fe	1.50	
2	M4	0.911Li+0.039Mg		
		+0.015Na+0.015Ca+	0.02	
3	M4	0.909Li+0.046Mg		
		+0.004Fe $+0.011$ Na $+$	0.03	
		•		

4	M1	0.605Mg+0.390Fe
4	M2	$0.920 \text{Al} + 0.080 \text{Fe}^{3+}$
4	M3	0.44Mg + 0.56Fe
4	M4	0.895Li+0.055Mg
		+0.015Na $+0.015$ Ca $+0.02$
5	M1	0.609Mg+0.390Fe
5	M2	$0.935A1 + 0.065Fe^{3+}$
5	M3	0.44Mg+0.56Fe
5	M4	0.910Li+0.049Mg
		+0.011Na $+0.03$
6	M1	0.60 Mg + 0.40 Fe
6	M2	$0.93 \text{Al} + 0.07 \text{Fe}^{3+}$
6	M3	0.44Mg+0.56Fe
6	M4	0.91Li+0.05Mg
		+0.01Na $+0.03$
7	M1	0.52Mg + 0.08Al
		$0.37 \mathrm{Fe}^{2+} + 0.03 \mathrm{Fe}^{3+}$
7	M2	$0.81Al + 0.07Fe^{3+} + 0.12Mg$
7	M3	0.36Mg + 0.08Al
		$+0.04 \mathrm{Fe}^{3+}+0.52 \mathrm{Fe}^{2+}$
7	M4	0.91Li+0.05Mg

- M4 0.91Li+0.05Mg +0.01Na+0.03□
- 1: occupancies from refinement (unconstrained).
- 2: as 1, except Na, Ca, Li and □ assigned (to M4) from original formula, such that scattering power at M4 is the same.
- 3: as 2, except corrected formula used.
- 4: assigned from original formula, assuming all Na, Ca, Li and □ are at M4, all Al and sufficient Fe³⁺ are at M2, M3 is as refinement indicates and M1 contains remaining cations.
- 5: as 4, except corrected formula used.
- 6: occupancies adjusted to correspond closely with *both* the chemical composition and the diffraction results.
- 7: adjustment of 6 to take account of M-O distances.

The chemical composition, which includes $3.33 \text{ wt. }\% \text{ Li}_2\text{O}$, was taken from von Knorring & Hornung (1961), who also give the composition of a coexisting hornblende. Irusteta & Whittaker (1975) suggested that some of the Na and Ca indicated by the holmquistite analysis might well be due to slight contamination by the coexisting hornblende, and corrected the composition of the holmquistite by assuming a 2% contamination; this they cited as a probable upper limit of contamination; they interpreted the diffraction results in terms of both analyses. Site occupancies were derived (set 1) by unconstrained refinement of binary site-populations;

there was some deviation from the site chemistry indicated by the chemical analysis but this was, for the most part, accounted for by the presence of small amounts of other cations present. The equivalent isotropic temperature-factors at the M1, M2 and M3 sites are similar, supporting the refined occupancies. The adjustment of the site occupancies by comparison of mean bondlengths and ionic radii (possibility 7) is probably of little significance as the mean bond-lengths in the amphiboles do not correspond very closely with the sum of the relevant ionic radii (e.g., $<Mg^{-iii}F_2^{iv}O_4> = 2.073$ Å,<M(3)-O>, in fluor-tremolite = 2.040 Å, in protoamphibole = 2.048 Å). Examination of mean bond-lengths indicate that those from set number 6 are to be preferred, with the bulk of the excess 0.10Fe^{3+} atoms p.f.u. assigned to the M(1) site. This is also supported by the Mössbauer study of Law (1973); see Appendix F, $\#{65}$. The small amount of tetrahedral Al (0.09 atoms p.f.u.) is probably ordered in the T1A site (see section on tetrahedral Al and mean bond-lengths for orthorhombic amphiboles, this study).

Gedrite[32]

TIA	0.66Si+0.34Al	0.43(4) Å ²
T1B	0.62Si+0.38Al	0.42(4)
T2A	1.00Si+0.00Al	0.46(4)
T2B	0.84Si+0.16Al	0.58(4)
M1	0.12(1)Fe*+ 0.88 Mg	0.75(7)
M2	0.04(1)Fe*+ 0.36 Mg+ 0.60 Al	0.34(7)
M3	0.10(2)Fe*+0.90Mg	0.47(10)
M4	$0.42 Fe^* + 0.55 Mg +$	
	0.02Ca + 0.01Na	0.63(4)
Α	0.34(3)Na+0.66□	1.47(49)
	· · · · · · · · · · · · · · · · · · ·	

Tetrahedral site-populations assigned bv "method 2" of Papike et al. (1969), octahedral site-populations assigned by constrained leastsquares refinement during structure refinement and A-site occupancy assigned by unconstrained site-population refinement. The cell contents derived from the chemical analysis (Papike & Ross 1970) indicate an A-site occupancy of 0.45 Na. However, using this value during the refinement gave an A-site isotropic temperaturefactor of 2.5 Å², a value the authors felt to be anomalously high. Refinement of the A-site occupancy converged to a value of 0.34(3) Na and an isotropic temperature-factor of 1.47 $Å^2$; this result is supported by the fact that the A-site isotropic temperature-factor is identical to the value found for gedrite[33] (Papike & Ross 1970).

If the refined A-site occupancy is taken as being correct, the remaining contents of the cell must be adjusted to maintain electroneutrality. At first sight, the possibility of making an adequate adjustment might seem remote. However, the work of Robinson et al. (1971) provides a significant indication of the type of adjustment to be made. These authors suggested that the anthophyllite-gedrite series of amphiboles is a solid solution between two end-member compositions $\Box R^{2+}_{2}R^{2+}_{5}Si_{8}O_{22}(OH)_{2}$ and $Na_{0.5}R^{2+}R^{2+}R^{3+}R^{3+}L_5Si_6Al_2O_{22}(OH)_2$. This being the case, an A-site occupancy of 0.34 Na corresponds to a total cell-content Na_{0.34} $R^{2+}_{2}R^{2+}_{3,98}R^{3+}_{1,02}Si_{6,64}Al_{1,36}O_{22}(OH)_{2}$. The grand <T–O> distance is compatible with the contents of the tetrahedral sites derived here and not compatible with that indicated by the chemical analysis. However, a content of octahedral trivalent cations of 1.02 atoms p.f.u. is not compatible with the observed mean bond-lengths at the octahedral sites. Possibly a hydroxyl deficiency is accompanied by an increase in content of trivalent cations; without any evidence, further speculation is of questionable value. A new chemical analysis of this amphibole is desirable. Using the curves developed earlier in this study, the following tetrahedral sitepopulations are derived:

T1A	0.74Si+0.26Al
T2A	1.00Si
TIB	0.71Si+0.29Al
T2B	0.87Si + 0.13Al

Polarized optical-absorption spectra of this gedrite are given by Mao & Seifert (1974) (details in text).

Gedrite[33]

T1A	0.73Si+0.27Al	0.56(4) Å ²
T1B	0.56Si + 0.44Al	0.50(4)
T2A	0.98Si+0.02A1	0.44(4)
T2B	0.71Si+0.29A1	0.59(4)
M1	0.33(1)Fe*+0.67Mg	0.71(5)
M2	0.09(1)Fe*+ 0.23 Mg+ 0.68 Al	0.30(6)
M3	0.39(2)Fe*+ 0.61 Mg	0.57(7)
M4	0.65Fe*+0.32Mg	
	+0.02Ca+0.01Na	0.62(3)
A	0.52(3)Na+0.48□	1.53(30)

Tetrahedral site-populations assigned by "method 2" of Papike *et al.* (1969), octahedral site-populations assigned by constrained leastsquares refinement and A-site occupancy assigned by unconstrained site-population refinement. The grand $\langle M-O \rangle$ deviates significantly from the trend of the remaining three *Pnma* amphiboles in Figure 49, suggesting that the crystal used for the structure refinement differs somewhat from the nominal composition. The chemical analysis (Robinson & Jaffe 1969, sample no. I34I) includes 0.011 Cr_2O_3 , 0.001 NiO, 0.001 SrO, 0.001 BaO, 0.04 P_2O_5 and 0.01 Cl; cell contents include 0.005 P. The unresolved Mössbauer spectrum is presented by Seifert (1977).

Holmquistite[47]

M1 0.48Fe+0.52Mg M2 0.92Al+0.08Mg

1

M3 0.54Fe+0.46Mg

M4 0.90Li+0.05 Mg

A 0.30Na + 0.04(Ca, K)

Site populations were assigned on the basis of mean bond-lengths and by comparison with results of previous structure-refinements. The authors proposed that Li is positionally disordered off the 2-fold axis at the M4 site; this was not observed in the refinement of holmquistite[31] by Irusteta & Whittaker (1975).

APPENDIX C4. CATION-ANION AND CATION-CATION DISTANCES ($^{\text{A}}$)

	[23]		[31]		[32]	
	A-chain	B-chain	A-chain	B-chain	A-chain	B-chain
T1-01 T1-05 T1-06 T1-07 < T1-0 >	1.618(3) 1.640(3) 1.611(3) 1.615(2) 1.621	1.618(3) 1.636(3) 1.622(3) 1.617(2) 1.623	1.638(10) 1.618(9) 1.587(9) <u>1.623(5)</u> <u>1.616</u>	1.630(10) 1.613(9) 1.610(9) <u>1.620(10)</u> <u>1.618</u>	1.651(8) 1.673(9) 1.635(9) <u>1.640(5)</u> <u>1.650</u>	1.665(9) 1.658(8) 1.654(10) <u>1.643(6)</u> 1.655
T2-02 T2-04 T2-05 T2-06 ∠T2-0	1.619(3) 1.601(3) 1.655(3) <u>1.621(3)</u> <u>1.624</u>	1.630(3)1.608(3)1.643(3)1.653(3)1.634	1.630(9) 1.589(8) 1.657(8) <u>1.644(9)</u> <u>1.630</u>	1.645(9) 1.597(10) 1.638(9) <u>1.643(9)</u> 1.631	1.635(9) 1.579(8) 1.638(9) <u>1.607(9)</u> 1.615	1.648(8) 1.630(8) 1.670(8) <u>1.641(10)</u> <u>1.647</u>
M1-01 M1-02 M1-03 <m1-0></m1-0>	2.062(3) 2.112(3) 2.082(3) 2.08	2.053(4) 2.133(3) 2.063(3) 84	2.086(6) 2.123(9) 2.095(9) <u>2.10</u>	2.079(9) 2.123(9) 2.095(8) 0	2.067(9) 2.130(9) 2.078(9) <u>2.09</u>	2.054(10) 2.158(8) <u>2.061(8)</u> <u>1</u>
M2-01 M2-02 M2-04 <m2-0></m2-0>	$2.138(3)2.067(3)2.010(3)\underline{2.00}$	2.121(3) 2.082(3) 2.037(3) 76	2.013(9) 1.941(10) <u>1.828(9)</u> <u>1.93</u>	2.029(9) 1.938(10) 1.841(10) 2	2.028(8) 1.985(10) <u>1.924(9)</u> <u>1.98</u>	2.005(9) 2.021(8) <u>1.951(8)</u> <u>6</u>
M3-01 x2 M3-03 ⟨M3-0⟩	2.075(3) 2.055(5) <u>2.0</u>	2.079(3) 2.059(5) 70	2.103(9) 2.077(14) 2.09	2.109(9) 2.070(13) 5	2.055(8) 2.017(15) <u>2.05</u>	2.097(9) 2.023(13) 7
M4-02 M4-04 M4-05 M4-06	2.156(3) 2.044(3) 2.387(3) 3.481(3)	2.128(3) 1.996(3) 2.867(3) 2.865(3)	2.125(19) 2.157(21) 2.314(19) 3.465(19)	2.090(19) 2.045(21) 2.886(19) 2.728(18)	2.217(9) 2.123(9) 2.222(9) 3.864	2.103(8) 2.015(9) 2.416(8) 2.923
<m4-0>VI <m4-0>VI <m4-0></m4-0></m4-0></m4-0>	$\frac{2.491}{2.263}$		<u>2.476</u> <u>2.243</u>		$\frac{2.485}{2.183}$	
A-06 A-07	_	-	-		2.65(2) 2.41(3)	2.64(2) 2.30(3)
< A-0>	-		-		2.55	:
M1-M1 M1-M2 M1-M3 M1-M4 M2-M3	3.12 3.096 3.068(3) 3.12	24(2) 3.105 3.068(3) 18(1) 85(1)	3.21 3.080 3.093 2.96 3.20	6 3.090 3.089 2 4	3.15 3.043(6) 3.066(6) 3.11 3.13	4(4) 3.059(6) 3.053(6) 4(4) 5(3)
M2-M4	3.024	3.046	2.958	2.989	3.013(5)	3.087(5)
T1-T2 T1-T2 T1-T1	3.076(2) 3.045(2) 3.049(2)	3.044(2) 3.055(2) 3.017(2)	3.019 3.076 3.106	3.003 3.080 3.103	3.040(5) 3.050(5) 3.080(4)	3.001(5) 3.041(5) 3.032(4)

~

	E	33]	[4	<u></u>]
	A-chain	B-chain	A-chain	B-chain
T1-01	1.653(8)	1.679(8)	1.67	1.62
T1-05	1.660(8)	1.677(8)	1.62	1.58
T1-06	1.641(9)	1,668(8)	1.59	1.73
T1-07	1.649(5)	1.666(5)	1.59	1.63
< T1-0 >	1.651	1.672	$\frac{1.62}{1.62}$	1.64
•			<u> </u>	
T2-02	1.613(7)	1.683(8)	1.62	1.59
T2-04	1.605(8)	1.640(8)	1.67	1.61
T2-05	1.656(8)	1.679(8)	1.72	1.64
T2-06	<u>1.631(8)</u>	1.660(8)	1.69	1.58
∠ T2−0 >	1.626	1.666	1.68	1.61
M1-01	2.059(8)	2.057(8)	2,20	1.98
M1-02	2.165(8)	2.156(8)	2.07	2.16
M1-03	2.101(8)	2.068(8)	2.08	2.09
<m1−0></m1−0>	2.1	01	2.10)
M2-01	2 017(9)	2 004 (8)	2 00	-
M2_02	2.017(0)	2.004(8)	2.00	2.04
M2-04	1020(0)	1.993(8)	1.9/	1.95
/M2=0\	1.920(8)	$\frac{1.947(8)}{70}$	1.79	1.79
	1.9	79	1.92	2
M3-01	2.107(8)	2.119(8)	2.04	2.18
M3-03	2.068(12)	2.061(12)	2.16	1.99
<m3-0></m3-0>	2.0	97	2.10)
M4-02	2.254(8)	2.121(8)	2.05	1.97
M4-04	2.129(8)	2.019(8)	2.10	2.12
M4-05	2.246(7)	2,391(8)	2.41	2.97
M4-06	3.911	2,951	3,59	2.73
<m4-0> VIII</m4-0>	2.5	03	2.49	
<m4-0>^{V⊥}</m4-0>	2.1	93	2.23	-
A-06	2.64(1)	2.64(1)	_	-
A-07	2.40(2)	$2 \cdot 0 + (1)$ 2 25(2)	_	_
••	2.54	4		. –
141 141		-		
MI MO	3.19	97(3)	3.22	
MI-M2	3.0/3(4)	3.068(4)	3.15	3.05
MI MA	3.087(4)	3.086(4)	3.12	3.06
гц—гі4 мо_мо	3.13	32(3)	2.81	
M2-M3	3.16	5(3)	3.23	
m2-m4	3.036(4)	3.104(4)	2.87	2.92
T1-T2	3.067(4)	3.056(4)	3.01	2.97
T1-T2	3.055(4)	3.024(4)	3.10	3.12
T1-T1	3.116(4)	3.063(4)	3.07	3.10

APPENDIX C5. ANION - ANION DISTANCES (Å)

	C	าวไ	<u>Гэ</u>	-1		- - -	[22	7
	2ے A-chain	ച B−chain	L ³ A-chain	ц B-chai	ر] n A-chain	B-chain	A-chain	B-chain
01-05	2,664(4)	2.667(4)	2.656	2.647	2.701(11)	2.704(12)	2.696(10)	2.715(10)
01-06	2.657(4)	2.648(5)	2.639	2.646	2.728(11)	2.699(13)	2.724(11)	2.725(11)
01-07	2.643(5)	2.635(5)	2.668	2.639	2.697(12)	2.703(14)	2.712(12)	2.743(11)
05-06	2.636(5)	2.659(5)	2.628	2.669	2.677(12)	2.713(13)	2.683(11)	2.749(11)
05-07	2.646(3)	2.649(3)	2.640	2.628	2.700(9)	2.696(8)	2.700(8)	2.725(8)
06-07	2.635(4)	2.632(4)	2.609	2.625	2.664(10)	2.709(14)	2.666(11)	2.736(11)
(0-0) T1	2.647	2.648	2.640	2.642	2.694	2.704	2.697	2.732
02-04	2.742(4)	2,753(4)	2.728	2.764	2.747(11)	2.769(10)	2.750(10)	2.816(10)
02-05	2.679(4)	2.638(4)	2.660	2.647	2.683(12)	2.673(11)	2.673(10)	2.691(10)
02-06	2,627(4)	2.654(4)	2.647	2.650	2.641(12)	2.654(12)	2.644(11)	2.700(11)
04-05	2.496(4)	2.655(4)	2.559	2.645	2,460(12)	2.706(11)	2.495(11)	2.727(11)
04-06	2.677(4)	2.570(4)	2.675	2.589	2.643(11)	2.586(12)	2.690(11)	2.608(10)
05-06	2.669(5)	2.725(5)	2.690	2.668	2.633(12)	2.753(13)	2.661(11)	2.775(11)
<0-0> T2	2.648	2.666	2.660	2.661	2.634	2.690	2.652	2.720
01B-02B	3.0	96	3.	207	3.1	.44	3.1	.66
01A-02A	3.0	83	3.	205	3.1	.57	3.1	.75
01B-02A	2.8	801	2.	667	2.7	28	2.7	26
01A-02B	2.8	338	2.	669	2.7	'82	2.7	'38
01B-03B	3.0)60	3.	146	3.1	.11	3.1	.17
01A-03A	3.0)62	3.	135	3.1	.22	3.1	.20
01B-03A	2.7	71	2.	816	2.7	60	2.8	310
01A-03B	2.7	/63	2.807		2.743		2.773	
02A-02B	2.9	909	3.	018	2.9)74	3.0	17
03A03B	2.7	23	2.	686	2.685		2.678	
02B-03B	3.1	.13	3.	109	3.1	.24	3.1	.48
02A-03A	3.1	.04	<u>3.</u>	104	<u>3.1</u>	<u>.30</u>	<u>3.1</u>	<u>.59</u>
<0-0> M1	2.9	945	2.	964	2.9	55	2.9	<u>169</u>
01A-01B	2.7	48	2.	602	2.6	34	2.6	644
01B-02B	3.0)35	2.	820	2.9	03	2.8	97
01A-02A	3.0)38	2.	815	2.9	29	2.9	23
01B-02A	2.8	801	2.	667	2.7	28	2.7	26
01A-02B	2.8	338	2.	669	2.7	'82	2.7	38
01B-04B	3.0	064	2.	740	2.8	93	2.8	185
01A-04A	2.9	67	2.	690	2.8	109	2.7	//5
02B-04B	3.0	92	2.	780	2.9	011	2.8	199
02A-04A	3.0)44	2.	777	2.8	50	2.8	555
02B-04A	2.8	307	2.	652	2.7	46	2.7	10
02A-04B	2.7	/83	2.	646	2.6	0/2	2.6	083
04A-04B	2.9	246	$\frac{2}{2}$	833	2.8	<u>141</u>	2.8	<u>847</u>
< 0−0> M2	2.9	130	2.	724	2.8	08	2.1	99
01B-01B	3.1	16	3.	31 1	3.2	250	3.3	25
ULA-01A	3.1	16	3.	315	3.1	.83	3.2	./9
01B-01A x2	2.7	48	2.	602	2.6	34	2.6	44
ULB-03B x2	3.0	072	3.	086	3.0	163	3.1	.27
01A-03A x2	3.0	071	3.	099	3.0	JT1	3.0	199
01B-03A x2	2.7	71	2.	816	2.7	60	2.8	10
01A-03B x2	2.7	63	2.	807	2.7	43	2.7	<u>13</u>
<0-0> M3	2.9	024	2.	954	2.9	06	2.9	60

	[23]	[31]	[32]	[33]
02B-02A	2.909	3.018	2,974	3,017
02B-04A	2.807	2,652	2,746	2 710
02B-04B	2.994	3,100	3 041	2.710
02в-05в	3.510	3,413	3,177	3 161
02A-04B	2.783	2.646	2 672	2 692
02A-04A	2.953	3,064	2.072	2+005
02A-05A	3,720	3 610	3 478	2.333
04A-05A	2.496	2,559	2 461	2.00
04A-05B	3.213	3,193	3 083	2.49/
04B-05A	3.722	3 751	3 634	3.090
04B-05B	3,933	6 120	3 6 3 9	3.043
05B-05A	3,086	7.067	J.030 2000	3.629
(0-0) M4	3,177	3 1 75	2.000	2.909
	3.1.1	<u> </u>	3.084	3.078
07A-06B x2	3.481	3.566	3,459	3,497
07A-06A x2	2.634	2,609	2.665	2.666
07B-06B x2	4.061	4.193	3.773	3.778
07B-06A x2	4.171	4.231	4,132	4.162
06B-06A x2	3.187	3.236	3,134	3,145
06B-06B	3.956	4.117	3.724	3,707
06A-06A	4.312	4.251	4.211	4,210
< 0−0 > A	3.611	3.670	3,522	3.534
				5.554

~~

/

/

4

	[4]	0		
	A-chain	B-chain		
01-05 01-06 01-07 05-06 05-07 06-07 40-07 T1	2.69 2.73 2.64 2.57 2.63 <u>2.59</u> <u>2.64</u>	2.63 2.67 2.71 2.54 <u>2.83</u> <u>2.68</u>		
02-04 02-05 02-06 04-05 04-06 05-06 ∠0-0≻ T2	2.76 2.75 2.66 2.65 2.81 <u>2.78</u> <u>2.73</u>	2.76 2.61 2.69 2.44 <u>2.60</u> <u>2.62</u>		
01B-02B 01A-02A 01B-02A 01A-02B 01B-03B	3. 3. 2. 2.	14 26 64 69 15		
01A-03A	3.	17		[47]
01B-03A	2.	87		[41]
01A-03B	2.	/5 03	02B-02A	3.03
02A-02B	2.	65	02B-04R 02B-04B	3.18
02B-03B	3.	10	02B-05B	3.48
02A-03A	<u>3</u> .	10	02A-04B	2.68
<0-0> M1	2.	96	02A-04A	2.94
014 017	2	50	02A-05A	3.58
01A - 01B 01B - 02B	2.	.83	04A-05B	2.00
01A-02A	2.	.79	04B-05A	3.71
01B-02A	2.	64	04B-05B	4.20
01A-02B	2.	69	05B-05A	2.93
01B-04B	2.	67	< 0−0> M4	3.19
01A-04A 02B-04B	2.	. 72	074 0(7	2 65
02A-04A	2.	.83	07A-065 X2 07A-065 x2	2.59
02B-04A	2.	. 62	07B-06B x2	4.17
02A-04B	2.	. 68	07B-06A x2	4.19
04A-04B	2	.86	06B-06A	3.11
<0−0> M2	2	./1	06B-06B	4.42
01B-01B	3	43	06A-06A	<u>4.24</u> 3.67
01A-01A	3	.29	20-07 A	
01B-01A	x2 2	. 59		
01B-03B	x2 3	.17		
01A-03A	x2 3	.07		
01B-03A	x2 2	•8/ 75		
$\langle 0-0 \rangle$ M3	$\frac{x}{2}$	<u>. 75</u> .97		
	=			

,
	[2	3]	[3	1]	 [3	12]	[a	3]
	A-chain	B-chain	A-chain	- B-chain	A-chain	Bachain	4-choin	P-ohoin
01-T1-05 01-T1-06 01-T1-07 05-T1-06 05-T1-07 06-T1-07 \langle 0-T1-0 \rangle	109.7(2) 110.8(2) 109.7(2) 108.4(2) 108.8(2) 109.5(2) 109.5	110.1(2) 109.6(2) 109.4(2) 109.4(2) 109.4(2) 109.0(2) 109.5	109.3(4) 109.8(4) 109.8(5) 110.1(5) 109.0(5) <u>108.7(5)</u> 109.5	109.4(5) 109.6(5) 108.6(5) 111.8(5) 108.7(5) 108.7(5) 109.5	108.6(4) 112.2(4) 110.0(5) 108.0(4) 109.2(5) 108.8(5) 109.5	108.8(4) 108.7(5) 109.5(6) 110.0(4) 109.4(5) 110.5(6) 109.5	108.8(4) 111.5(4) 110.3(5) 108.7(4) 109.3(5) 108.2(5) 109.5	107.9(4) 108.9(4) 110.1(5) 110.5(4) 109.2(5) 110.2(5) 109.5
02-T2-04 02-T2-05 02-T2-06 04-T2-05 04-T2-06 05-T2-06 <0-T2-05	116.7(2) 109.8(2) 108.3(2) 100.1(2) 112.4(2) 109.1(2) 109.4	116.5(2) 107.4(2) 107.9(2) 109.5(2) 104.0(2) <u>111.5(2)</u> <u>109.5</u>	115.8(5) 108.1(5) 107.9(5) 104.1(5) 111.6(5) 109.1(5) 109.4	117.0(5) 107.5(5) 107.5(5) 109.7(5) 106.1(5) 108.8(5) 109.4	117.3(5) 110.0(5) 109.0(4) 99.6(4) 112.0(4) 108.4(4) 109.4	115.2(4) 107.2(4) 107.5(5) 110.1(4) 104.4(5) <u>112.5(5)</u> 109.5	117.3(4) 109.6(4) 109.0(4) 99.8(4) 112.4(4) <u>108.0(4)</u> 109.4	115.8(4) 106.3(4) 107.6(4) 110.5(4) 104.4(4) <u>112.4(4)</u> 109.5
T1-05-T2 T1-06-T2 T1-07-T2 05-06-05	138.0(2) 140.8(2) 141.4(3)	136.3(2) 137.8(2) 138.9	134.4(5) 144.3(5) 146.1(9)	135.0(5) 142.5(5) 146.6(9)	134.2(6) 139.3(5) 139.8(8)	128.7(5) 134.8(6) 134.6(9)	134.2(5) 139.2(5) 141.7(8)	128.6(5) 133.3(5) 133.6(7)
05-06-05 01в-м1-02в	169.2(2)	157.5(2)	166.4	163.3	162.4(4)	147.5(4)	162.5(4)	146.0(4)
01A-M1-02A 01B-M1-02A 01A-M1-02B	95 95 84 85	.2 .5 .2	99 99 78 78	• 5 (4) • 2 (3) • 8 (4) • 7 (3)	96 97 81 82	.5(3) .5(4) .3(4) .3(3)	97 97 80 80	.3(3) .4(3) .4(3) .9(3)
01B-M1-03B 01A-M1-03A 01B-M1-03A 01A-M1-03B	96.1 95.3 84.2 84.1		97.8(4) 97.2(4) 84.8(4)		98.1(4) 97.6(4) 83.7(5)		98.1(4) 97.0(4) 84.9(4)	
02A-M1-02B 03A-M1-03B 02B-M1-03B 02A-M1-03A	86. 82. 95.	.5 .2 .8	90.6(3) 79.8(3) 95.0(4)		87.7(3) 80.8(4) 95.4(4)		84.3(4) 88.5(3) 79.8(3) 96.2(3)	
$\langle 0-M1-0 \rangle$	<u>90.</u> 90.		<u>94.</u> 90.	.8(4) .0	<u>96</u> 90	.0(4) .0	<u>95</u> 90.	.4(3) .0
01B-M2-02B 01A-M2-02A 01B-M2-02A	80. 92. 92.	4 4 5	80. 90. 90.	1 6 8(4)	81. 92. 93.	.4(4) .2(4) .6(4)	82. 92. 93.	1(3) 8(3) 5(3)
01A-M2-02B 01B-M2-04B 01A-M2-04A	84. 84. 94.	5 9 3	84. 84. 90.	3(4) 9(4) 1(4)	86. 86. 93.	2(4) 7(3) 9(4)	86. 86. 93.	0(3) 0(3) 7(3)
02B-M2-04B 02A-M2-04A 02B-M2-04A	97. 97. 96. 86.	3 6 6	88. 94. 94. 89.	o(4) 7(4) 8(4) 5(4)	90. 94. 93.	4(4) 1(4) 5(4)	89. 94. 93.	5(3) 6(3) 6(3)
02A-M2-04B 04A-M2-04B <0-M2-0>	85. <u>93.</u> <u>89.</u>	4	88. <u>101.</u> 89.	8(4) 1(3) 9	85. <u>94.</u> 90.	4(4) 2(4) 0	87. 85. 94. 90.	8(3) 7(3) 0

APPENDIX C6. INTERATOMIC ANGLES (°)

01B-M3-01B		97.1	103.5(5)	101.4(4)	103.2(3)
01A-M3-01A		97.3	104.0(4)	101.4(4)	102.0(3)
01B-M3-01A	x 2	82.8	76.2(3)	78.6(3)	77.4(3)
01B-M3-03B	x 2	95.9	95.2(3)	95.9(4)	96.7(3)
01A-M3-03A	x2	96.1	95.7(4)	95.5(4)	95.8(3)
01B-M3-03A	x2	84.2	84.6(3)	84.1(4)	84.2(3)
01A-M3-03B	x2	83.9	84.5(3)	84.5(3)	83.3(3)
<0-M3-0>		90.0	90.0	90.0	90.0
02B-M4-02A		85.5	91.5	86.9(3)	87.1(3)
02B-M4-04A		84.6	77.3	81.0(3)	79.2(3)
02B-M4-04B		93.1	97.1	95.0(3)	96.5(3)
02B-M4-05B		88.0	85.0	88.9(3)	88.6(3)
02A-M4-04B		84.1	78.8	78.0(3)	77.5(3)
02A-M4-04A		89.3	91.4	86.7(3)	86.0(3)
02A-M4-05A		109.8	108.7	103.0(3)	102.2(3)
04A-M4-05A		68.1	69.7	68.9(3)	69.4(3)
04A-M4-05B		79.8	77.1	85.2(3)	85.9(3)
04B-M4-05A		116.0	118.6	117.3(3)	117.1(3)
04B-M4-05B		106.6	112.6	109.9(3)	110.3(3)
05B-M4-05A		71.3	68.6	76.8(3)	77.5(3)
<0-м4-0>		89.7	89.7	89.8	89.8
07A-A-06B	x 2	-	-	86.3(7)	88,0(5)
07A-A-06A	x 2	-	-	63.2(5)	63.5(4)
07B-A-06B	x 2	-	-	99.4(8)	97.9(5)
07B-A-06A	x 2	-	-	112.8(7)	112.5(4)
06в-а-оба	x 2	-	-	72.6(4)	/3.3(3)
06B-A-06B		-		89.8(8)	89.8(5)
06A-A-06A		-	-	104.9(8)	$\frac{105.4(5)}{00.0}$
<0-A-0>		-	-	88.6	88.8

	Γ4	7			
	⊶ A-chain	B-chain			
01-11-05	100 9	111 0			
	112 0	111.3			
01-11-06	112.9	106.2			
01-T1-0/	108.6	110.7			
05-T1-06	106.2	109.7			
05-T1-07	110.0	104.9			
06-T1-07	<u>108.6</u>	114.1			
<0-T1-0>	109.5	109.5			
02-T2-04	114.3	117.9			
02-T2-05	111.6	107.8			
02-T2-06	106.7	110.8			
04-T2-05	102.5	111.4			
04-T2-06	112 8	100 1			
05-T2-06	108 8	109 0			
$\sqrt{0-\pi^{2}-0}$	100.0	100.0			
C 0-12-02	109.4	109.4			
T1-05-T2	129.1	135.3			
T1-06-T2	141.9	142.3			
T1-07-T1	149.1	144.9			
05-06-05	165.6	172.7			
01B-M1-02B	96	3.0			
01A-M1-02A	90	0			
01B-M1-02A	2. 81	1			
01A-M1-02R	74	· · ·			
01B-M1-03B	100				
01A-M1-03A	100	· · · · · · · · · · · · · · · · · · ·			
01B-M1-03A	9.)./) ?			
010-M1-03R	90	0.2			
02A-M1-02B	/ 5		02B-M4-02A		977
02A-M1-02B	91		02B M4 02M		80 /
02P M1 02P	/ 0		02B M4 04R		101 0
02.5-MI-035	93		02D 14-04D		101.9
VZA-MI-UJA	90	<u></u>	02D-14-05B		00.0
ζ0-m1-0>	90		02A-M4-04B		80 G
014 W2 01D	70		024 14 044		106.2
01R-M2-01B	/3	• 5	044-14-054		71 8
010-M2-02D	90	• 4	04A-MA-05B		80.2
OIR M2 O2A	80		04R M4-05A		100.2
OID-MZ-UZA	84		04B-M4-05R		109.9
01A-M2-02B	83	.8	05B-W/-05A		109.0
01B-M2-04B	88	.3			0
ULA-MZ-U4A	86	.2	<0-m4-0≯		90.0
02B-M2-04B	93	.1	074 4 061	0	
02A-M2-04A	97	.1	07A~A~06B	XZ	-
02B-M2-04A	89	.0 `	07A-A-06A	XZ	-
02A-M2-04B	90	• 7	07B-A-06B	XZ	-
04A-M2-04B	<u>106</u>	.0	07B-A-06A	XZ	
<0−M2−0>	89	.8	06B-A-06A 06B-A-06B	x2	-
01B-M3-01B	102	. 6	06A-A-06A		-
01A-M3-01A	106	.9	<0-A-0>		_
01B-M3-01A	x2 75	.1	• •		
01B-M3-03R	x2 07	.8			
014-M3-034	x2 02				
01B-M3-034	ມ ພາງ ຊາ	. 7			
01A-M3-03R	x2 94	.0			
<0-M3-05					
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~		<u></u> '			

	#Fo	#Fo>0	Ro	Ro	<u>R_{a11}</u>	w R <u>all</u>	<u>B</u>	Abs	Wts
[23]	2656	2124	4.4	2.7	6.3	4.0	A	Yes	W
[31]	2969	1160	5.6	_	_	-	м	Yes	-
[32]	-	1417	7.6	-	-	-	I	Yes	1
[33]	-	1503	7.2	-	-	_	I	Yes	1
[47]	_	580	9.4	-	-	_	I	-	-

APPENDIX C7. REFINEMENT DETAILS FOR Prima AMPHIBOLES

B: temperature-factor type, I: isotropic, A: anisotropic, 1: unit weights, w: statistical weights.

APPENDIX D. MODERN VARIETIES

 [20] Protoamphibole (25) Joesmithite (27) Tirodite P2₁/m 	Gibbs <i>et al.</i> (1960), Gibbs (1962, Moore (1968b, 1969) Papike <i>et al.</i> (1968, 1969)	1964, 1969)
	ς.	PAGE
Appendix D1.	Chemical compositions and unit-cell data	429
Appendix D2.	Atomic positions	430
Appendix D3.	Site populations and annotations	431
Appendix D4.	Cation-anion and cation-cation distances	432
Appendix D5.	Anion-anion distances	433
Appendix D6.	Selected interatomic angles	434
Appendix D7.	Refinement details	435

APPENDIX D1.	CHEMICAL	COMPOSITIONS	AND	UNIT-CELL	DATA
--------------	----------	--------------	-----	-----------	------

	[20]	(25)	(27)		[20]	(25)	(27)
Si0	60.6	40.29	58.31	۵1	-	0.15	0.01
	_	-	-	~~~. 17년	_	_	_
A1203	0.3	0.77	0.06	113+ Fe	_		
Feola		13.04	-	F_2+	_	2.4	0.01
FeÕ	-	2.70	0.13	Mn	- <i>′</i>	-	0.96
MnO	·	2.89	8.24	Mo	6.44	2.45	5.57
Mg0	33.4	12.40	27.17	to vi		5.00	
CaO		12.40	2.46				
РЪО	-	6.71	-				
Ba0	-	1.03	-	Ca	-	2.0	0.36
Na ₂ 0	0.1	-	0.22	Na	-	-	0.06
κეδ	-	→ ,	-	$\frac{Li}{M}$ M(4)	0.56		
L120	2.3		-	$\sum_{i=1}^{n}$	7.00	2.0	6.97
H2Õ	0.2	6.50	-				
F	5.2			Na	0.03	-	-
	102.1	98.76	96.59	ĸ		-	-
0 = F	2.2			Li	0.64		-
Total	99.9	98.76	96.59	РЪ		0.4	
		<u> </u>		CaA			
Si	7.84	6.0	8.02	Σ	0.67	1.0	. —
A1	0.04	2.0Be			-		<u>,</u>
$\sum v$	7.88	8.0	8.02	Basis	1	-	2
—	<u></u>						
a (8)	0 330(5)	0 885(15)	9 550(1)				
a(A) 1.(9)	$3 \cdot 3 \cdot$	17 975(19)	18 007(3)				
a (8)	I/ • 0/ 9 (0)	5 227(5)	5,298(1)				
0(P)	0,200(3)	105.67(17)	102.65(2)				
TV(83)	882 1	889.3	888,9(2)				
v (A-)	002.1-						
Group	Pnmn	P2/a	P21/m				

APPENDIX D2. ATOMIC POSITIONS

		[20]	(2	5)	(27)		
			A-set	B-set	A-set	B-set	
0(1)	x	0.1155(4)	0.6375(12)	0.6434(14)	0.8661(7)	0.3623(6)	
	y	0.0851(2)	0.1635(9)	0.3430(10)	0.3367(3)	0.8355(4)	
	z	0.1659(7)	-0.2236(23)	-0.2231(26)	0.2056(10)	0.2196(10)	
0(2)	x	0.1216(4)	0.6318(11)	0.6315(12)	0.8695(7)	0.3734(7)	
	y	0.1726(2)	0.0795(9)	0.4253(9)	0.4232(3)	0.9206(3)	
	z	0.6702(7)	0.2725(22)	0.2643(23)	0.7154(10)	0.7223(10)	
0(3)	x	0.1032(5)	0.6	423(13)	0.8595(10)	0.3650(11)	
	y	0	0.2	517(10)	1/4	3/4	
	z	0.6640(9)	0.2	872(24)	0.7083(15)	0.7106(15)	
0(4)	x	0.1228(4)	0.3839(14)	0.3810(13)	0.1216(8)	0.6273(8)	
	y	0.2511(2)	0.0037(10)	0.4977(10)	0.4982(4)	0.9972(3)	
	z	0.1844(7)	0.2093(27)	0.2105(25)	0.7866(11)	0.7706(11)	
0(5)	x	0.3475(5)	0.4054(13)	0.4030(13)	0.1001(7)	0.5997(7)	
	y	0.1212(3)	0.1158(10)	0.3858(10)	0.3762(4)	0.8859(4)	
	z	0.4292(9)	-0.1156(24)	-0.1198(25)	0.0534(11)	0.0834(10)	
0(6)	x	0.3506(5)	0.4084(15)	0.4115(14)	0.1012(7)	0.5981(7)	
	y	0.1308(3)	0.1363(10)	0.3630(10)	0.3743(4)	0.8682(4)	
	z	0.9324(9)	0.3954(28)	0.3779(27)	0.5480(11)	0.5747(11)	
0(7)	x	0.3494(6)	0.42	151(15)	0.0977(10)	0.5907(11)	
	y	0	0.22	513(10)	1/4	3/4	
	z	0.1592(11)	0.71	121(28)	0.2908(17)	0.2742(17)	
T(1)	x	0.2868(2)	0.4714(5)	0.4731(18)	0.0367(3)	0.5363(3)	
	y	0.0847(1)	0.1691(4)	0.3315(13)	0.3348(1)	0.8340(1)	
	z	0.1720(3)	0.6951(10)	0.6894(35)	0.2731(4)	0.2854(4)	
T(2)	x	0.2941(2)	0.4620(5)	0.4594(5)	0.0438(3)	0.5462(3)	
	y	0.1711(1)	0.0807(4)	0.4228(4)	0.4208(1)	0.9197(1)	
	z	0.6694(3)	0.1896(9)	0.1799(9)	0.7805(4)	0.7915(4)	
M(1)	x	0	3/4	3/4	0.75	03(4)	
	y	0.0883(1)	0.1624(5)	0.3416(4)	0.33	69(1)	
	z	1/2	1/2	1/2	0.49	31(6)	
M(2)	x	0	3/4	3/4	0.75	02(4)	
	y	0.1786(1)	0.0751(5)	0.4275(3)	0.42	66(1)	
	z	0	0	0	0.99	43(6)	
M(3)	x y z	0 0 1	3/4 0.2559 0	4 9(4)	0.74 1 0.99	88(7) /4 76(9)	
M(4)	x	0	1/4	1/4	0.74	80(3)	
	y	0.2579(1)	0.0300(4)	0.4589(4)	0.51	39(1)	
	z	1/2	1/2	1/2	0.49	16(4)	
A	x y z	- - -	1/4 0.2836 			-	

Protoamphibole[20]

M==	M2=M3 Mg	0.53(5),	0.58(5),	0.55(5)	Ų
M4	0.25Li+0.75	Mg		0.55(6)	
Α	0.64Li + 0.03	Na			
O 3	1.0F			0.70(7)	

Cation site-occupancies for the M sites established by successive difference-syntheses and supported by equality of isotropic temperature-factors. The A-site cations could not be located and were assumed to be randomly distributed around the periphery of the A-site cavity.

Joesmithite(25)

M(1)A	0.85Mg + 0.15Al	0.19(9) Å ²
M(1)B	$0.32Mg + 0.68Fe^{3+}$	0.72(6)
M(2)A	$0.74Mg + 0.26Fe^{2+}$	0.69(9)
M(2)B	1.0Fe ³⁺	0.53(5)
M(3)	$0.55Mg + 0.45Fe^{2+}$	0.65(7)
M(4)A	1.0Ca	1.06(7)
M(4)B	1.0Ca	1.02(7)
A(2)	0.60Ca+0.40Pb	1.17(3)

Cation site-occupancies were assigned by unconstrained refinement of the total scatteringpower at each site and comparison of the mean observed bond-lengths with ideal mean octahedral bond-lengths for the cation species involved. The relation between the site-nomenclature used here and that of Moore (1969) is shown in Table 71. The extremely small isotropic temperature-factor at the M(1)A site suggests that the refined total scattering-power at this site is too small. In addition, Moore (1969) indicated that these are only very approximate values because of the large standard deviations of the M-O bond lengths. The variation in mean bond-length (normalized to an anion co-ordination of 60^{2^-}) with mean radius of the constituent cation shows considerable scatter from a linear model and also agrees poorly with Figure 44. These discrepancies are somewhat alleviated by assigning the Al and Fe³⁺ to the M(2)A site and some Fe²⁺ to the M(1)B site; however, a detailed assignment is not warranted at the present time as the chemical analysis (Moore 1968a, 1969) is of poor quality.

Tirodite $P2_1/m(27)$

M(1)	Mg	0.38 Å ²
M(2)	Mg	0.37
M(3)	Mg	0.36
M(4)	0.49Mn+0.19Ca+0.01Fe	
	+0.28Mg+0.03Na	0.95

No information given on the method of sitepopulation assignment. The statistical equality of the isotropic temperature-factors at the M(1), M(2) and M(3) sites supports the assignment of Mg to these sites; Papike *et al.* (1969) also quoted an unpublished infrared absorption study that confirms this assignment. The structure of this sample has also been refined at 270°C, above the $P2_1/m \rightarrow C2/m$ transition; details are given in Appendix B, tirodite(41).

$ \begin{bmatrix} 20 \end{bmatrix} (25) (27) \\ A-set & B-set & A-set & B-s \\ T(1)-0(1) & 1.592(4) & 1.580(17) & 1.632(25) & 1.590(7) & 1.622 \\ T(1)-0(5) & 1.616(5) & 1.638(17) & 1.677(25) & 1.607(7) & 1.632 \\ T(1)-0(6) & 1.623(5) & 1.639(17) & 1.674(25) & 1.616(6) & 1.633 \\ T(1)-0(7) & 1.624(2) & 1.582(17) & 1.560(25) & 1.628(4) & 1.600 \\ T(1)-0) & 1.614 & 1.610 & 1.636 & 1.610 & 1.622 \\ T(2)-0(2) & 1.605(4) & 1.615(17) & 1.638(17) & 1.624(7) & 1.600 \\ T(2)-0(4) & 1.592(4) & 1.595(17) & 1.575(17) & 1.575(7) & 1.614 \\ T(2)-0(5) & 1.626(5) & 1.671(17) & 1.647(17) & 1.637(6) & 1.633 \\ T(2)-0(6) & 1.655(5) & 1.647(17) & 1.644(17) & 1.676(7) & 1.632 \\ \end{bmatrix} $	et 1(6) 4(7) 5(6) <u>3(4)</u> 4 9(7) 0(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	et 1(6) 4(7) 5(6) <u>3(4)</u> 4 9(7) 0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1(6)}{4(7)}$ $\frac{5(6)}{3(4)}$ $\frac{4}{4}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4(7) 6(6) 3(4) 4 9(7) 9(7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6(6) 3(4) 4 9(7) 9(7) 9(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3(4) 4 9(7) 9(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 9(7))(7)
T(2)-0(2) $1.605(4)$ $1.615(17)$ $1.638(17)$ $1.624(7)$ $1.607(7)$ $T(2)-0(4)$ $1.592(4)$ $1.595(17)$ $1.575(17)$ $1.575(7)$ $1.616(7)$ $T(2)-0(5)$ $1.626(5)$ $1.671(17)$ $1.647(17)$ $1.637(6)$ $1.637(6)$ $T(2)-0(6)$ $1.655(5)$ $1.647(17)$ $1.644(17)$ $1.676(7)$ $1.637(6)$	€ (7) (7)
T(2)-0(4) $1.592(4)$ $1.595(17)$ $1.575(17)$ $1.575(7)$ 1.610 $T(2)-0(5)$ $1.626(5)$ $1.671(17)$ $1.647(17)$ $1.637(6)$ $1.631(16)$ $T(2)-0(6)$ $1.655(5)$ $1.647(17)$ $1.644(17)$ $1.676(7)$ $1.632(16)$)(7)
T(2)-0(5)1.626(5)1.671(17)1.647(17)1.637(6)1.637(6) $T(2)-0(6)$ 1.655(5)1.647(17)1.644(17)1.676(7)1.637(6)	
T(2)-0(6) <u>1.655(5)</u> <u>1.647(17)</u> <u>1.644(17)</u> <u>1.676(7)</u> <u>1.63</u>	5(6)
	5(7)
(T(2)-0) 1.620 1.632 1.626 1.628 1.62	$\frac{\gamma(\gamma)}{\gamma}$
	:
$M(1)-0(1) \times 2 2.072(4) 2.050(17) 2.009(17) 2.069(7) 2.04$	7(7)
$M(1)-0(2) = x^2 2.094(4) 2.052(17) 2.080(17) 2.123(6) 2.09(17)$	3(6)
$M(1)-0(3) \times 22.043(4) 2.070(17) 2.077 2.077(6) 2.077$	5(6)
(M(1)-0) 2.070 2.075 2.055 2.082	
M(2) = O(1) = 2 + 2 + 179(4) + 2 + 095(17) + 2 + 025(17) + 2 + 124(6) + 2 + 144	2762
$M(2) = O(2)$ $x^2 = 2 O(2)(4) = 2 O(2)(17) = 2 O(2)(17)$	
$M(2) = O(4)$ $x_2 = 1.080(4) = 2.075(17) = 2.040(17) = 2.005(7) = 2.100 M(2) = 0.040(17) = 2.017($	(8)
$M(2)=0(4)$ $X_2 = \frac{1.969(4)}{2.034(1)} = \frac{2.034(1)}{2.013(1)} = \frac{1.975(1)}{2.014(7)} = \frac{2.014(7)}{2.013(1)} = 2.014(7)$	(6)
2.084 2.068 2.013 2.078	
M(3)-O(1) x4 2.062(4) 2.152(17) 2.055(17) 2.090(6) 2.070)(7)
$M(3) - 0(3) \times 2 2.021(4) 2.066(17) 2.043(11) 2.076$	(11)
$\langle M(3)-0 \rangle = \frac{2.048}{2.091} = \frac{2.073}{2.073}$	
M(4)-0(2) 2.107(4) 2.423(17) 2.532(17) 2.195(6) 2.208	(6)
M(4)-0(4) 2.029(4) 2.313(17) 2.340(17) 2.139(8) 2.07((8)
M(4)-0(5) 3.442 2.653(17) 2.509(17) 3.209(6) 2.932	(6)
M(4) = 0(6) 2.453(5) 2.604(17) 2.539 2.511(8) 2.650	
$(M(4)-0)$ $\overline{2.196^{VI}}$ $\overline{2.498}$ $\overline{2.480}$ $\overline{2.296^{VI}}$	
A-0(5) x2 3.445 3.493(17) 2.560(17) 2.733(7) 2.919	(7)
A-0(6) x2 2.746 3.453(17) 2.594(17) 3.357(7) 3.206	(6)
A=0(7) 1.638 x2 2.559(17) x2 2.339(10) 2.322	(11)
A-0(7) 3.720(8) 2.813	(9)
$\langle A-0 \rangle \qquad \underline{2.377^{VI}} \qquad \underline{2.571^{VI}} \qquad \underline{3.052}$	
M(1)-M(1) 3.150(6) 3.203 3.129(4)	
M(1)-M(2) 3.099(3) 3.044 3.031 3.108(4) 3.097	(4)
M(1)-M(3) 3.079(3) 3.102 3.029 3.100(5) 3.05/	(4)
M(1)-M(4) = 3.035(3) = 3.439 = 3.566 = 3.100(3) = 3.034	(J)
M(2)-M(3) 3.193 3.232 3.067 3.103(2)	
M(2) - M(4) = 3.001(3) = 3.232 = 3.007 = 3.002(3) = 0	(2)
/-/ -/-//-//-//-//-//-//-//-//-//-//-//-//-//-/-//-/-//-/-//-/-//-/-//-/-//-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-	(3)
T(1)-T(2) 3.075(3) 3.058 3.095 3.088(3) 3.075	(3)
T(1)-T(2) 3.052(3) 3.052 3.073 3.046(3) 3.055	(3)
T(1)-T(1) 3.029(6) 2.903 3.051(3) 3.021	

APPENDIX D5. ANION - ANION DISTANCES (Å)

		[20]	(2	25)	(2	7)
			A-set	B-set	A-set	B-set
0(1) - 0(5)		2,650(6)	2.647	2,686	2.634(10)	2.684(9)
0(1) - 0(6)		2.642(6)	2.626	2.674	2,647(8)	2.665(8)
0(1) - 0(7)		2.042(0)	2.648	2.735	2.679(10)	2.634(10)
0(1) - 0(7)		2.034(7)	2 590	2 681	2.617(9)	2.625(8)
0(5) - 0(0)		2.000	2.505	2.574	2,598(8)	2.655(7)
0(3) - 0(7)		2.373(0)	2.555	2.574	2.615(9)	2.648(9)
(0) - 0(7)		2.020(0)	2.023	2.666	2.015(5)	2.652
ζ0-0β Ι(Ι)		2.034	2.025	2.000	2:025	2.052
0(2)-0(4)		2.742(6)	2.741	2.740	2.714(10)	2.752(10)
0(2)-0(5)		2.624(6)	2.663	2.680	2.654(8)	2.628(8)
0(2)-0(6)		2.650(6)	2.662	2.649	2.704(10)	2.615(10)
0(4) - 0(5)		2.661(6)	2.672	2.689	2.644(10)	2.649(9)
0(4) - 0(6)		2.495(6)	2.549	2.552	2.550(10)	2.534(9)
0(5) - 0(6)		2.667	2.688	2.612	2.679(9)	2.709(8)
<0−0> T(2)		2.640	2.663	2.654	2.658	2.648
$0(1^{u}) - 0(2^{d})$	w 2	2 851(5)	2 700	2 724	2,836	2.801
$0(1^{u}) - 0(2^{u})$		2.001())	2.755	3 031	2.030	3.054
$0(1^{u}) - 0(2^{d})$	x2 ?	2 704 (5)	2 770	2 765	2.771	2,712
0(1) - 0(3)	x2 2	2.704(3)	2.119	2.705	3 100	3 018
0(1) - 0(3)	ХZ	3.043(3)	3.013	2.033	2.100	00
0(2) - 0(2)	•	2.903(1)	2.849	2.905	2.100	2 072
0(2) - 0(3)	x 2	3.091(6)	3.080	3.100	3.120	3.073
0(3)-0(3)		$\frac{2.597(10)}{2.597(10)}$	$\frac{2.631}{2.631}$	2.631		11
<0−0> M(1)		2.922	2.905	2.905	2.9	<u></u>
0(1)-0(1)		2.789(1)	2.757	2.688	2.7	71
$0(1^{u}) - 0(2^{u})$	x 2	2.851(5)	2.799	2.724	2.836	2.801
$0(1^{u}) - 0(2^{u})$	x 2	3.054(5)	3.010	2.972	3.035	3.070
0(1) - 0(4)	x 2	2.974(5)	2.999	2.860	2.975	3.014
$0(2^{\text{u}}) - 0(4^{\text{d}})$	x 2	2.786	2.996	2.904	2.790	2.897
$0(2^{u}) - 0(4^{u})$	x2	3.059(5)	2.893	2.811	2.979	3.067
0(4) - 0(4)		3.009	2.944	2.911	2.9	965
<0-0> M(2)		2.937	2.925	2.845	2.9	<u>933</u>
o (1 ^u) o (1 ^d)		<u> </u>	0 757	2 6 9 9	2	771
0(1) - 0(1)	XZ	2.789(10)	2.151	2.000	2 1 7 7	3 079
0(1) - 0(1)	XZ	3.039(10)		209	J.1.2.2 2 017	2.079
0(1) - 0(3)	X4	2.704(5)	2.779	2.705	2.01/	2.712
0(1) - 0(3) (0 - 0) M(3)	X 4	$\frac{3.061(5)}{2.893}$	3.090	949	<u>3.031</u> 2.9)27
			<u> </u>			
0(2)-0(2)		2.896	2.849	2.905	2.8	399
$0(2^{\circ}) - 0(4^{\circ})$	x 2	2.786	2.996	2.904	2.790	2.897
$0(2^{u})-0(4^{u})$	x 2	2.927	3.130	3.103	3.030	3.000
$0(2^{\rm u}) - 0(5^{\rm u})$	x 2	-	3.577	3.457	-	-
$0(2^{u}) - 0(6^{u})$	x 2	3.743	-	-	3.937	4.146
$0(4^{u}) - 0(5^{d})$	x 2	-	3.417	3.375	-	-
$0(4^{u}) - 0(6^{d})$	x 2	3.876	-	-	4.122	4.229
$0(4^{u}) - 0(6^{u})$	x2	2.498	2.549	2.552	2.551	2.535
$0(5^{u}) - 0(6^{d})$	x 2	-	3.073	3.064	-	-
$0(5^{u}) - 0(6^{u})$	x2	_	2,590	2.681	-	-
0(6)-0(6)		2.878	3.575	3.747	3.0	082
(0-0) M(4)		3,120	3.068	3.058	3.2	268

ł

AP1	PEND1	X D6.	INTERAT	OMIC AN	GLES (°)	
		[20]	(;	25)	((27)
			A-set	B-set	A-set	B-set
0(1)-T(1)-O(5)		111.4	110.8	108.8	110.9/3) 111.0(3)
0(1) - T(1) - 0(6)		110.5	109.5	107.9	111 2(4	1007(3)
0(1) - T(1) - 0(7)		111.2	113 5	117 8	111 7/4	109.7(4)
0(5) - T(1) - 0(6)		108 8	105 1	106 5	109 6(4	109.3(4)
0(5) - T(1) - 0(7)		106 6	107 7	105.0	106.0(4	1100.7(3)
0(6) - T(1) - 0(7)		100.0	100.0	100.0	107.6(4	110.2(4)
$\sqrt{0-\pi(1)} = 0(7)$		100.2	109.0	109.8	$\frac{107.4(4)}{100.4}$	109.7(4)
		109.5	109.4	109.4	109.4	109.5
0(2) - T(2) - 0(4)		118.2	117.2	116.9	116.0(4) 117.4(4)
0(2)-T(2)-O(5)		108.6	108.5	109.0	108.8(3) 108.2(3)
0(2)-T(2)-0(6)		108.8	109.0	107.6	110.0(3	107.4(3)
0(4)-T(2)-0(5)		111.6	110.1	112.8	110.7(3	109.4(3)
0(4)-T(2)-O(6)		100.5	103.4	104.8	103.2(4	102.6(4)
0(5)-T(2)-O(6)		108.7	108.3	104.8	107.8(4) $111.9(3)$
<0-T(2)-0>		109.4	109.4	109.3	109.4	109.5
T(1)-0(5)-T(2)		140.6	135 7	135 3	130 9/#	129 4 (1)
T(1) = O(6) = T(2)		140 0	137 2	127 7	120 ///	$f = \pm 30.4(4)$
T(1) = O(7) = T(1)		197 1	13/.3	13/./	139.4(4	140.2(4)
1(1)-0(/)-1(1)		13/.1	13	5.0	13%.9(6)) 141.0(7)
0(5)-0(6)-0(5)		172.5	164.0	161.9	178.4(4)	166.2(4)
$0(1^{u}) - M(1) - 0(2^{d})$	¥9	86.4	86.0	83 /	85 0/2	84 4/21
$0(1^{u}) - M(1) - 0(2^{u})$	*2	96 0	04.9	05 5	05.9(3)	04.4(3)
$0(1^{u}) - M(1) - 0(3^{d})$		90.0 97.7	94.0	9,,,	93.0(3)	95.1(3)
$0(1^{u}) - M(1) - 0(3^{u})$		02.2	04.0	05.2	05.7(3)	82.2(3)
0(2) - M(1) - 0(2)	ХZ	95.4	94.2	93.9	96.8(3)	94.1(4)
0(2) - M(1) - 0(2)		0/.0	8/./	88.3	86	.9(2)
0(2) - M(1) - 0(3)	XZ	90.0	96.6	96.5	95.9(2)	95.0(3)
(3) - M(1) - O(3)				78.6	82	2.1(2)
~0~M(1)-0>		90.0	90.0	90.0	90	0.0
0(1) - M(2) - 0(1)		79.6	82.2	83.3	80	.8(2)
$0(1^{u}_{}) - M(2) - 0(2^{u}_{})$	x 2	83.9	84.3	84.3	84.0(2)	83.7(2)
$0(1^{u})-M(2)-0(2^{u})$	x 2	91.4	92.4	94.1	92.8(3)	92.5(3)
0(1) - M(2) - 0(4)	x 2	90.9	93.0	91.3	91.6(3)	92 9 (3)
$0(2^{u}) - M(2) - 0(4^{d})$	x 2	86.4	93.6	92.6	86.6(3)	89 3 (3)
$0(2^{u}) - M(2) - 0(4^{u})$	x2	97.5	89.4	88.9	94 1 (3)	06 2(3)
0(4) - M(2) - 0(4)		98.5	92.5	9/ 9	رد) ۲۰۰۲ (J)	8(3)
<0-M(2)-0>		89.9	90.0	90.0		9
					<u></u>	
$0(1^{-})-M(3)-0(1^{-})$	x2	85.1	79.7	81.6	83	.6
0(1) - M(3) - 0(1)	x 2	95.0	99	.4	96.7(3)	96.1(3)
$0(1^{-})-M(3)-0(3^{-})$	x 4	82.9	82.5	84.3	85.1(3)	82.5(3)
0(1 [~])-M(3)-0(3 [~])	x 4	97.1	<u>94</u> .3	98.9	95.2(3)	97.2(3)
<0-M(3)-0>		90.0	<u>90</u>	.0	90	.0
0(2) - M(4) - 0(2)		87.0	72.1	70.1	82	.4
$0(2^{u})-M(4)-0(4^{d})$	x 2	84.8	78.4	73.0	81.6	83.6
$0(2^{u})-M(4)-O(4^{u})$	x 2	90.2	82.7	79.0	88.7	88.9
$0(2^{u}) - M(4) - O(5^{u})$	x2	-	89.5	86.5		
$0(2^{u}) - M(4) - O(6^{u})$	x2	110.1	-		113 4	116 0
$0(4^{u}) - M(4) - 0(5^{d})$	x2		86 4	87 0		TT0.2
$0(4^{u}) - M(4) - 0(6^{d})$	¥?	110 2			127 0	100 7
$0(4^{u}) - M(4) - 0(6^{u})$		66 0	61 0	62 0	141.0	143.1
$0(5^{u}) - M(A) - 0(C)$	~~ ~~?	00.9	71 0	02.0 7/ 7	00.0	63.5
	X2	-	11.3	14.1	-	
0(3) = m(4) = 0(0)	хZ		28.8	64.1		_
(0)-m(4)-U(b)		_/1./	86.7	95.1	73	.3
へい- 四(4)-0>		91.8	76.0	76.3	92	.5
0(7)-0(7)-0(7)				-	60	.4(2)
					U	コムゴ

				1100101	AB0				
	<u>#</u> F _o	<u>#Fo>0</u>	Ro	<u>R</u> o	R _{all}	Rw	<u>B</u>	Abs	Wts
[20]	~64	0	5.3	-	-	-	I	Yes	W
(25)	•3246	1604	12.8	-	_	-	I	Yes	-
(27)	-	1860	5.5	-	-	-	A	Yes	1

APPENDIX D7. REFINEMENT DETAILS FOR VARIETY STRUCTURES

I: isotropic, A: anisotropic, 1: unit weights, w: statistical weights.

APPENDIX E. PRELIMINARY DATA

(P1) (P2) (P3) (P4) [P5]	Cummingtonite Kozulite Potassium-fluor-r Fluor-richterite Holmquistite	Sueno et al. (1972b) Kitamura & Morimoto (1972) Cameron et al. (1973a) Cameron et al. (1973b) Finger & Ohashi (1974a, b)	
		1	PAGE
Apper	ndix E1.	Chemical compositions and unit-cell data	436
Appe	ndix E2.	Positional parameters (for holmquistite only)	437
Apper	ndix E3.	Site populations and annotations	438

APPENDIX E	1.	CHEMICAL	COMPOSITIONS	AND	UNIT-CELL	DATA
------------	----	----------	--------------	-----	-----------	------

		(P2) (P3)	(P4)	(P5))		
	Si02	51.3	38 -	-	59.58	62.8		
	T102	-	-	-	0.02	<0.02		
	$^{A1}_{203}$	1.6	59 -	-	7.19	8.76		
	Fe203	2.8	35 -	-	9.35	11.2		
	reu Ma O		-	-	4.88			
	MaO	21.9	70 -	-	U.41	0.52		
	Call	2.7	· -	-	0.06	12.7		
	NanO	8.4	-	_	0.50	0.23		
	K20	1.3	36 -	_	0.27	<0.02		
	H20	2.1	- 6	-	2.26	_		
	F	0.0	<u>)8</u> –	-	0.21	-		
		99.7	75		99.92	96.2		
	0 ≕ F	0.0	<u>)3</u> –		0.10			
	Total	99.7		- =	99.82	96.2		
	Si	8.0	00 8.00	8.00	7.95	7.98		
	A1				0.05	0.02		
	$\Sigma^{\nu\nu}$	8.0	<u> </u>	8.00	8.00	8.00		
	A1	0.3	31 –	-	1.08	1.29		
	Ti ₃₊	-	-	-	-	-		
	$\frac{Fe^{2+}}{2+}$	0.3	- 13	-	0.94	1.19		
	Fe ⁻		-	-	0.54			
	Mn Ma	3.6	9 –	-	0.05	0.06		
	rng vi	- 0.0	<u>5 00</u>	5.00	4.02 -	2.40		
	Δ.				4.95	4.94		
	$\sum vi -5$		_	-	-	-		
	Ca	0.1	.9 1.00	1.00	0.01	-		
	Li	-	-	-	1.90	-		
	$\sum^{\text{Na}} M(4)$		$\frac{1}{2}$ <u>1.00</u>		0.10	0.06		
	<u> </u>	2.0	0 2.00		2.00			
	Na	0.7	3 -	1.00	0.03	-		
	K	0.2	7 1.00		0.05			
	Σ	1.0	0 1.00	1.00	0.08			
						· · · · · · · · · · · · · · · · · · ·	<u>`</u>	
		(P1)	(P1)	(P1)	(P2)	(P3)	(P3)	
Temperature	e (⁰ C)	270	400	550	24	24	400	
a (Å)	9	.584(2)	9.598(1)	9.615(1)	9.914	9.944 (3	L) 9.988(1)	
ь (Ă)	18	.058(3)	18.079(2)	18.101(2)	18,111	. 17.972(3	3) 18.056(2)	
c (Ă)	5	.303(1)	5.307(1)	5.311(1)	5.308	5.260()	L) 5.272(1)	
	102	•64(2)	102.59(1)	102.55(1)	104.50	104.80(1)	104.70(1)	
V(A ^S)	895	• 5	898.7	902.2	921.3	908.9(2)	919.7(2)	
		(P3)	(P4)	(P4)	(P4)	(P4) (P4)	(P5)
Temperature	≞ ([°] C)	600	24	400	600	800	900	24
a(Å)	10.	.013(1)	9.824(2)	9.855(2)	9.883	(2) 9.90	9.915(1)	18,321(5)
Ъ(<u>А)</u>	18	.107 (2)	17.952(4)	18.036(3)	18.087	(2) 18.1	1(2) 18.149(1)	17.635(5)
c(Ă)	5.	278(1)	5.258(1)	5.270(1)	5.278	(1) 5.28	34(1) 5.286(1)	5.272(3)
B()	104.	.64(1)	104.23(1)	104.10(1)	104.08(1) 104.03	3(1) 104.02(1)	90
V (A-)	925	9(2)	899.0(3)	908.4(3)	915.2(4) 920.60	(2) 923.0(2)	1703(1)

.

	x	У	Z
01A	0.1809(4)	0.1587(4)	0.0531(12)
02A	0.1839(4)	0.0762(4)	-0.4120(13)
)3A	0.1818(6)	1/4	-0.4434(17)
)4A	0.1883(4)	0.0046(4)	0.0647(13)
)5A	0.2025(4)	-0.1205(4)	0.3340(12)
)6A	0.1955(4)	-0.1340(4)	-0.1671(12)
07A	0.2049(6)	-1/4	0.5415(18)
01B	0.0696(4)	0.1581(4)	-0.2651(12)
)2B	0.0654(4)	0.0753(4)	0.2007(12)
)3B	0.0686(6)	1/4	0.2350(18)
04B	0.0644(4)	0.0019(4)	-0.2728(13)
05B	0.0467(4)	-0.1160(4)	0.0494(12)
06B	0.0532(4)	-0.1369(4)	-0.4516(12)
07B	0.0440(6)	-1/4	0.2389(18)
T1A	0.2302(2)	-0.1624(2)	-0.4327(5)
T2A	0.2266(2)	-0.0768(2)	0.0725(5)
T1B	0.0194(2)	-0.1630(2)	0.2759(5)
T2B	0.0240(2)	-0.0779(1)	-0.2176(5)
M1	0.1253(2)	0.1602(1)	0.3943(6)
M2	0.1255(1)	0.0685(1)	-0.1038(4)
МЗ	0.1254(2)	1/4	-0.1049(8)
M4	0.1245(13)	-0.0068(9)	0.3963(42)

APPENDIX E2. ATOMIC POSITIONS (FOR HOLMQUISTITE (P5) ONLY)

APPENDIX E3. SITE POPULATIONS AND ANNOTATIONS

Cummingtonite(P1)

No details of chemistry or site occupancy given; the difference in cell dimensions at 270°C indicates that this cummingtonite is different from tirodite(41).

Kozulite(P2)

- $M(1) \quad 0.78Mn^* + 0.22Mg^*$
- M(2) $0.95Mn^* + 0.05Mg^*$
- M(3) $0.58Mn^* + 0.42Mg^*$
- M(4) 0.91Na+0.09Ca
- A 0.73Na+0.27K
- O(3) OH

where $Mn^* = (Mn+Fe)$ and $Mg^* = (Mg+Al)$. Site populations were assigned using difference-Fourier maps. The chemical composition was reported by Nambu *et al.* (1969) and includes ZnO 0.03 wt. %; space group is C2/m.

Potassium-fluor-richterite(P3)

In this synthetic amphibole, presumably M(1) = M(2) = M(3) = Mg, M(4) = 0.5 Ca + 0.5 Na and A = K. The K at the A site is positionally disordered in the A(m) positions. Mean bond-lengths for each of the M polyhedra increase linearly with temperature, < M(4)-O> having the greatest rate of increase. Mean Si-O bond-lengths remain constant over the temperature range 24-600°C.

Fluor-richterite(P4)

In this synthetic amphibole, presumably M(1) = M(2) = M(3) = Mg, M(4) = 0.5 Ca + 0.5 Na, A = Na by analogy with fluor-richterite (34). Note that different cell-dimensions are given by Cameron & Gibbs (1971) (see Appendix B1) and Cameron *et al.* (1973b) (see Appendix E1); these are two different structural refinements. The Na at the A site is positionally disordered in the A(1) positions. Mean bondlengths for each of the four M sites increase

linearly with increasing temperature; mean bondlengths for the T(1) and T(2) tetrahedra remain constant over the temperature range studied (24–900°C). The cell constants given by Cameron *et al.* (1973a, b) for potassium-fluorrichterite(P3) and fluor-richterite(P4) are in the I2/m orientation; values given in Appendix E1 have been transformed to the standard C2/msetting.

Holmquistite[P5]

- M1 $0.88(1)Mg+0.12Fe^*$ M2 $0.72(1)Al+0.28Fe^*$
- M2 0.72(1)Al+0.28Fe* M3 0.87(1)Mg+0.13Fe*
- M4 Li

The site occupancies were derived from unconstrained site-occupancy refinement, presumably assuming that no Mg occurs at M2, and the M4 site is completely occupied by Li. During refinement, use of the cell contents calculated from the original chemical analysis (Sundius 1946a) led to unsatisfactory temperature-factors, and examination of the mineral showed inclusions of magnetite, alkali feldspar and apatite. A partial microprobe analysis gave different values but the cell contents derived from this partial analysis were not satisfactory either, resulting in high temperature-factors at M1, M3 and M4 and a low temperaturefactor at M2. Note that the unconstrained refinement gives a cell content considerably different from both chemical analyses (Finger & Ohashi 1974a, b); this problem might be alleviated somewhat if the requirement that the M2 site contain only trivalent cations be relaxed. Certainly the isotropic temperaturefactors for M1, M2 and M3 are rather small in the unconstrained refinement, suggesting that an increase in total Fe, as indicated by both analyses, is not unreasonable. Note that the microprobe analysis, when combined with the values of Sundius (1946a) for Li₂O, H₂O and F, gives a total of $\sim 102\%$. Gravimetric analysis includes 3.52 wt. % Li₂O.

AFFENDIX I. MOSSBAUER STEETRE STUDIES OF MARTINEOUS	APPENDIX 1	F. M	IÖSSBAUER	SPECTRAL	STUDIES	OF	AMPHIBOLE	2S
---	------------	------	------------------	----------	---------	----	-----------	----

The following studies are considered here:	
Bancroft et al. (1967a)	$\{1\} = \{7\}$
Bancroft et al. (1966)	$\{1\}, \{6\}, \{8\}, \{9\}$
Bancroft et al. (1967b)	$\{8\} - \{11\}$
Häggström et al. (1969)	<i>{</i> 12 <i>}</i> - <i>{</i> 14 <i>}</i>
Bancroft & Burns (1969)	$\{15\} - \{21\}$
Ernst & Wai (1970)	$\{15\}, -\{22\} - \{31\}$
Burns & Greaves (1971)	$\{10\}, \{11\}, \{32\} - \{37\}$
Hafner & Ghose (1971)	$\{4\} = \{6\}, \{38\} = \{61\}$
Buckley & Wilkins (1971)	{62}
Babeshkin et al. (1971)	{63}
Ghose & Weidner (1972)	$\{1\}, \{60\}, \{61\}$
Virgo (1972a)	{64}
Law (1973)	{65}
Kamineni (1973)	{66}
Semet (1973)	<i>{</i> 67 <i>}, <i>{</i>68<i>}</i></i>
Litvin et al. (1973c)	{69}
Barabanov & Tomilov (1973)	{70} - {77}
Seifert & Virgo (1974)	{78}
Borg et al. (1973)	<i>{</i> 17 <i>}, {</i> 79 <i>}, <i>{</i>80<i>}</i></i>
Hawthorne & Grundy (1975)	{81}
Bancroft & Brown (1975)	$\{34\}, \{82\} - \{87\}$
Batievskii et al. (1975)	{88} - {92}
Goodman & Wilson (1976)	{93}
Litvin et al. (1976)	<i>{</i> 94 <i>}, {</i> 95 <i>}</i>
Goldman & Rossman (1977a)	{96}
Hawthorne & Grundy (1977b)	{97}
Seifert (1977, 1978)	$\{78\}, \{98\} - \{103\}$
Tripathi & Lokanathan (1978)	$\{104\} - \{114\}$
Goldman (1979)	$\{115\} - \{119\}$
Stroink et al. (1980)	$\{120\} - \{122\}$
Law & Whittaker (1981)	{65}

-		-	• •	•
~	А	•		•
				_

Appendix F1.	Chemical compositions and unit-cell data	440
Appendix F2.	Mössbauer parameters	454
Appendix F3.	Site populations and Fe^{3+}/Fe^{2+} ratios	458
Appendix F4.	Miscellaneous information and comments	463

Early Mössbauer work on amphiboles was qualitative only and concerned with oxidationdehydroxylation of fibrous amphiboles; the results of these studies have been superceded by more recent precise data, and are not reproduced here. Data for heated amphiboles, together with data for some synthetic amphiboles where conditions of synthesis or annealing (or both) appear to have affected cation ordering and oxidation state, are included as a separate section in each appendix. Each specific amphibole is identified by a number in curly brackets, the latter indicating that this amphibole has been studied by Mössbauer spectroscopic methods. Additional data on the same sample, either recorded by different authors, recorded at different temperatures or recorded after heating, are indicated by lower-case letters following the sample number. All studies are at room temperature unless otherwise specified. Isomer shifts are referred to a variety of standards; in this compilation, all have been normalized to metallic iron by subtraction of the following conversion factors (stainless steel: 0.10 mm/s, sodium nitroprusside: 0.26 mm/s, ⁵⁷Co in Pd: -0.185 mm/s).

APPENDIX F1. CHEMICAL COMPOSITIONS AND UNIT-CELL DATA

	{1}	{2}	{ 3}	{4}	{5}	{6 }	{7}	{8}	{ 9 }
Si0 ₂	54.7	52.9	51.95	49.0	49.01	48.0	55.10	56.27	50.06
Ti07	-	0.06	0.02	-	0.05	-	0.00	-	0.20
A1,03	0.28	2.37	0.15	0.2	0.00	<0.1	0.10	2.07	7.28
$Fe_{2}^{2}0_{3}^{3}$	-	0.0	-	-	_	-	_	0.40	0.96
Feð	20.40	28.0	33.70	41.2	44.99	46.3	11.08	13.81	18.42
MnO	0.56	0.97	0.99	0.68	0.37	0.57	13.17	0.59	0.57
MgO	20.00	13.71	10.44	3.0	3.17	0.52	17.00	23.99	18.40
Ca0	0.85	0.55	0.10	1.0	0.31	0.65	1.22	1.15	0.87
Na ₂ 0	0.04	<0.1	0.08	0.02	0.04	-	0.13	-	0.76
K ₂ Ó	0.01	~	0.05	0.02	0.00	_	0.02	-	0.02
H ² O	_	1.04	2.76	_	1,59	_	2.48	1.83	2 38
F	-	_	_	-	1.00	-	0 23	-	2.50
	96.84	99.60	100.24	95.12	100.62	96 14	100 53	100 11	100 00
O≡F	_	_		-	0.42	-	0 10	100.11	100.00
Tota1	96.84	99,60	100.24	95 12	100 20	96 14	100 43	100 11	100.00
	نيت نتيت ا				100.20		100.45	100.11	100.00
Si	7.95	7.83	7.92	8.11	8.00	8.07	8.02	7.86	7.20
Al	0.05	0.17	0.02	-	-	-	-	0.14	0.80
Σίυ	8.00	8.00	7.94	8.11	8.00	8.07	8.02	8.00	8.00
Al	-	0.24	-	0.15	-	0.08	0.02	0.19	0.44
Ti 3+	-	0.01	-	-	-	-	-	-	0.03
Fe ₂₊	-	-	-	-	-	-	_	0.05	0.10
Fe	2.48	3.47	4.30	5.70	6.14	6.51	1.35	1.61	2.21
Mn	0.07	0.12	0.13	0.10	0.05	0.08	1.63	0.07	0.07
Mg	4.33	3.02	2.38	0.74	0.77	0.13	3.69	5.02	3.97
Σνί		-		-	-	-	-	_	_
Σvi-5	-	-	-	-	_	_	_	-	_
Ca	0.13	0.09	0.02	0.18	0.06	0.12	0.19	0.16	0.13
Nacas		0.01	0.02	0.01	0.01	_	0.03	_	_
$\Sigma^{m(4)}$	7.01	6.96	6.85	6.87	7.02	6.92	6.91	7.10	7,15
			<u> </u>						
Na	-	-		-	-	-	-	-	0.21
Α .									
2									0.21
a(Å)	_	- 9	9.545(4)	_ 9	9.562(2)	9.586	9.573(3)	_	
b(Å)	_	- 18	8.258(14)	- 18	3.380(7)	18.448	18,115(5)	_	_
c(Å)	-		5.320(11)	_ ~	5.338(4)	5,344	5.304(7)		-
	-	_	101,96(9)	_ 1	01 86(3)	101 05	102.25(6)	-	-
v(Å ³)	_	_ 9	907(1)		18 2(7)	924 6	808 5(8)	-	-
		-		- ,	10.2(1)	224.0	(0) (0)	-	-
space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	Pnma	Pnma
0r									

¢	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}	{18}
S10,	56.00	55.0	42.7	49.7	51.5	58.04	56.38	55.38	52.16
Ti0 ²	0.08	0.05	1.1	0.04	0.4	0.66	0.11	0.36	0.04
A1,0	2.30	0.6	10.4	5.5	2.8	10.31	8.45	5.29	4.51
$Fe_{1}^{2}0_{1}^{3}$	1.40	1.83	_	5.30	-	2.89	4.98	9.74	10.53
Fe ⁽⁾	4.22	19.60	15.9	4.80	6.4	6.12	9.40	13.07	18.19
MnO	0.11	0.29	_	0.12	-	0.07	0.19	0.18	0.51
MgO	20.00	11.0	11.4	18.4	20.1	11.71	9.89	6.31	3.93
CaO	11.10	10.0	11.9	12.1	11.6	1.37	1.29	1.10	1.19
Na _o 0	1.10	0.24	1.6	2.2	1.8	6.97	6.77	6.40	6.27
K d	0.10	0.04	0.9	0.8	0.6	0.02	0.08	0.05	0.09
н ² 0	_	_	_	_		1.98	1.90	2.08	2.30
\mathbf{F}^2	_	-	-	_	-	_	_	_	_
	96.40	98.65	95.90	98.96	95.20	100.14	99.44	99.96	99.72
O≡F	_	· _	_	-	_		_	_	_
Total	96.40	98.65	95.90	98.96	95.20	100.14	99.44	99.96	99.72
Si	7.85	8.05	6.53	7.02	7.47	7.92	7.94	8.00	7.84
A1	0.15		<u> 1.47</u>	0.92	0.47	0.08	0.06		0.16
∑iv	8.00	8.05	8.00	7.94	7.94	8.00	8.00	8.00	8.00
A1	0.23	0.10	0.40	-	-	1.58	1.34	0.90	0.74
Ti 3+	0.02	0.01	0.11	-	0.05	0.06	0.01	0.04	0.01
Fe ₂₊	0.15	0.20	-	0.56	-	0.30	0.53	1.06	1.20
Fe ⁻	0.48	2.40	2.03	0.56	0.72	0.70	1.11	1.58	2.29
Mn	0.01	0.04	-	0.01	-	0.01	0.02	0.02	0.07
Mg	4.18	2.40	2.59	3.88	4.34	2.38	2.08	1.36	0.88
Συι	<u> </u>	5.15	<u> </u>	<u> </u>	5.11	<u> </u>	<u> </u>	<u> </u>	5.19
∑ <i>v</i> 1-5	0.07	0.15	0.13	0.01	0.11	0.03	0.09		0.19
Ca	1.67	1.57	1.95	1.83	1.79	0.20	0.20	0.17	0.19
$M_{\rm M}^{\rm Na}(4)$	0.26	0.07		0.16	0.10	1.77	1.71	1.79	1.62
Σ	2.00	<u>1.79</u>	2.08	2.00	2.00	2.00	2.00		2.00
Na	0.04	-	0.45	0.43	0.40	0.07	0.14	-	0.21
K A	0.02	0.01	0.16	0.13	0.10		0.01	0.01	0.01
Σ	0.06	0.01	0.61	0.56	0.50	0.07	0.15	0.01	0.22
a(Å)	-	-	-	-	-	9.554	9.609(2)	9.647(1)	-
Ъ(А)	-	-	-	-		17.738	17.813(4)	17.905(3)	-
c(A)	-	-	-	-	、-	5.298	5.311(2)	5.316(1)	
BLO3	-	-	-	-	-	103.72	103.61(2)	103.60(1)	-
V(A)	-	-	-	-	-	872.3	883,5	892.5	-
Space group	C2/m	C2/m	C2/m	C2/m	C1/m	C2/m	C2/m	C2/m	C2/m

-

.

	{19}	{20}	{21}	{22}	{23}	{24}	{25}	{26}	{27}
S10,	51.19	56.10	53.5	55,19	55.36	54.88	54.56	55 10	55 AA
T10 ²	0.03	tr	0.25	0.11	0.45	0.87	0.23	0 68	0.04
A1 0	0.17	0.66	1.3	9,94	12,16	9.86	8.29	4 27	0.04
$Fe_{0}^{2}0_{0}^{3}$	16.55	15.60	14.5	4.63	1.56	4 35	7 9/	10 61	16 77
Fe ²³	21.27	4.06	6.99	9.05	12 11	12 02	10 21	0 79	10.//
MnO	0.32	~	0.13	0.16	0 16	0 16	10.51	9.70	0.00
MgO	1.30	14.5	12.5	9 75	7 23	7 60	Q 74	9 96	12 20
CaO	0.83	0.11	2.25	1 69	1 02	1 05	0.74	1 4 2	12.30
Na_O	6.14	5.45	6.42	6 57	6 75	1.90	6 71	L.43	2.11
к.б	0.05	0.71	0.42	0.07	0.75	0.02	0.14	0.30	0.70
H ² 0	2.26	-	2 57	2 51	0.13	0.09	0.14	0.09	0.15
<u>F</u> 2		_	2.57	2. JI	2.03	2.33	2.25	2.02	0.60
-	100.11	97 10	100 /9	00 05			100 11		
O≡F	-	× -	100.49	55.55	99.30	99.02	100.11	99.70	99.77
Total	100.11	97 10	100 49	00.05	00 50		-		
10041	100.11		100.49	99.95	99.30	99.82	100.11	99.70	<u>_99.77</u>
Si	7.94	7.94	7.71	7.74	7.79	7.76	7.75	7.93	7.90
Al	0.03	0.06	0.22	0.26	0.21	0.24	0.25	0.07	0.03
Σίυ	<u> </u>	8.00	<u> </u>	8.00	8.00	8.00	8.00	8.00	7.93
Al	_	0.05	-	1.38	1.81	1,41	1.14	0.65	_
Ti.	-	_	0.03	0.01	0.05	0.09	0.03	0.05	0.01
Fe	1.93	1.66	1.57	0.49	0.17	0.46	0.80	1.15	1 80
Fe ²⁺	2.76	0.48	0.84	1.08	1.43	1.42	1.23	1 18	0.62
Mn	0.04	-	0.02	0.02	0.02	0.02	0.02	0.06	0.02
Mg	0.30	3.06	2.68	2.04	1.52	1.62	1 85	1 90	2 61
$\Sigma \tilde{v}i$	5.03	5.25	5.14	5.02	4.98	5 02	5.05	5 01	5 05
Σvi-5	0.03	0.25	0.14	0.02		- 0.02	0.05	$\frac{-5.01}{0.01}$	- 0.05
Ca	0.14	0.17	0.35	0.25	0 15	0.02	0.05	0.01	0.05
Na	1.83	1.38	1.51	1.73	1.84	1 54	1 83	1 77	1 61
$\Sigma^{M(4)}$	2.00	1,80	2.00	2.00	1 00	1 86	2.00	2.00	2 00
								2.00	2.00
Na	0.02	-	0.28	0.06	-	-	0.02	0.01	0.26
KA	0.01	0.13	0.02	0.03	0.03	0.02	0.02	0.02	0.03
Σ**	0.03	0.13	0.30	0.09	0.03	0.02	0.04	0.03	0.29
a (Å)	-	9.72	9.742	9.591	9.551	9.592	9.617	9.673	9.727
Ъ (Å)	_	17.95	17.955	17.814	17,781	17.834	17.862	17.923	17,958
c (Å)	_	5.31	5.287	5,306	5.310	5.308	5.312	5,316	5,306
β ^(°)	_	103.9	103.96	103.69	103.61	103.70	103.69	103.68	103 75
V (Å ³)	-	899	897.5	880.7	876.5	882.2	886.6	894.4	900.2
Space	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2 /m	C2/m
group			02/m		027 m	027 m	U2/μ	02/m	02/ш

	{28}	{29}	{30}	{31}	{ 32 }	{ 33}	{ 34 }	{ 35 }	{36}
Si0,	49.95	51.94	51.97	52.05	56.16	52,60	43.82	50.61	52.28
$Ti0^2_2$	0.11	_	0.19	0.44	-	0.08	0.68	3 0.09	0.05
A1,0,	4.23	0.20	2.01	0.40	0.20	3.13	14.85	2.42	0.05
Fe ² 0 ³	16.93	18.64	14.14	16.57	1.81	2.85	3.32	2.80	-
Fe0 S	13.05	19.39	19.59	21.77	6.32	6.09	11.15	19.90	22.57
MnO	4.95	_	3.00	0.13	2.30	0.20	0.27	2.69	0.24
MgO	3.52	1.37	0.48	0.36	19.84	17.95	12.07	8.26	10.53
Ca0	0.39	0.19	0.75	0.15	9.34	11.85	10.20	10.82	11.26
Na ₂ 0	4.94	6.07	5.83	6.29	1.30	0.40	1.79	0.48	0.16
к ₂ б	0.32	0.04	0.34	0.20	0.14	0.25	0.12	0.14	0.07
н_0	0.87	2.89	1.98	1.53	2.44		2.00	1.71	2.56
F			-	-	_	-	_	_	_
0-7	99.26	100.73	100.28	99.89	99.87	95.40	100.27	99.89	100.20
0=F					<u> </u>			<u> </u>	
Total	99.26	100.73	100.28	99.89	99.87	95.40	100.27	99.89	100.20
Si	7.54	7.99	7.97	8.02	7.91	7.55	6.33	7.66	7.93
Al	0.46	0.01	0.03		0.03	0.45	1.67	0.34	0.03
Σιυ	8.00	8.00	8.00	8.02	7.94	8.00	8.00	8.00	7.96
A1	0.29	0.02	0.33	0.07	_	0.08	0.86	0.09	_
Tia	0.01	-	0.02	0.05	-	0.02	0.07	0.02	0.01
Fe ₂₁	1.92	2.15	1.63	1.92	0.19	0.31	0.36	0.32	-
Fe ² '	1.65	2.49	2.51	2.80	0.75	0.73	1.35	2.51	2.86
Mn	0.63	-	0.39	0.02	0.27	0.01	0.03	0.34	0.03
Mg	0.79	0.32	0.11	0.08	4.18	3.83	2.60	1.86	2.38
Συί	5.29	4.98	4.99	4.94	5.39	4.98	5.27	5.14	5.28
Σ <i>vi</i> -5	0.29			-	0.39	_	0.27	0.14	0.28
Ca	0.06	0.04	0.12	0.03	1.44	1.82	1.58	1.75	1.83
$\frac{N_{A}}{M}(4)$	1.44	1.82	1.73	1.88	0.17	0.18	0.15	0.11	-
Σ	<u> </u>	1.86	1.85	1.92	2.00	2.00	2.00	2.00	2.11
Na	_	-	-	_	0.19	0.21	0.37	0.03	0.05
KA	0.06		0.07	0.04	0.03	0.04	0.02	0.03	0.01
Σ	0.06		0.07	0.04	0.22	0.25	0.39	0.06	0.06
a (Å)	9. 720	9.760	9.719	9.740	9.803(2)	_	_	9.891(1)	9.894(2)
b (Å)	18.018	18,070	18.014	18.045	18.083(5)	_	_	18.200(1)	18,198(5
c (Å)	5.326	5.339	5.328	5.336	5.292(2)	_	-	5.305(1)	5,299(2)
β (̈́)	103.60	103.66	103.62	103.42	104:35(3)	_	-	104.64(1)	104.58(2)
V(Å ³)	906.6	914.9	906.5	912.5	908.9(4)	-	-	924.0(1)	923.5(4)
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m
<u> </u>									

	{ 37 }	{ 38}	{ 39}	{ 40 }	{41}	{42}	{43}	{44}	{45}
510	_	52.0	49.0	51.0	48.0	49.33	50.0	48.0	54.0
T10 ²	-	<0.01		-	<0.01	0.02	0.02	<0.01	0.02
1 2	_	-0.1	<0 1	0.2	0.01	0.39	-	0.3	-
F 202	_	~~~		-	-	-		-	-
Fed 3	_	45 6	/3 8	40 5	38 6	40.94	38.6	37.3	38.6
MnO	_	1 10	43.0	0.5	0.00	0.54	0.53	0.63	0.83
Man	_	1 40	2 30	4 3	6.00 // //	6 65	6.0	6 40	73
CaO	_	0 65	0.70	1 0	4.4	0.18	0.81	0.40	0 75
Na O		0.00	0.70	1.0	T•T	0.12		0.75	-
^m 20	_	0.10	_	_		0.12	_	_	_
¹² 20	-	0.10	-	-	-	1 54	_	-	_
ⁿ ₂ 2	-	-	-	-	-	1.0.34		-	-
r	-	101 00					05 06	02.26	101 5
0-7	-	101.23	90.39	97.69	93.28	33.31	93.90	93.30	101.5
	-	-	-			00 01	05 06		101 5
Total	-	<u>101.23</u>	96.59	97.69	93.28	99.91	93.90	93.30	101.5
Si	8.00	8.17	8.08	8.13	8.03	7.92	8.07	7.97	8.13
A1	-	-	_	_	_	0.08	-	0.03	_
Σiv	8.00	8.17	8,08	8.13	8.03	8.00	8,07	8.00	8.13
				ــــــــــــــــــــــــــــــــــــ					
A1	-	0.18	0.09	0.17	0.13	_	0.07	0.03	0.13
Ti	_	-	-	-	-	_	-	_	-
Fe	-	_	-	-	-		_	-	-
Fe ²⁺	5.00	5.99	6.04	5.40	5.40	5.50	5.21	5.18	4.86
Mn	-	0.15	0.11	0.09	0.10	0.08	0.07	0.09	0.11
Mg		0.33	0.57	1.02	1.10	1.59	1.44	1.58	1.64
Συί	5.00	_	_	_	_	_	-	-	_
$\Sigma vi-5$		-	_	_	_	-	-	_	-
Ca	2.00	0.11	0.12	0.17	0.20	0.03	0.14	0.13	0.12
NA(4)					<u> </u>	0.04			
Σ	2.00	6.85	6.92	6.85	6.92	7.24	6.93	7.00	6.86
Na	-	_	-	-	-	-	-	-	-
K,	_	0.04	-	<u> </u>	-	0.04	-		
ΣΑ		0.04	-	-		0.04			-
- (Å)	9.87	0 503	0 500	0.576	0 570	0.551(1)	0 562	0.545	
	19.0/	10 /50	7.300	7,J/0 10 961	7.2/2	10 00/(L)	7.000	9.565	_
	20.J4 20.J4	5 3/3	10.41J 5 3/0	10.304 5 335	10.304	LO.J24(0)	TO'000	18.332	-
	10/ E	101 05	101 07	303 00	102 107	3.320(4)	102 02	5.337	-
p)23	104.J	TOT 22	101.9/	102.02	102.05	TOT .00(2)	102.02	102.00	-
V(A)	707	92 3 • T	922.1	91/./	921.9	912.3(0)	914.9	915.4	-
Space	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m
Fronh									

				· · · · · · · · · · · · · · · · · · ·						
	{46}	{47 }	{48}	{49}	{5	i0}	{51}	{52}	{53}	{54}
S10,	50.0	53.0	51.0	51-, 58	51	. በ	54 0	52 28	51 0	46.0
Ti0 ²	<0.01	<0.01	-	-	21	-	20.01	52.20	20.01	40.0
A1.0.	0.2	<0.1	0.2	0 10	0		<0.01 <0.01	0.07	~0.01 0.2	<u> </u>
Fe_{-0}^{2-3}	_	_	_	4.10	0	-	0.23	0.07	0.2	0.5
Fe ²³	36.7	36.7	34.1	34, 40	34	. 1	32.2	31 00	28.3	28 3
MnO	1.05	0.63	1.6	0.70	0	. 55	0.47	0 57	0.85	1 45
MgO	7.2	8.5	8.4	10.33	10	.5	10.5	12.35	11 5	12 0
CaO	0.78	0.95	0.63	0.97	1	.0	0.65	0.79	1.0	2 5
Na ₂ 0	-	-	0.05	0.02	-	_	0.06	0.12		
K Ó	_	-	0.03	0.05		-	0.03	0.08	-	_
H ₂ 0	· -	-	_	1,99		_	· _	1.62	-	_
$\mathbf{F}^{\mathbf{Z}}$		-	-	_		_		-	_	· _
	95.93	99.78	96.01	100.14	97	.35	98.20	99.78	92.85	90.55
O≡F			-	-		-	- 1	- ·	_	_
Total	<u>95.93</u>	99.78	96.01	100.14	97	.35	98.20	99.78	92.85	90.55
Si	8.01	8.07	8.06	7.95	7	.92	8.16	8.00	8.09	7.67
A1.	-		-	0.02	Ó	.04			_	0.06
Σ i v	8.01	8.07	8.06	7.97	7	.96	8.16	8.00	8.09	7.73
	·									
A1	0.05	0.08	0.10			-	0.21	0.02	0.13	-
Ti 3+	-	-	-	-		-	-	-	-	_
Fe ₂₊	-	-	-	-	•		-	-	~	-
Fe	4.92	4.68	4.51	4.44	4	•43	4.07	4.00	3.76	3.95
Mn	0.14	0.08	0.21	0.09	0	.07	0.06	0.07	0.11	0.21
Mg	1.72	1.93	1.98	2.37	- 2	•43	2.36	2.82	2.72	2.98
Σ DL	-	-	-	-	•	-	-		-	-
200-5		-	-	-	•	-	0° —	-	-	-
Ca	0.13	0.16	0.11	0.16	0	.17	0.11	0.13	0.17	0.45
$\mathbf{M}_{\mathbf{n}}^{\mathbf{N}_{\mathbf{n}}}$	<u> </u>		0.02			-	0.02	<u> </u>		
Σ	<u> </u>	<u> </u>	6.92	7.06	7	.10	6.82	<u> </u>	6.89	7.58
Na	-	-	-	-	•		-	0.04	-	-
K N A	. <u> </u>		0.01			-	0.01	0.02	-	~
Σ			0.01			`	0.01	0.06		
a(Å)	9.566	9.557	9.561	9.538(2)	9.5	549	9.539	9.534(2)) _	_
b(Å)	18.312	18.317	18,296	18.248(9)	18.2	271	18.268	18.231(5)	-	· •
c(Å)	5.337	5.332	5.331	5.349(6)	5.3	327	5.327	5.324(4)	_	_
β (°)	102.02	101.98	102.08	101.97(3)	102.	03	101.97	101.97(3)	-	<u> </u>
V(Å ³)	914.5	913.0	911.8	910.7(9)	909	.1	908.0	905.1(6)	-	
Space group	C2/m	C2/m	C2/m	C2/m	C2/	/m	C2/m	C2/m	C2/m	C2/m

i

	{55}	{56 }	{57}	{58}	{59}	{60}	{61}	{62}	{63}	{65}
S10	53.11	54.0	54.0	54.00	53.0	48.0	55.97	53.6	52.63	59.06
Ti0 ²	-	-	<0.01		-	<0.01	0.07	0.46	-	0.20
A1_0_	-	0.15	-	-	0.15	0.40	1.47	1.84	_	12.38
$Fe_{2}^{2}O_{2}^{3}$	-	-	-	-	-	-	0.01	1.26	-	2.36
Fe ²³	28.17	25.7	25.7	26.53	24.4	20.0	10.5	17.4	36.74	10.84
MnO	2.59	1.40	1.40	0.59	1.7	1.35	0.37	1.29	0.70	0.25
MgO	13.26	13.5	15.0	15.52	16.0	18.5	26.14	18.8	7.36	8.82
CaO	0.88	0.45	0.53	1.34	1.0	2.2	1.25	2.25	0.61	0.21
Na O	_	-	-			_	0.32	0.51	0.07	0.11
28	_	_	-	_	_	_	0.01	0.10	0.06	0.05
² 0	1.99	_	_	2.02	_	_	-	2.00	1.82	2.16
¹ _F 2 ⁰	1.35	_	_	2.02	_	_	_	0.18	-	0.18
Ľ	100 00	05 20	06 62	100.00	06 25	00 45	06 11	00.10	99 99	99.95
コーゼ	100.00	95.20	90.03	100.00	90.25	90.45	90•11 	0.08		0.08
Jatal	100.00	05 20		100.00			06 11	00.00	00 00	99.87
local	100.00	95.20	90.03	100.00	96.23	90.45	90.TT	99.01	33.33	
5i	8.00	8.20	8.09	8.00	7.97	7.64	7.83	7.74	8.16	7.89
A1.	_	_	-	-	0.03	0.08	0.17	0.26	-	0.11
i v	8.00	8.20	8.09	8.00	8.00	7.72	8.00	8.00	8.16	8.00
кт		0 33	0 00				0.07	0.05	0.16	1.84
т.т. г.т.	-	0.22	0.09	-	-	-	0.07	0.05	0.10	0.02
<u>-</u> 3+	-	-	-	-	-	-	0.01	0.05	-	0.02
² 2+		-			2 07	2.00	1 22	0.14	, , , , ,	1 21
re	3.33	3.20	3.22	3.29	3.07	2.00	1.23	2.10	4.77	0.03
n	0.33	0.18	0.18	0.07	0.22	0.18	0.04	0.10	0.09	1 76
Mg	2.98	3.05	3.35	3.43	3.58	4.39	5.45	4.05	1.70	T 4 1 70
501	-	-	-	-	-	-	-	-	-	L1=1./9
EVI-5	-	-	-		-					
Ca	0.14	0.07	0.09	0.21	0.16	0.38	0.19	0.35	0.10	0.03
		-					0.01	0.08	0.02	0.03
5(1)	7.00	6.79	<u> 6.91</u>	7.00	7.03	7.61	7.00	7.00	6.84	6.95
Na	_	-	-	_	_	-	0.08	0.06	-	-
K,	-	- .	-	-	-		-	0.02	0.01	0.01
Σ ^A							0.08	0.08	0.01	0.01
a (Å)	_	9.521	_	_	9.530	9.5.16	9.49	-	-	18.29
Γ Âί	-	18.189	-	_	18.174	18.139	18.00	_	-	17.67
	_	5.322	_	_	5.314	5.311	5.30	_	_	5.28
	_	101 00	_	_	102.07	102.12	102.0	_	_	90
v(Å ³)	_	901.5	_	-	899.9	896.4	885.6	_	-	1706.4
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	P2 ₁ /m	C2/m	C2/m	Pnma

-

с., **т**

	{66}	{67}	{67a}	{67b}	{68}	{ 69 }	{70}	. {71}	{72}
SiO,	54.10	42.0	8 41.8	41.2	40.94	37.55	_	· _	
T102	0.04	-	-	_	0.58	0.89	_	_	
A1,0,	0.30	11.9	0 12.1	11.6	12.85	9,90	_		-
$Fe_{2}^{2}0_{2}^{3}$	1.66	-	<u> </u>	_	-	11.89	_	- <u>-</u> -	-
Fe0 J	25.42	8.3	9 8.4	8.5	10.57	21.40		_	
MnO	0.78	-	-	-	0.26	1.25		_	· _
MgO	14.71	18.8	2 19.1	18.5	16.01	1 31	_	_	-
CaO	0.58	13.0	9 13.2	12.9	12.93	7.28	_	_	_
Na ₂ 0	0.11	3.6	2 3.5	3.5	2,59	4.05	_	_	-
к,б	0.06	_ `	-		1.24	2.11	-	_	_
н <u>5</u> 0	1.92	(2.10	(2.1)	(2,1)	(2.03)	1.84	<u></u>		_
F	-	·	-	-	(2:05)		_	_ ·	
	99.68	100.00	0 100.2	98.2	100.0	99.82			
O≡F				· _ ·	_		-	<u> </u>	_
Total	99.68	100.00	100.2	98.2	100.00	99.82			·
Si	8.04	6.00) –	_	5.95	6.14	7,89	7.91	7.81
Al		2.00) (-	2.05	1.86	0.09	0.09	0.19
Σιυ	8.04	8.00	2		8.00	8.00	7.98	8.00	8.00
Al	0.05	-	-	-	0.15	0.04		0.03	0.01
TI 3+	-	-	-	-	0.06	0.11	-	-	0.03
Fe ₂₊	0.18	1.00) -	-	0.72	1.45	-	0.12	0.17
Fe [~]	3.16	-	-	-	0.57	2.92	1.50	1.94	1.95
Mn	0.10	-	-	-	0.03	0.18	0.01	0.04	0.05
Mg .	3.26	4.00) –	-	3.47	0.30	5.11	4.72	4.45
Σvi	-	5.00]		5.00	5.00		-	_
∑ <i>v1</i> -5	-	-	-		-		_	-	-
Ca	0.09	2.00) –	-	2.01	1.27	0.31	0.14	0.30
NA (4)	_0.02	-		-	·	0.73	-	-	0.04
Σ	6.86	2.00			2.01	2.00	7.00	6.99	7.00
Na	-	1.00	- (0.73	0.55	-	-	_
K _A	0.01				0.23	0.45		0.01	-
Σ	0.01				0.96	1.00	· •	0.01	
a(Å)	9.525(3)	-	9.926(5)	9.928(2)	9.940(3)	9,960(8)	_	-	-
b(Ă)	18.202(4)		18,029(9)	18.015(9)	18.050(4)	18,177(8)	-	-	_
c(Ă)	5.313(3)	-	5.297(4)	5.282(3)	5.310(4)	5,352(2)	_	_	<u> </u>
β()	101.8(4)	-	105.46(5)	105.43(4)	105.45(4)	105.07(5)	-	-	
V(Ă~)	901.7	-	913.7(8)	910.7(8)	918.4(4)	935(1)	-		
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	Pnma	Pnma	Pnma

· · · · · · · · · · · · · · · · · · ·	{73}	{ 7 4. }	{ 75 }	{ 76 }	{ 7 7}	{64}	{78}
SiO,	_	_	-	– .	_	-	_
$Ti0^2$	-	_	-	-	-	-	-
A1,0,	-	-	-		-	-	-
$Fe_{1}^{2}0_{1}^{3}$	-	-	-	-	-	-	-
Fe0 S	-	-	-	-	-	-	-
MnO	-	-	-	-	-		-
MgO	-	-	-	-	-	_	_
Ca0	-	-	-	-	-	-	-
Na ₂ 0	-	-	-	-	-	-	-
к,0	-	-	-	-	-	-	-
Н20	-		-	-	-	-	-
F		-	_				
	-	-	-	-	-		_ .'
O≡F							
Total			-				
Si	7.39	7.38	8.17	8.05	8.00	8.00	7.81
A1	0.61	0.62					0.18
Σιυ	8.00	8.00	<u> 8.17</u>	8.05	8.00	8.00	<u> 7 .99 </u>
A1	0.12	0.11	0.10	0.12	0.15	-	-
Ti ₃₊	-	-	0.02	-	-	-	-
Fe ₂₊	0.22	0.23	0.08	-	0.18	-	-
Fe	3.30	3.30	4.80	5.24	5.28	5.00	1.17
Mn	-		0.72	0.11	0.12	-	_
Mg	2.92	2.92	0.94	1.18	0.95		5.79
∑UL	-	-	-	-		<u> </u>	-
202-5	_	-	-	-	-	-	-
Ca	0.27	0.27	0.13	0.27	0.30	1.00	0.09
$M_{\rm M}^{\rm Na}(4)$	0.08	0.08	0.04	-	0.02	1.00	-
Σ	<u> </u>	<u> </u>	6.83	<u> 6.95</u>		2.00	
Na	-	-	-	-	-	1.00	0.05
K A	0.09	0.09	<u> </u>		• 		
Σ	0.09	0.09				1.00	0.05
a(A)	-	-	-	-	-	9.982(7)	18.560(3)
b(A)	-	-	-	-	-	18.223(6)	18.013(2)
c(A)	-	-	-	-	-	5.298(5)	5.282(1)
β()	-		-	-	-	103.7(1)	90
V(A~)	-	-	-	-	-	936(1)	1765.9
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	Pnma

i

	{79}	{ 80}	{81}	{8 2}	{83}	{84}	{85}	{ 8 6}	{ 8 7}
SiO,	51.17	49.87	39,90	49.7	44.67	49 46	<i>66</i> 19	46 17	46 20
Ti0 ²	0.63	0.34	4.65	0.8	4 1.34	0.67	1 26	-1 10	40.30
A1_0_	1.11	1.04	14.35	5.2	8.88	5 52	8 82	1.13 7 73	7 70
Fe ² 0 ³	15.18	14.25	9,60	3.2	4.67	3 69	5 53	/ 58	1.70
FeŐ 3	18.48	20.19	0.04	10.0	14.76	11.08	14 77	12 07	12 00
MnO	2.85	1.22	0.08	0.5	5 0.47	0.58	0.50	0.60	0 58
MgO	0.32	0.03	14.52	14.4	9.67	13.61	9,19	11.23	11.84
CaO	0.80	0.44	12.14	11.9	11.79	12.12	11.74	11.77	11.90
Na ₂ 0	6.28	7.75	1,90	0.79	1.00	0.71	1.18	1.07	0.99
к,б	0.72	1.15	2.31	0.3	7 0.86	0.42	0.88	0.71	0.71
н <u>5</u> 0	1.61	1.00	0.50	2.40	1.82	1.82	1.80	1.85	1.73
F	0.60	2.46	0.12	_	0.10	0.15	0.14	0.12	0.12
	100.35	100.86	100.11	99.1	100.03	99.84	99.94	100.01	99.94
O≡F	0.26	1.03	0.05	-	0.04	0.06	0.06	0.05	0.05
Total	100.09	99.83	100.06	99.1	99.99	99.78	99.88	99.96	99.89
Si	7.93	7.83	5.88	7.26	6.71	7.23	6.66	6.86	6.87
A1	0.07	0.17	2.12	_ 0.74	1.29	0.77	1.34	1.14	1.13
Σud	8.00	<u> 8.00 </u>	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Al	0.13	0.02	0.37	0.14	0.28	0.18	0.23	0.22	0.23
<u>Ti</u> 3+	0.07	0.04	0.52	0.09	0.15	0.07	0.14	0.13	0.12
^{fe} 2+	1.77	1.68	1.06	0.35	0.53	0.41	0.63	0.51	0.53
Fe	2.39	2.65	-	1.22	1.85	1.35	1.86	1.61	1.50
Mn	0.37	0.16	0.01	0.07	0.06	0.07	0.06	0.08	0.07
Mg	0.07	0.01	3.19	3.13	2.16	2.97	2.07	2.49	2.62
5.00	<u>4.98</u>	<u> 4.92 </u>	5.15	<u> </u>	<u> </u>	5.05	4.99	5.04	5.07
200-5	_	· _	0.15	0.01	0.03	0.05	-	0.04	0.07
Ca N-	0.13	0.07	1.92	1.86	1.90	1.86	1.90	1.87	1.89
$\mathbb{X}_{\infty}^{N}(4)$	1.8/	1.93		0.13	0.07	0.09	0.10	0.09	0.04
7	2.00	2.00	2.07			2.00			2.00
Na	0.02	0.43	0.54	n ng	0 22	0 11	0.25	0 17	0 21
K.	0.14	0.23	0.43	0.07	0.16	0.11	0.25	0.15	0.51
ΣΑ	0.16	0.66	0.97	0.16	0.38	0.19	0.42	0.13	0.11
			<u> </u>				0.74		0.42
a(Å)	9. 769(2)	9.823(2)	9.892(1)	-	9.880	9.878	9.887	9.882	9 891
b(Ă)	18.048(3)	18.021(4)	18,064(2)	-	18.179	18,129	18,174	18,126	18 169
c(Å)	5.335(1)	5,328(2)	5.312(1)	-	5.302	5,301	5.308	5.301	5.285
β(̈́)	103.59(1)	103.70(1)	105.39(1)	د	104.80	104.83	104.97	104.90	104.83
V(X)	914.3	916.4	915.1(4)	_	920.7	917.7	921.4	917.6	918.1
Snaco									~~~ * *
group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m

•	[88]	[89]	{90}}	{91}	{92}	{94}	{95}
S40	42 10	44 07	(JU)	()_)	42.00	47 96	16 15
5102 T+02	43.10	44.9/	44.93	43.4/	43.08	47.00	40.43
A1 6	10 63	0.56	1.45	0.06	10 64	1 69	3 44
Fa ²⁰ 3	6 51	3 99	2 27	3.90	2 50	17 05	16 70
Fen 3	10.92	13 53	12 05	16 04	16 16	19 91	19 59
Mnfi	0.35	0.26	0.31	0.27	0.29	0.71	0.63
MeO	11.20	10.51	11 90	8 70	8 93	0.13	-
CaO	11.50	11.32	10.96	10.84	11.24	1.64	1.63
NaoQ	1.35	0.01	1.17	1.17	1.33	6.25	5.94
K 20	1.04	1.02	0.80	1.07	0.86	0.61	3.74
H-0	2.09	2.47	2.08	2.15	1.99	1.67	0.95
F	0.21	0.07	0.03	0.08	0.03	1.16	1.24
	100.26	99.86	99.69	99.84	99.89	100.22	100.95
O≡F	0.09	0.03	0.01	0.03	0.01	0.49	0.52
Total	100.17	99.83	99.68	99.81	99.88	99.73	100.43
				<u></u>			
Si	6.40	6.71	6.58	6.55	6.47	7.68	7.51
$\frac{A1}{\Sigma}iv$	1.60	1.29	1.42	1.45	1.53	0.32	0.49
4	8.00	8.00	8.00	8.00	8.00	8.00	8.00
A1	0.25	0.39	0.24	0.31	0.35	_	0.16
Ti	0.14	0.14	0.17	0.23	0.20	0.08	0.08
Fe	0.79	0.43	0.37	0.45	0.40	2.17	2.02
Fe	1.36	1.69	1.59	2.02	2.02	2.68	2.65
Mn	0.05	0.03	0.03	0.04	0.04	0.10	0.09
Mg	2.47	2.32	2.60	1.95	1.99	0.03	-
Σvi	5.06	5.00	5.00	5.00	5.00	5.06	5.00
				- <u></u>			
S00 -5	0.06				-	0.06	-
ua N-	1.82	1.80	1.72	1.74	1.80	0.28	0.28
$\sum_{n=1}^{na} M(4)$	0.12	0.20	0.28	0.26	0.20	1.66	$\frac{1.72}{2}$
2	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Na	0.27	0.14	0.04	0.07	0.19	0.28	0.14
ĸ,	0.22	0.28	0.16	0.21	0.17	0.17	0.77
ΣΑ	0.49	0.42	0.20	0.28	0.36	0.45	0.91
							
a (Å)	-	9.867	9.848	9.863	9.857	.9.774	1) 9.935(5)
ь (Ă)	-	18.103	18.058	18.111	18.058	18.032	7) 18.102(2)
c (Ă)	-	5.320	5.305	5.320	5.309	5.333	(4) 5.339(3)
β (°)	-	105.00	105.05	104.77	104.97	103.7(1)	103.9(2)
V (Å ³)	-	918.0	911.0	918.9	913.9	913(1)	931(1)
Space	C2/m	C2 /m	c2 /	co /	<u>an (</u>	C2 /m	C2/m
Group	02/11	62/Ш	U2/Щ	GZ/m	C2/m	02/ш	027 m

- -

-

--

	{96 }	{97 }	{98}	{99}	{100}	{10,1}	{102}	{10 3 }
Si0	57.65	53.60	58.80	57.28	58.18	58.49	55.31	55.23
1 2	1.07			0.01	-	-	0.13	0.08
AL 203	1.31	0.51	0.01	0.09	0.24	0.41	1.89	2.53
	-	0.35	-	-	-	-	_	-
reo	2.06	3.50	8.11	9.99	11.41	7.89	14.08	12.73
MinU		12.90	0.15	0.22	0.19	0.30	0.32	0.33
MgU	23.62	16.90	28.91	28.07	27.34	29.44	23.20	24.84
CaO	13.42	1.66	0.40	0.32	0.07	0.51	0.63	0.61
Na ₂ 0	0.61	0.75	0.03	0.01	0.03	0.06	0.15	- 0.22
к ₂ 0	0.20	0.17	-	_	-	0.02	0.02	0.04
н_0	-	2.53	-	-	-	-	-	0.04
F"	0.21			_		_	_	_
O≣F	99.15	99.82	96.41	95.99	97.46	97.12	95.73	96.61
Tota1	99.06	99.82	96.41	95.99	97.46	97.12		
<i>a</i> •								90.01
51	7.81	7.87	8.05	7.96	7.95	7.96	7.88	7.74
AL	0.19	0.09		0.02	0.05	0.04	0.12	0.26
5.00	<u> </u>	7.94	8.05	7.98	8.00	8.00	8.00	8.00
A1	0.02	-	_	-	0.01	0.02	0 10	0 16
Tian	0.01	-	-	• •	-	-	0.19	0.10
Fe		0.07	-		_	_	_	0.01
Fe	0.23	0.42	0.93	1.16	1 20	0_00	1 (0	
Mn	-	1.60	0.02	0 03	1.29	0.90	1.00	1.49
Mg	4.77	3.70	5.90	5 82	5 60	0.03	. 0.03	0.04
Συί	5.03	Zn 0.75	5150	5.02	2.09	5.97	4.92	5,19
Σvi_{-5}	0.03		_	-	-	-	→ '	-
Ca	1.95	0.26	0_06				-	
Na	0.02	0.20	0.00	0.05	0.01	0.07	0.10	0.09
$\sum_{\Sigma} M(4)$	2 00	6 07	<u> </u>			0.01	0.04	0.02
2		0.97	<u> </u>				<u> 6.96</u>	
Na	0.14	-	-	-	0.01	0.01	_	0.04
A		0.02			-	· _	<u> </u>	0.01
Σ	<u> </u>	0.02			0.01	0.01		0.05
a(Å)	- 9	.606(1)	18.544(3)	18.541(4)	18,541(7)	18,544(8)	18,570(3)	18 560(3)
b(Ă)	- 18	.126(1)	18.014(3)	18.020(5)	18,027(7)	18,011(7)	18.024(3)	
c(Å)		.317(1)	5.286(2)	5.287(2)	5.274(3)	5,281(5)	5,285(1)	5 297(2)
β(°)	_ 10	2.63(1)	90	90	90	90	an	J.207(2)
V(Å ³)	_ 90	3.4	1765.8	1766.4	1762.8	1763.8	1768.9	1767.9
Space	co (210115
group	C2/m	C2/m	Pnma	Pnma	Pnma	Pnma	Pnma	Pnma

Cell di	mensions of h	eat-treated	amphiboles_			·····	<u> </u>
	{15a}	{ 15 b}	{15c}	{ 15d }	{ 27}	{ 27a}	{ 27b}
a b c β V	9.554(8) 17.738(19) 5.298(7) 103.7(1) 872.3	9.550(8) 17.758(19) 5.293(7) 103.7(1) 872.1	9.524(8) 17.716(19) 5.269(7) 103.6(1) 863.9	9.827(8) 17.903(19) 5.294(7) 103.8(1) 904.6	9.727(8) 17.958(19) 5.306(7) 103.8(1) 900.2	9.683(8) 17.912(19) 5.287(7) 103.6(1) 891.2	9.680(8) 17.913(19) 5.292(7) 103.6(1) 891.7
Space group	C2/m	C2/m	C2/m	-	C2/m	C2/m	C2/m
	~ {29}	{29a}	{29b}	{ 31}	{ 31a }	{67a}	{67b}
a b c β V	9.760(8) 18.070(19) 5.339(7) 103.7(1) 914.9	9.619(8) 17.946(19) 5.295(7) 103.2(1) 889.8	9.635(8) 17.953(19) 5.286(7) 103.3(1) 889.9	9.740(8) 18.045(19) 5.336(7) 103.4(1) 912.5	9.618(8) 17.902(19) 5.286(7) 103.4(1) 885.3	9.928(2) 18.015(9) 5.282(3) 105.43(4) 910.7(8)	9.930(5) 18.025(8) 5.290(4) 105.43(4) 912.0(10)
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m
	{67c}	{67d}	{67e}	{67f}			
a b c β V	9.933(2) 18.029(4) 5.293(1) 105.43(1) 913.0(5)	9.932(2) 18.015(4) 5.289(1) 105.43(2) 912.2(3)	9.933(1) 18.028(3) 5.297(1) 105.44(2) 914.3(3)	9.926(5) 18.029(9) 5.297(4) 105.46(5) 913.7(8)			
Space group	C2/m	C2/m	C2/m	C2/m	<u>.</u>		

. 9 [°]

,

PRESSURE-TEMPERATURE CONDITIONS FOR HEAT-TREATED AMPHIBOLES

	P(bars)	buffer	т(^о с)	time(hrs)		P(bars)	buffer	т(^о с)	time(hrs)
{15a}		unhea	ted						
{ 15b }	1	air	705	1	{9 8 n }	1000	-	600	882
{15c}	1	air	705	95	{98 o}	1000	-	600	286
{15d}	2000	NNO	513	15667	{ 99 }		unheat	ted	
{27}		unhear	ted		{99 a}	1000	_	800	3
{27a}	1	air	706	94	{99b}	1000	-	730	20
{27b}	1	air	704	1	{99 c}	1000	_	690	168
{29}		unhea	ted		{b 66}	1000	-	650	121
{29a}	1	air	706	94	$\{99e\}$	1000	-	600	481
{29b}	1	air	704	1	{99 f}	1000	-	550	1339
{31}		unheat	ted		{100}		unheat	ed	
{ 31a }	1	air	707	95	{100a}	1000	-	780	24
{ la }		unheat	ted		{100b}	1000	-	760	43
{ 1 b}	2000	*	398	672	{100c}	1000	-	750	45
{ 1c }	2000	*	500	305	{100d}	1000	_	730	45
{1d}	2000	*	600	302	{100e}	1000	-	700	74
{ 1e }	2000	*	700	146	{100f}	1000	-	680	142
{60b}		unheat	ted		{100g}	1000	-	660	427
{60c}	2000	*	500	305	{100h}	1000	-	620	882
{60d}	2000	*	602	302	<i>{1001}</i>	1000	-	600	682
{60e}	2000	*	700	146	{100j}	1000	-	550	1339
{ 61 b}		unheat	ted		{101}		unheat	ed	
$\{61c\}_{\perp}$	2000	*	600	144	{101a}	1000	-	800	3
{67a}	2000	IQF	850	50	{101b}	1000	-	760	43
{67b}	2000	WM	850		{101c}	1000	· 🕳	730	20
{67c}_	2000	FMQ	850	46	{101d}	1000	-	690	168
$\{67d\}_{\perp}^{\perp}$	2000	NNO	850	50	{101e}	1000	-	650	121
{67e}	2000	HM	850	50	{101f}	1000	-	600	481
{67f} ⁺	2000	СТ	850	26	{101g}	1000	-	550	1339
{67g}	2000	CCO	707	150	{102}		unheat	ed	
{67h}	2000	CT	850	10	$\{102a\}$	1000	-	800	3
{67 1 }	2000	IQF	850	10	{102b}	1000	-	760	4
{ 7 8}		unheat	ed		{102c}	1000	-	730	45
{78a}	2000	QFM	720	96	{ 102d }	1000	-	700	96
{78b}	2000	QFM	670	216	{102e}	1000	-	680	142
{78c}	2000	QFM	600	360	$\{102f\}$	1000	-	650	121
{ 78 d} ^a	2000	QFM	600	168	{102g}	1000	-	600	481
$\{78e\}_{d}$	2000	QFM	550	445	$\{102h\}$	1000	-	550	1339
{78 £}~	2000	QFM	550	576	{103 }		unheat	ed	
{98 }		unheat	ed		{103 a}	1000	-	800	3
{98a }	1000	-	800	3	{103b}	1000	-	780	14
{98b }	1000	-	780	24	{103 c}	1000	-	760	43
{98c }	1000	-	760	43	{103 d}	1000	-	750	45
{98d }	1000	-	750	45	[103 e]	1000	-	730	33
{98e }	1000	-	730	45	{103 f}	1000	-	700	96
(981)	1000	-	700	96	(103g)	1000	-	690	168
(98g)	1000	-	690	168	103 h	1000	-	680	142
(98h)	1000		680	142	{1031}	1000	-	660	427
1981 }	1000	-	660	42/	(103 j)	1000	-	650	882
198j d	1000	-	650	882	(103 k)	1000	-	620	882
198k }	1000	-	650	391	(1031) (1031)	1000	-	600	219
1981 F	1000	-	630	/68	1103m)	1000	-	600	219
198m/	T000 .	-	020	882	110310 d	1000	-	550	1053
					110301	T000	-	000	T022

^d*starting material was disordered by prior heating at 780°C{98} and {103} and 720°C {78}. Fe kept in reduced condition by using 8 vol.% hydrogen-92 vol.% argon pressure medium. Conditions indicated are those of synthesis.

APPENDIX F2. MÖSSBAUER PARAMETERS FOR AMPHIBOLES

(a) Natural amphiboles

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · ·	Isc	omer s	shift	(mm/s	sec) (luadruj	pole s	split	ting	(mm/se	c) Ha	alf-wi	Ldth	(mm/se	ec)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		M(1)	M(2)	M(3)	M(4)	Fe ³⁺	M(1)	M(2)	M(3)	M(4)	Fe ³⁺	M(1)	M(2)	M(3)	M(4)	Fe ³⁺
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{1}	*	1.14	` →	1.08	-	+	2.76	→	1.64	-	*	0.38	→	0.38	-
	{ 2 }	~	1.17	→	1.10	-	*	2.90	→	1.62	-	*	0.42	→	0.39	-
$ \begin{cases} 4 \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (6) \\ (6) \\ (5) \\ (6)$	{3}	*	1.15	→	1.06	-	*	2.75	→	1.55	-	+	0.39	→	0.37	-
$ \begin{cases} 5 \\ + 1, 14 \\ + 1, 15 \\ + 1, 15 \\ + 1, 105 \\ - + 2, 78 \\ + 1, 50 \\ - + 2, 78 \\ + 1, 50 \\ - + 0, 40 \\ + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ + 0, 36 \\ - + 0, 40 \\ - 0, 37 \\ + 0, 28 \\ 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 28 \\ \\ - 0, 28 \\ 0, 46 \\ 0, 30 \\ - 0, 33 \\ - 0, 31 \\ - 0, 41 \\ - 0, 38 \\ - 0, 37 \\ 2, 82 \\ - 2, 22 \\ - 0, 42 \\ 0, 31 \\ - 0, 41 \\ - 0, 38 \\ - 0, 31 \\ - 0, 41 \\ - 0, 38 \\ - 0, 31 \\ - 0, 41 \\ - 0, 38 \\ - 0, 31 \\ - 0, 41 \\ - 0, 38 \\ - 0, 22 \\ - 0, 42 \\ - 0, 43 \\ 0, 29 \\ - $	{ 4 }	+	1.14	\rightarrow	1.04	-	*	2.72	→	1.51	-	*	0.39	→	0.35	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{5}	*	1.14	\rightarrow	1.05	-	+	2.78	\rightarrow	1.53	-	*	0.39	→	0.40	-
$ \begin{cases} 7 \\ 8 \\ + 1, 11 \\ + 1, 10 \\ + 1, 10 \\ + 2, 61 \\ + 2, 61 \\ + 1, 81 \\ - + 0, 37 \\ + 0, 36 \\ + 0, 37 \\ + 0, 36 \\ - 0, 40 \\ - 0, 38 \\ - 0, 48 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 25 \\ - 0, 28 \\ -$	{6 }	*	1.15	\rightarrow	1.05	-	+	2.78	→	1.50	-	*	0.40	→	0.35	-
$ \begin{cases} 8 \\ + 1, 11 + 1, 10 - + 2, 61 + 1, 81 - + 0, 37 + 0, 28 - (9) \\ + 1, 12 + 1, 08 - + 2, 58 + 1, 80 - + 0, 36 + 0, 31 - (10) \\ 1, 14 , 1, 12 , 14 2, 82 , 1, 89 , 2, 82 - 0, 29 - 0, 24 0, 29 (11) \\ 1, 14 , 1, 14 , 1, 14 2, 81 , 1, 98 , 2, 81 0, 28 0, 46 0, 28 (13) \\ 1, 12 - 1, 10 - 0, 35 , 2, 82 - 2, 33 - 0, 48 0, 30 - 0, 33 - 0, 33 \\ 161 , 1, 3 - 1, 12 - 0, 37 , 2, 82 - 2, 2, 7 - 0, 42 0, 31 - 0, 38 - 0, 30 \\ 181 , 1, 3 - 1, 11 - 0, 38 , 2, 85 - 2, 36 - 0, 47 0, 31 - 0, 41 - 0, 34 \\ 191 , 1, 3 - 1, 10 - 0, 37 , 2, 82 - 2, 39 - 0, 41 0, 38 - 0, 31 - 0, 44 \\ (21a) , 1, 12 - 1, 04 - 0, 39 , 2, 75 - 2, 15 - 0, 49 0, 32 - 0, 42 - 0, 34 \\ (21b) , 1, 13 - 1, 10 - 0, 34 , 2, 81 - 2, 30 - 0, 48 0, 31 0, 34 0, 34 - 0, 34 \\ (15a) , 1, 13 - 1, 10 - 0, 34 , 2, 81 - 2, 30 - 0, 48 0, 31 0, 34 0, 34 - 0, 34 \\ (15a) , 1, 13 - 1, 10 - 0, 34 , 2, 81 - 2, 30 - 0, 48 0, 31 0, 34 0, 34 - 0, 34 \\ (15a) , 1, 13 - 1, 11 - 0, 36 , 2, 82 - 2, 22 - 0, 47 \\ (22) , 1, 13 - 1, 11 - 0, 38 , 2, 82 - 2, 22 - 0, 47 \\ (23) , 1, 13 - 1, 11 - 0, 36 , 2, 82 - 2, 22 - 0, 47 \\ (24) , 1, 14 - 1, 11 - 0, 37 , 2, 82 - 2, 23 - 0, 47 \\ (25) , 1, 14 - 1, 12 - 0, 39 , 2, 79 - 2, 2, 48 - 0, 44 0, 29 - 0, 29 - 0, 29 \\ (21c) , 1, 14 - 1, 12 - 0, 37 , 2, 82 - 2, 2, 5 - 0, 46 \\ (25) , 1, 14 - 1, 12 - 0, 37 , 2, 82 - 2, 2, 5 - 0, 46 \\ (27) , 1, 14 - 1, 12 - 0, 37 , 2, 82 - 2, 2, 5 - 0, 46 \\ (28) , 1, 14 - 1, 07 - 0, 37 , 2, 82 - 2, 2, 5 - 0, 46 \\ (29) , 1, 14 - 1, 07 - 0, 37 , 2, 83 - 2, 33 - 0, 45 \\ (29) , 1, 14 - 1, 12 - 0, 39 , 2, 79 - 2, 4, 8 - 0, 44 0, 2, 9 - 0, 2, 9 - 0, 2, 9 \\ (21c) , 1, 14 - 1, 07 - 0, 37 , 2, 83 - 2, 33 - 0, 45 \\ (29) , 1, 14 - 1, 11 - 0, 37 , 2, 88 - 2, 33 - 0, 45 \\ (29) , 1, 14 - 1, 11 - 0, 38 , 2, 89 , 191 , 2, 57 - 0, 53 + 0, 26 + - 0, 68 \\ (33) , 1, 13 , 1, 20 , 1, 11 - 0, 44 , 2, 89 , 1, 91 , 2, 57 - 0, 53 + 0, 26 + - 0, 64 \\ (334) , 1, 11 , 1, 10 , 07 - 0, 38 , 2, 71 , 1, 72 , 19 +$	{ 7}	*	1.13	→	1.04		*	2.76	→	1.68	-	*	0.40	→	0.36	-
$ \begin{cases} 9 \\ 10 \\ 1.14 \\ 1.12 \\ 1.14 \\ 1.12 \\ 1.14 \\ 1.12 \\ 1.14 \\ 1.14 \\ 1.12 \\ 1.14 \\ 1.11 \\ 1.$	{ 8}	*	1.11	→	1.10	-	*	2.61	→	1.81	-	+	0.37	→	0.28	-
	{9 }	~	1.12	→	1.08	-	·	2.58	→	1.80	-	*	0.36	\rightarrow	0.31	-
	{10}	1.14	1.12	1.14	_	_	2.82	1.89	2.82	-	-	0.29	0.44	0.29	-	-
	{11}	1.14	1.14	1.14	_	_	2.81	1.98	2.81		-	0.28	0.46	0.28	-	-
	{15}	1.12	_	1.10	_	0.35	2.82	_	2.33	-	0.48	0.30	-	0.33	-	0.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{16}	1.13	_	1.12	_	0.37	2.82		2.27	_	0.42	0.36	_	0.40	-	0.35
	$\{17\}$	1,13	_	1.13		0.37	2.82	_	2.32		0.42	0.31	-	0.38	-	0.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{18}	1.13	_	1.11	-	0.38	2.85		2.36	-	0.47	0.31	_	0.41	_	0.34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{10}	1.13		1,10	_	0.37	2.83	_	2.32	-	0.43	0.29		0.29	_	0.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{20\}$	1.15	_	1.15	_	0.36	2.82	_	2.39	_	0.41	0.38	_	0.31		0.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{21_{2}\}$	1.12	-	1.04	_	0.39	2.75	_	2.15	_	0.49	0.32	-	0.42		0.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	{21b}	1 13	1 02	1 10	_	0.39	2.79	2.00	2.41		0.48	0.31	0.34	0.34	_	0.34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{15_{n}\}$	1 13	1.02	1 10	_	0.34	2 81	-	2.30	_	0.48	0.25	_	0.25	-	0.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)a) {22}	1 12	_	1 12	_	0.38	2.01	_	2.30	_	0.46	_	_	_	-	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[22] [22]	1.13	_	1 11	_	0.36	2.19	_	2.24	_	0.47	_	_	-	~	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[23]	1 14	-	1 11	_	0.30	2.02		2.22	_	0.47	_	_	-	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(24) [25]	1.14	_	1 1 2	_	0.30	2.02	_	2.23	_	0.46	_	_	_	_	_
$ \begin{bmatrix} 126 \\ 27 \\ 1.14 \\ - 1.07 \\ - 0.39 \\ 2.79 \\ - 2.48 \\ - 0.44 \\ 0.29 \\ - 0.26 \\ - 0.41 \\ - 0.41 \\ 2.88 \\ 1.11 \\ 1.10 \\ 1.07 \\ - 0.38 \\ 2.71 \\ 1.72 \\ 2.30 \\ - 0.45 \\ - 0.45 \\ - 0.28 \\ - 0.31 \\ - 0.41 \\ - 0.40 \\ 2.89 \\ 1.85 \\ 2.32 \\ - 0.45 \\ - 0.67 \\ - 0.30 \\ - 0.41 \\ - 0.41 \\ - 0.40 \\ 2.89 \\ 1.85 \\ 2.32 \\ - 0.57 \\ - 0.29 \\ - 0.46 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.29 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.29 \\ - 0.46 \\ - 0.45 \\ -$	[20]	1 1/	-	1 07	-	0.37	2.02	_	2.23	_	0.40	_	_		_	_
$ \begin{array}{c} 21 \\ 21 \\ 21 \\ 1.14 \\ - 1.04 \\ - 0.40 \\ 2.75 \\ - 2.01 \\ - 0.50 \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	1201	1 1/	-	1 12	-	0.37	2.02	_	2.21	_	0.47	0.29	_	0.29	_	0.29
$ \begin{cases} 1212 \\ 28 \\ 1.14 \\ - 1.07 \\ - 0.37 \\ 2.83 \\ - 2.33 \\ - 0.45 \\ $	12/5	1 1/	-	1.04	-	0.39	2.19	_	2.40	_	0.44	0.29	_	-	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ZTC1	1 1/	-	1.04	-	0.40	2.75		2.01	_	0.50	_	_	_	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1281	1.14	-	1.0/	-	0.3/	2.03	-	2.33	-	0.43	ົ້າເ	_	0 26	_	0.26
$ \begin{cases} 307 & 1.14 & - & 1.09 & - & 0.37 & 2.88 & - & 2.38 & - & 0.44 & - & - & - & - & - \\ 1103 & 1.14 & - & 1.11 & - & 0.37 & 2.88 & - & 2.33 & - & 0.42 & - & - & - & - & - \\ 10a1 & 1.14 & 1.14 & 1.12 & - & 0.28 & 2.89 & 1.91 & 2.57 & - & 0.53 & + & 0.26 & + & - & 0.68 \\ 122 & 1.13 & + & 1.07 & - & 0.44 & 2.89 & + & 2.04 & - & 0.45 & + & 0.31 & + & - & 0.40 \\ 133 & 1.13 & 1.20 & 1.11 & - & 0.41 & 2.88 & 1.80 & 2.44 & - & 0.63 & + & 0.28 & + & - & 0.35 \\ 141 & 1.13 & 1.20 & 1.11 & - & 0.41 & 2.88 & 1.80 & 2.44 & - & 0.65 & + & 0.32 & + & - & 0.41 \\ 1113 & 1.12 & 1.14 & - & - & 2.86 & 1.77 & 2.19 & - & - & + & 0.28 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.30 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.30 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.29 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.29 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.29 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.29 & + & - & - \\ 111b1 & 1.25 & 1.29 & 1.27 & - & 0.48 & 3.18 & 1.99 & 2.64 & - & 0.67 & + & 0.29 & + & - & - \\ 111b1 & 1.2 & - & - & 2.81 & 1.73 & 2.13 & - & - & + & 0.29 & + & - & - \\ 135a1 & 1.23 & 1.11 & 1.20 & - & 0.52 & 3.10 & 2.10 & 2.65 & - & 0.53 & + & 0.29 & + & - & - \\ 1373 & 1.12 & + & 1.14 & + & 1.08 & - & 2.72 & + & 2.16 & + & 1.37 & - & + & 0.34 & + & - & - \\ 15a1 & + & 1.16 & + & 1.07 & - & & & 2.79 & + & 1.55 & - & + & 0.29 & + & 0.27 & - \\ 15b1 & + & 1.28 & + & 1.18 & - & + & 3.10 & + & 1.54 & - & + & 0.34 & + & 0.30 & - \\ 1601 & + & 1.16 & + & 1.11 & - & & + & 2.81 & + & 1.67 & - & & + & 0.28 & & 0.27 & - \\ 1501 & + & 1.16 & + & 1.11 & - & & + & 2.81 & + & 1.67 & - & & + & 0.28 & + & 0.27 & - \\ 1501 & + & 1.16 & + & 1.11 & - & & + & 2.81 & + & 1.67 & - & & + & 0.28 & + & 0.27 & - \\ 1201 & + & 1.16 & + & 1.11 & - & & + & 2.81 & +$	1295 [00]	1.14	-	1.12	-	0.40	2.0/	-	2.00	-	0.44	0.20	_	-	_	-
$ \begin{cases} 11 \\ 10a \\ 10a \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.12 \\ - 0.28 \\ 2.89 \\ 1.20 \\ 2.89 \\ 2.04 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.31 \\ - 0.40 \\ 2.89 \\ - 0.45 \\ - 0.65 \\ - 0.65 \\ - 0.28 \\ - 0.32 \\ - 0.41 \\ 11a \\ 1.13 \\ 1.12 \\ 1.14 \\ - 0.41 \\ 2.88 \\ 1.80 \\ 2.44 \\ - 0.63 \\ - 0.65 \\ - 0.32 \\ - 0.41 \\ 11a \\ 1.13 \\ 1.12 \\ 1.14 \\ - 0.40 \\ 2.89 \\ 1.85 \\ 2.32 \\ - 0.65 \\ - 0.65 \\ - 0.28 \\ \\ - \\ 0.28 \\ \\ - \\ 0.28 \\ \\ - \\ 0.29 \\ - 0.41 \\ 11b \\ 1.25 \\ 1.25 \\ 1.29 \\ 1.27 \\ - 0.48 \\ 3.18 \\ 1.99 \\ 2.64 \\ - 0.67 \\ + 0.30 \\ \\ - \\ 0.29 \\ - 0.41 \\ 35 \\ 1.15 \\ 1.14 \\ 1.14 \\ - 0.40 \\ 2.89 \\ 1.85 \\ 2.32 \\ - 0.57 \\ - \\ 0.29 \\ - 0.45 \\ - \\ - \\ 0.29 \\ \\ - \\ 11b \\ 35 \\ 1.23 \\ 1.11 \\ 1.11 \\ 1.20 \\ - 0.52 \\ 3.10 \\ 2.10 \\ 2.65 \\ - 0.53 \\ - \\ 0.29 \\ \\ - \\ 0.34 \\ \\ - \\ 5a \\ + \\ 1.16 \\ + \\ 1.16 \\ - \\ 1.18 \\ - \\ - \\ 2.81 \\ - \\ - \\ 2.81 \\ - \\ 1.55 \\ - \\ - \\ 0.28 \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ - \\ 0.28 \\ - \\ 0.27 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	1301	1.14	-	1.09	-	0.37	2.80	-	2.30	-	0.44	-	_	_	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1311	1.14		1.11	-	0.3/	2.00	-	2.33	-	0.42	-	 	_	_	0 68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(10a)	1.14	1.14	1.12	-	0.28	2.89	1.91	2.5/	_	0.33	.	0.20	7	_	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	132	1.13	+ 1	•07 →	-	0.44	2.89	+ 2	.04 ~	-	0.45	*	0.31	-	-	0.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	133	1.13	1.20	1.11	-	0.41	2.88	1.80	2.44	-	0.63	*	0.20	7	-	0.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{34}	1.11	1.10	1.07	-	0.38	2.71	1.72	2.30	-	.0.65	+	0.32	→	-	0.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{11a}	1.13	1.12	1.14	-		2.86	1.77	2.19	-		*	0.28	→	-	- - /1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{11b}	1.25	1.29	1.27	-	0.48	3.18	1.99	2.64	-	0.67	*	0.30	*	-	0.41
$ \begin{cases} 35a \} 1.23 1.11 1.20 - 0.52 3.10 2.10 2.65 - 0.53 & < 0.29 \\ 36 \} 1.11 1.11 1.12 - 2.81 1.73 2.13 - 2.40 & < 0.29 \\ 37 \} 1.12 & < 1.14 \\ 1.10 & - 2.72 & < 2.16 \\ 37 & - 4.034 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.29 \\ - 7 & < 0.34 \\ - 7 & < 0.30 \\ - 8 & < 0.30 \\ - 8 & < 0.30 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.27 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 & < 0.28 \\ - 8 $	{35}	1.15	1.14	1.14	-	0.40	2.89	1.85	2.32	· -	0.57	*	0.29	→	-	0.46
$ \begin{cases} 36 \\ 1.11 \\ 1.11 \\ 1.11 \\ 1.12 \\ - \\ 1.12 \\ - \\ 1.12 \\ - \\ 1.12 \\ - \\ 1.16 \\ - \\ 1.07 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	{ 35a}	1.23	1.11	1.20	-	0.52	3.10	2.10	2.65	-	0.53	*	0.29	→	-	0.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 36}	1.11	1.11	1.12	-	-	2.81	1.73	2.13	-	-	+	0.29	+	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 37}	1.12	+1	. 14 →	1.08	-	2.72	← 2	.16 -	► 1 .3 7	-	*	0.34	→	_	-
$ \{5b\} \leftarrow 1.28 \rightarrow 1.18 - \leftarrow 3.10 \rightarrow 1.54 - \leftarrow 0.34 \rightarrow 0.30 - \\ \{60\} \leftarrow 1.16 \rightarrow 1.11 - \leftarrow 2.81 \rightarrow 1.67 - \leftarrow 0.28 \rightarrow 0.27 - $	{ 5a}	*	1.16	→	1.07	-	≁-	2.79	→	1.55	- '	*	0.29	≁	0.27	-
$\{60\} \leftarrow 1.16 \rightarrow 1.11 - \leftarrow 2.81 \rightarrow 1.67 - \leftarrow 0.28 \rightarrow 0.27 -$	{ 5b}	*	1.28	->-	1.18	-	*	3.10	→	1.54	-	*	0.34	→	0.30	-
	{60}	*	1.16	→	1.11	-	.+	2.81	→	1.67		*	0.28	→	0.27	-

- -

M(1) M(2) M(3) M(4) Fe^{3+} M(1) M(2) M(3) M(4) Fe^{3+} M(1) M(2) M(3) M(4) Fe^{3+}

5000															
160a}	*	1.27	7 →	1.2	3 🗕	*	3.08	} →	1.75	i —	*	0.31	→	0.31	_
161}	*	1.15	j →	1.12	2 –	÷	2.74	i →	1.80) _	*	0.32	2 →	0.27	_
(61a)	*	1.26	\rightarrow	1.24	4 -	*	2.99) →	1.85	i –	*	0.36	; →	0.27	·
162}					-	*	2.77	' →	1.71	. –	*	0.34	• →	0.33	- 1
162a}					-	+	3.03	i →	1.81	_	*	0.45	i →	0.45	_
163}	-	_	-	-	-	*	2.78	i →	1.48	-	-	-	_	_	_
11a}	*	1.26	• •	1.22	2 -	*	3.08	l →	1.77	-	+	0.27	· →	0.27	_
100D}	*	1.28	i →	1.24	- +	*	3.09	\rightarrow	1.75	-	*	0.34	. →	0.34	_
1010}	*	1.26	· ->	1.26	5 -	*	3.05	\rightarrow	1.87	-	*	0.31	. →	0.30	_
104}	1.25	Ŷ	1.25	-	0.51	3.09	?	3.09	-	0.51	?	?	?	_	0.28
103}	1.13	, -	1.11	_	0.49	2.81	. –	2.03	_	0.33	0.30) —	0.38	-	0.40
100a}	*	1.17	→	1.11		*	2.87	\rightarrow	1.67	-	~	0.39	→	0.37	_
1000}	+	1.28	<i>→</i>	1.23	- 1	*	3.16	\rightarrow	1.82	-	*	0.55	→	0.61	-
100}	1.12	1.10	1.12	-	0.39	2.64	2.01	2.64	-	0.80	*	0.21	↔	-	0.25
[09] [70]	1.14	1.00	1.12	· -	0.42	2.78	2.06	2.40	-	0.60	*	0.33	\rightarrow	-	0.40
1/0j Joni		1.24	→ 	1.23		+	2.99	→	1.86	-	*	0.33	\rightarrow	0.27	_
102j 102]	1 1 1 2	1.05	1.11	-	0.49	2.81	1.99	2.39	-	0.53	~	0.33	\rightarrow	-	0.38
1035 5081	1.13	1.00	1.12	-	0.46	2.76	2.02	2.35	-	0.57	*	0.32	+	~	0.38
104} 1051	1 1 2	1.03	1.09	_	0.46	2.79	2.01	2.40	-	0.54	*	0.32	→	-	0.37
1033	1 1 2	1.02	1.11	-	0.46	2.76	2.01	2.37	1	0.56	*	0.32	\rightarrow	-	0.37
1005 5071	1 1 1 2	1.04	1.10	-	0.45	2.79	2.01	2.39	-	0.57	*	0.32	→	-	0.38
10/j	1.13	1.02	1.10	-	0.45	2.79	2.04	2.41	-	0.58	*	0.32	→	~	0.38
[34a] [88]	1 15	1.09	1.00	-	0.3/	2.71	1.72	2.30	-	0.65	+	0.32	\rightarrow	-	0.41
[00] {00]	1 16	1.01	1.13	-	0.44	2.79	2.18	2.39	-	0.63	0.34	0.34	0.34	-	0.44
{901	1 12	1 00	1.00	-	0.46	2.77	1.99	2.36		0.61	0.33	0.33	0.33	-	0.44
{01\	1 16	1 04	1 15		0.44	2.85	2.06	2.44	-	0.54	0.38	0.38	0.38	~	0.52
{92}	1 15	1 04	1 1 2	_	0.51	2.82	1.96	2.46	-	0.49	0.37	0.37	0.37	-	0.46
{03al	1 12	1 1 2	1 11	-	0.50	2./9	1.95	2.39	-	0.50	0.36	0.36	0.36	-	0.45
{93h}	1 13	1 1 2	1 11	1 7 1	0.30	2.85	1.92	2.52		0.73	0.27	0.35	0.35	-	0.48
[93c]	1 13	1 12	1 1 2	T • T T	0.35	2.84	2.02	2.56	1.71	0.75	0.25	0.30	0.32	0.24	0.48
{934}	1 13	1 1/	1 12	1 10	0.30	2.8/	1.94	2.58	-	0.78	0.27	0.42	0.35	-	0.53
{93e}	1 13	1 1/	1 00	1.12	0.34	2.88	2.06	2.60	1./1	0.80	0.27	0.36	0.31	0.30	0.54
{93f}	1.13	1 15	1 12	1 1 2	0.34	2.00	1.92	2.49		0.79	0.27	0.35	0.35		0.61
{94}	-		-	T.T.2	0.32	2.00	2.02	2.58	1.75	0.84	0.26	0.31	0.30	0.25	0.59
{95}	_	_	_	_	_	2.95	1 00	2.40	- -	0.50	0.35		0.35	Ξ.	0.36
[96]	4	1.14	- - -	1 17	0 / 0	2.90	1.00	2.50	1 0/	0.5/	0.36	0.36	0.36	~	0.41
{97a]	` ~	1.13	<u>_</u>	1 14	0.40	÷	2.02	,	1 70	0.74	*	0.32	<i>→</i>	0.34	0.53
{97b}		1.23	, ,	1 15	0.45	ž	2.01	7	1.70	0.51	*	*	0.33	→	+
{98a}	+	1.15		1 13	-	т. 	2.00		1.02	0.64	÷	~ ~ · ·	0.36	- >	→
{98b}		1.27		1.26	_		2.70		1 07	-	+	0.20	→ 、	0.28	7
{99a}	*	1.15	→	1.13	-	4-	2.11	-	1 97	_		0.2/	7	0.28	-
(99b)	*	1.27	→	1.26	_	, 	2.00		1 20	_	ž	0.23	-7	0.28	-
{100a]	*	1.16	÷	1.13	_	*	2 76	4	1 91	_	~ ~	0.29	7 ->	0.29	-
{100b]	*	1.28		1.26		4	3 10		1 Q7	_	~ ~	0.20	7	0.30	-
	· · · · · · · · · · · · · · · · · · ·						2.10	-7	1.01	-	~	0.28	7	0.30	-

	M(1)	M(2)	M(3)	M(4)	Fe ³⁺	M(1)	M(2)	M(3)	M(4)	Fe ³⁺	M(1)	M(2)	M(3)	M(4)	Fe ³⁺
{101a}	*	1.15	→	1.13		*	2.78	÷	1.83	_	*	0.27	 	0.29	
{ 101b }	` +	1.28	→	1.26	_	*	3.09	→	1.88	-	*	0.29	~	0.29	
{102a}	*	1.15	→	1.13	-	*	2.74	→ .	1.84	-	*	0.34	→	0.31	
{102b}	*	1.27	→	1.26	-	4	3.02	→	1.90	-	*	0.36	→	0.32	-
{103a}	*	1.15	→	1.13	-	*	2.70	→	1.85		*	0.36	→ [·]	0.30	-
{103b}	*	1.26	~	1.26	-	*	2.96	→	1.90	-	*	0.42	→	0.31	
{78g}	*	1.16	→	1.13	-	*	2.74	↔	1.84	-	*	0.30	÷	0.32	°
{78h}	*	1.27	→	1.26	-	*	3.05	→	1.89	-	*	0.34	- >	0.30	-
{104}	1.15	1.15	1.15	-	0.27	2.96	1.95	1.95	-	0.91	0.27	0.41	0.41	-	0.72
{105}	1.15	1.16	1.16	-	-	2.93	1.87	1.87	-	-	0.30	0.60	0.60	-	<u> </u>
{106}	1.12	1.12	1.12	-	-	2.75	1.79	1.79	-	-	0.40	0.40	0.40	-	-
{107}	1.14	1.25	1.25	-	-	2.73	2.04	2.04	-		0.32	0.64	0.64	-	<u> </u>
{108}	1.18	1.07	1.07	-	0.50	2.68	1.89	1.89	-	0.47	0.40	0.45	0.45		0.41
{109}	1.16	1.16	1.16	_	-	2.58	1.94	1.94	-	-	0.28	0.62	0.62	-	<u></u>
{110}	1.15	1.11	1.11	-	0.47	2.83	2.00	2.00	-	0.50	0.35	0.52	0.52	-	0.34
{111}	1.13	1.12	1.12	~	0.27	2.70	2.17	2.17	-	1.04	0.29	0.64	0.64	-	0.52
{112}	1.15	0.88	0.88	-	0.42	2.48	2.21	2.21		0.66	0.52	0.31	0.31		0.56
{118}	1.26	1.26	1.26	1.23	0.64	3.10	2.50	3.10	1.86	0.41	0.36	0.36	0.36	0.36	0.46
{119}	1.15	1.14	1.15	1.10	0.61	2.59	2.26	2.59	1.88	0.55	0.31	0.31	0.31	0.31	0.49
[120]	*	1.11	→	1.10	-	÷	2.64	→	1.82	-	+	0.48	→	0.32	
[121]	*	1.14	→	1.07	0.37	+	2.80	≁	1.58	1.06	*	0.38	→	0.52	0.68
[122]	1.12	-	1.13	-	0.38	2.90	-	2.42	-	0.42	0.34	-	0.34	-	0.31

(b) <u>Heat-treated amphiboles</u>

		<u>M(</u>	(1)	M	(2)	M	(3)	1	4(4)	M(1)-	HM(3)	M(1)+M	I(2)+M(3)
<u>.</u>		I.S.	Q.S.	I.S.	Q.S.	I.S.	Q.S.	I.S.	Q.S.	I.S.	Q.S.	I.S.	Q.S.
{15a}	Fe ²⁺	1.13	2.81	. –	-	1.10	2.30	-	-		· <u>-</u>	_	_
	Fe ³⁺	-	-	0.34	0.48	-	— 1	_		-	-	-	· 🛶
{15b}	Fe ²⁺	1.11	2.82	- ,	-	1.13	2.14	-	-		-	-	– ¹
(Fe ³⁺	~	-	0.31	0.59	 ·		-	-	0.43	1.22	-	- .
{15c}	Fe ³⁺	-	-	0.31	0.71		-	—	-	0.39	1.30	-	- .
{15d}	Fe ²⁺	-	-	-		· _	-	<u>→</u> .	-	<u> </u>	-	1.15	2.74
(1)4)	Fe3+	-	-	-	-	-	-	-	-	-	-	0.39	0.54
{27}	Fe ²⁺	1.14	2.79		-	1.12	2.48		-	-	-	_	_
[Fe3+		-	0.39	0.44	-	-	-	-	-	-	-	-
{27a}	Fe3+	0.38	1.18	0.38	0.57	0.45	0.84	-	-	· 🗕	 @	-	-
{27b}	Fe3+	0.37	1.23	0.35	0.60	0.47	0.87	-	-		— '	_	-
1201	Fe2+	1.14	2.87	-	<u> </u>	1.12	2.36		_	-	-	_	_
[29]	Fe3+	- ,	-	0.40	0.44	_	_	-	-	-	_	_	
[20-]	Fe ²⁺	0.95	2.08	-	-	1.10	2.70		_	-	_	_	-
12985	Fe3+	-	-	0.36	0.61	_		-	-	0.32	0 98	-	_
1001	Fe2+	_		_	_	~	_	-	-	-		1 05	2 13
{2901	Fe3+	-	-	0.42	0.58	_	-	-	_	0.41	1.02		
{63a}	Fe2+	-	-	_	_	-	_		1.48	-		_	2 78
{63b}	Fe2+	-	-	_	-	~		_	1 48	_	_	_	2.70
{63c}	Fe2+	-	_	_	_	-	_	_	1.40	_	_	_	2.70
{63d}	F-2+	_	_	_	_	_	_	_	_	_	_	_	2+12
[1a]	Fe2+	-		-	~~	_	_	1 22	1 77	_	Ξ	1 26	2.72
{15}	Fe2+	_	_	_ ·	·	_	_	1 22	1 76	_	_	1 26	2.00
{10}	Fo2+	-	-	· _	_	_	_	1 25	1.85	_	-	1 20	2.16
{14}	F-2+	-	_	_	_	_	_	1 25	1 92		_	1 20	3.10 2.17
$\{1\alpha\}$	R-2+	_	-	-	_	_	_	1 25	1 02	_		1 20	3.17 2.17
{60b}	F-2+	_	_	_	_		_	1 2/	1 75			1 20	3.17
[600] [600]	Fo2+	_	_	_			_	1 20	1 72	-	-	1.20	3.09
16041	Fo2+	_		_	-	_	_	1 21	1 74	-	-	1 26	3.04
160al	Fe-	_	_	_	_	-	-	1 94	1.75	-	-	1.20	3.05
100ej 12111	re	_	_			-		1.24	1.07	. –	-	1.28	3.09
teint	re				-	-	-	1.20	1.0/	-	-	1.20	3.05
fores	rez 1			1 1 4	0 11	-	. .	1.23	1.84			1.28	3.00
(67a)	re21	_		1.14	2.11	-	-	-	<u> </u>	T•T2	2.13	7	-
	reJ.	-	-	1 15	1.02	· . .		-	-	1 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<u></u>
[67c]	re- 1	-	-	1.12	1.92		-	-	-	T.10	2.74	_	-
[]	Fent		-	0.30	0.84	-	-	-	-	-	-	.	-
(67£)	Fert	-	-	0.30	0.73	-	-	-	-	0.35	1.28	-	-
[67g]	Fe ² T	-	-	1.13	1.8/		-	-	-	1.12	2.67	-	-
	Fest	-		0.39	0.79	-	-		-	0.37	1.39	-	-
67h}	Fest	-	-	0.37	0.79	-	-	-	-	0.37	1.23	-	-
671}	Fezt	-	-	1.17	2.01	-	-	-	-	1.12	2.71	-	-
(U / L) / L D	Fe3+	-	-	0.37	0.85	-	-		_	-	- '	-	-
[78]	Fe ²⁺	-	-	-		-	-	1.23	1.86	-	-	1.24	2.99
78a)	Fe ²⁺	-	-	.—	-	-	-	1.22	1.84	. —	-	1.24	3.00
[78 b}	Fe ²⁺	-	-	-	÷	-	-	1.23	1.85	-	÷	1.25	3.01
[78c]	Fe ²⁺	-	- .	-		-	-	1.23	1.85	-	-	1.25	3.01

×

ŧ

_

- ----

 $(\mu^{2}) = (\bar{e}_{\mu}^{2}) = (\bar{e}_{\mu}^{2}) + (\bar{e}_{\mu}^{2}) = (\bar{e}_{\mu}^{2}) = (\bar{e}_{\mu}^{2}) = (\bar{e}_{\mu}^{2}) + (\bar{e}_{\mu}^{2}) = (\bar{e}_{\mu}^{$

APPENDIX F3. SITE POPULATIONS OF AMPHIBOLES

(a) Natural amphiboles

	M(1)	M(2)	M(3)	M(4)	M(1)+M(3) M	(1)+M(2)+M(3)	Fe ³⁺ /Fe ²⁺
{1}	_	0.06	_	0.83	0.24	_	-
{2}	_	0.33	_	0.74	0.50	-	-
{3}	-	0.36	-	0.87	0.65	-	-
{4}	-	0.83	-	0.84	0.87	-	-
{5}	-	0.81	-	0.98	0.85	-	
{6}	_	0.96	-	0.90	0.98	_	-
{7}	-	0.29	-	0.19	0.15		-
(8)	_	0.00	-	0.70	0.08		-
19]	_	0.09	_	0.71	0.21	-	-
{10}	_		_	_			-
{11}	_	-	-	-	-	-	-
(12)	_	_	_	-	_	-	0.50
(13)	_	-	→		-	-	0.78
[14]	_	·	_	_		<u> </u>	0.61
115l	0.19		0.32	_	_	-	0.43
[1]]	0.31	_	0.50	_	_	-	0.48
(10) (17)	0.75		0.57		_	_	0.67
[4/] [19]	0.40	0 08	0.81	_	-	-	0.52
(10) (10)	0.07	0.12	0.75		_	_	0.70
1195	0.09	0.03	0.75	_	_	_	3.46
120 <u>1</u> 1 21 21	0.28	0.05	0.09	_	_	_	1.87
[214] [216]	0.20	0.08	0.18	_	-	_	1.87
1210) 1150l	0.20	0.00	0.31	_	_	_	0.30
(1)a) (1)a)	0.22	_	0.32	_	_	_	0.41
122J 1991	0.30	_	0.52	_	_	_	0.20
1235 1961	0.40	_	0.52	-	_	_	0.38
1245 5951	0.40	_	0.38	_	_	_	0.66
1235	0.44	_	0.30	_	_	_	0.96
1203 (97)	0.44	_	0.31	_	_	-	2.16
12/J	0.20	_	0.22	_	_		1.18
(21C) (20)	0.42	_	0.56	_	·_	_	1.04
[20]	0.35	_	0.38	_	_	-	0.81
1295	0.04	_	0.00	_		_	0.82
1201	0.75	_	0.70	_	_	_	0.80
1315	0.00	0.07	0.03		_	2-812 Miles	0.31
11045	0.14	0.07	0.07	_	M(2) + M(3) = 0.1	2 -	0.34
1321	0.13	0.08	0 14	_	-	-	0.38
1221	0.22	0.08	0.14	_	_	_	0.33
1343 [11_]	0.30	0.19	0.20	•_	_	_	-
11143	0.74	0.23	0.40		_	_	0.09
(TTD)	0.79	0.10	0.50	_	_	_	0.13
(32) (35-)	0.77	0.20	0.50	_		_	0.14
(3)	0.03	0.17	0.50	_		_	· · · ·
1303	0+04	0.20	0.02			_	3. . .
13/3		_	_	n 04	· _	0.96	··· · · ·
1023 (201	-	-	-	0.94	_	0 01	_
1 303	-	_	_	0.90	_	0.86	-
[J7]	-	-	-	0.93	_	0.84	<u></u>
{BC}	-	-	_	0.20	_	0.83	
[48]				0.00			

1

	M(1)	M(2)	M(3)	M(4)	M(1)+M(3)	M(1)+M(2)+M(3)	Fe ³⁺ /Fe ²⁺
{40}	-	-	- -	0.89	<u>}</u>	0: 77	······
{41}	-		. .	0.90	<u> </u>	0.75	_
[42]	-	÷		0.95	<u> </u>	0.68	
{43}	— ,			0.86	-	0.72	_
{44}	· / _	-	-	0.87	-	0.68	-
{45}	🗕 ~	-	/ 	0.85	-	0.67	. .
{46}	_	-		0.86	-	0.65	_
{47}	-	-	-	0.87	-	0.61	<u> </u>
{48}	-	-	-	0.85	-	0.58	<u> </u>
{49}	-	-	-	0.89	-	0.52	-
{50}	-	-	-	0.89	_	0.52	<u></u>
{51}	-	-	-	0.87	_	0.51	_
{52}	-	-	-	0.84	_	0.44	_
{53}	-		_	0.87	<u>_</u>	0.43	
{54}	-	-	-	0.85	_	0.39	_
{55}	-	-	-	0.79	_ .	0.39	_
{56}	-	_	-	0.87	_	0.35	_
{57}	-	-	-	0.84	<u>_</u>	0.32	
{58}	-		<u> </u>	0.85		0.32	-
{59}		-	· _ ·	0.79	_	0.30	_
{60}		-		0.73	_	0.20	2
{61}	-	_	_	0.53	_	0.04	2
{62}	0.27	~	0.27	0.65	-	-	0 07
{ la }	_	-	_	0.88	_	0.16	-
{60b}	-	· <u></u>	-	0.78	_	0.22	
{61b}	-	-	-	0.57	<u> </u>	0.03	_
{64}	-	0.75	_	-	1.00	-	0.11
{65}	0.38	-	0.57	-	_		0.10
{66}	· 🗕	-	_	0.81	-	0.30	-
{68}	-	0.07	-		0.14	-	1 27
{69}	0.85	0.18	0.85	_		_	0.50
{78}	÷	-		0.53	-	0.02	-
{17a}	-	_		_	-	-	0.67
{79}	-	-	_	-	· 🛶	_	0.72
{80}		·** 🛶		_	_	_:	0.59
{82}	0.39	0.14	0.39	-	-	المير. 🛶	0.28
[83]	0.53	0.15	0.51	-	-	-	0.34
{84}	0.38	0.13	0.34	<u> </u>	—	_	0.33
[85]	0.51	0.16	0.54	-	· _	_	0.38
{86}	0.45	0.13	0.44	-	_	-	0.36
{87}	0.41	0.14	0.41	-	_	_	0.30
[88]	0.43	0.10	0.41	<u>`_</u>	_	-	0.48
{89}	0.47	0.11	0.35	_	-	_	0.40
{90}	0.42	0.15	0.39	-	_	_	0.29
{91}	0.57	0.20	0.50	-	-	· _	0.22
{92}	0.51	0.20	0.58		_	-	0.22
{94 }	0.92	-	0.97	_	-	_	0.73
{95}	0.97	0.19	1.00	-	-	<u>-</u>	0.41

459

<u>1995</u>

·····	M(1)	M(2)	M(3)	M(4)	M(1)+M(3)	M(1)+M(2)+M(3)	Fe ³⁺ /Fe ²⁺
·;· · · ·		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
{96}	_	-	-`	0.05	-	0.07	
{97}	· -	-	-	0.048	-	0.024	0.08
[78a]	-	-	-	0.53	-	0.022	-
[98]	_	-	-	0.42	-	0.016	-
[99]	-	-	-	0:54	-	0.015	-
{100}	_	´ _	-	0.60	-	0.019	-
{101}	_	_	-	0.41	-	0.014	-
{102}	_	-	-	0.68	-	0.063	-
{103}	_	-	-	0.61	-	0.056	-
{118}	_	0.07	-	0.07	0.12	-	0.08
{119}	-	0.13	-	0.07	0.11	-	0.34

(b) Heat-treated amphiboles

							and the second se
		M(1)	M(2)	M(3)	M(4)	M(1)+M(3)	M(1)+M(2)+M(3)
{15a }	Fe ²⁺ Fe ³⁺	0.22	_ 0.11	0.31	-	-	
{ 15 b }	Fe ²⁺ Fe ³⁺	0.16	0.13	0.15	-	0.09	
{ 15c }	Fe ³⁺	_	0.16	_	-	0.22	-
{ 15 d}	Fe <mark>3+</mark> Fe ³⁺			- -	-	- -	0.05 0.15
{27}	Fe ²⁺ Fe ³⁺	0.26	_ 0.80	0.22			, - -
{27a}	Fe ³⁺	0.35	0.67	0.31	-	-	-
{27b }	Fe ³⁺	0.48	0.47	0.45		-	-
{29}	Fe ²⁺ Fe ³⁺	0.84	_ 1.03	0.88	-		-
{29a}	Fe ²⁺ Fe ³⁺	0.49	_ 0.99	0.53	- -	_ 0.38	-
{ 29 Ъ}	Fe ²⁺ Fe ³⁺	-	_ 0.81	-	-	_ 0.72	0.17
{1a} {1b} {1c}	Fe ²⁺ Fe ²⁺ Fe ²⁺ Fe ²⁺		- -	- - -	0.88 0.87 0.79 0.74	- - -	0.16 0.16 0.19 0.21
{1d} {1e} {60} {60a}	Fe2+ Fe2+ Fe2+ Fe2+				0.74 0.71 0.78 0.74		0.22 0.22 0.23
{60b} {60c}	Fe ²⁺ Fe ²⁺	-	-	-	0.73 0.69		0.24 0.25
		M(1)	M(2)	M(3)	M(4)	M(1)+M(3)	M(1)+M(2)+M(3)
----------------	--	------	------	------	------	-----------	----------------
56123	2+				0.57		0.03
{61c}	Fe 2+	-	-	-	0.44	_	0.08
COTC)							
167a1	$Fe_{2\perp}^{2+}$	-	0.12	-	-	0.21	-
loval	Fe	-	0.07	-	-	-	-
	<u>, 2+</u>	_	0.00		_	0.12	_
{67c}	Fe 3+	_	0.23	_	_	0.12	-
	re		0.25				
{67f}	Fe ³⁺	-	0.27	-	-	0.15	-
	F_2+	_	0.03	_	_	0.06	-
{6/g}	Fe 3+	-	0.27	_	-	0.07	-
	16						
{67h}	Fe ³⁺	-	0.17	-	-	0.22	-
	Ee-		0.09	_	_	0.16	
{67 i }	3+ Fe	_	0.17	-	-	0.10	-
	2+						
{ 78}	Fe ₂₊	-	-	-	0.53	-	0.02
{ 78a}	Fe ₂₊	-	-	-	0.40	-	0.07
{ 78b}	Fe ₂₊	-	-	-	0.41	-	0.07
{ 78c}	Fe ₂₊	-	-	-	0.43	-	0.06
{ 78d}	Fe ₂₊	-	-	-	0.43	-	0.06
{ 78e}	Fe2+		-	-	0.47	-	0.04
{ 78f}	Fe ₂₊		-	-	0.45	-	0.06
{98}	Fe2+	-	-	-	0.42	-	0.02
{98a}	Fe2+	-	-	-	0.31	-	0.06
{98b}	Fe2+	-	-	_	0.33	-	0.06
{98c}	Fe	-	-	-	0.32	-	0.06
{b86}	Fe	-	-	-	0.33	-	0.05
{98e}	Fe	_	-	_	0.33	_	0.05
{98f}	Fe	-	-	-	0.33	-	0.05
{98g}	Fe	-	-	_	0.34	-	0.05
{98h}	Fe ²⁺	-	-	-	0.34	_	0.05
{98 i }	Fe ²⁺	_	-	_	0.36	-	0.04
{981}	Fe ²⁺	-	-		0.35	_	0.04
{98k}	Fe ²⁺	_	-	_	0.35	_	0.05
{981}	Fe-			_	0.36		0.05
{98m}	Fe ²⁺	-	_	_	0.36	_	0.04
{98n}	Fe ²⁺	-	_	_	0.37	_	0.04
{98a}	Fe ²⁺	_	_	_	0.37	-	0.04
1091	_{Fo} 2+	_	_	-	0.35	-	0.04
{90-3}	F_2+	_	-	-	0.34	-	0.01
[994] {00b}	Fo2+	_		-	0.39	-	0.08
{90 c}	¹ 2+	_	-	-	0.41	-	0.07
10041	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-		-	0.42	-	0.06
100 cl	F-2+	-	-	-	0.43	-	0.06
109 E 1	^{re} 2+	-	-	-	0.45	-	0.05
{3215	^{re} 2+	-	-	-	0.50	-	0.03
[100 c]	^{re} _{re} 2+	-	-	-	0.60	-	0.02
(100a)	re	-	-	-	0.45	-	0.08

THE CANADIAN MINERALOGIST

[100 b] [100 c] [100 d] [100 d] [100 e] [100 f] [100 j] [101 d] [101 a] [101 b] [101 c] [101 d] [101 c] [101 d] [101 e] [102 d] [102 c] [102 c] [102 d] [102 c] [102 c	21			11(3)	****/ N		m(1) m(2) m(3)
<pre>[100B] [100c] [100d] [100d] [100f] [100f] [100f] [100f] [100f] [100f] [101] [101] [101a] [101a] [101c] [101c] [101c] [101c] [101c] [101g] [102] [102a] [102b] [102c] [102d]</pre>	77 AT				0 / 6		0.07
<pre>[100 c] [100 d] [100 f] [100 f] [100 j] [100 j] [101 a] [101 a] [101 a] [101 c] [101 d] [101 c] [101 f] [101g] [102s] [102c] [102c] [102d]</pre>	2+		-	.	0.40	-	0.07
<pre>.100d} .100d .100e .100 f .100 g .100 h .100 i .100 j .101 h .101 a .101 b .101 c .101 d .101 e .101 f .101g .102 .1024 .102b .102c .102d .</pre>	re	-	-	-	0.47	-	0.07
<pre>.100e} .100e} .100f .100f .100h .100i .100j .101 .101a .101b .101c .101e .101e .101e .101e .101g .102 .102a .102b .102c .102d .</pre>	re	–	-	-	0.47	-	0.07
<pre>.100 f} .100 f} .100 h} .100 h} .100 i} .101 i .101 a} .101 a} .101 b} .101 c} .101 d} .101 e} .101 f} .101 g} .102 .102 .102 .102 .102 .102 .102 .102</pre>	Fe ₂₊	-	-	-	0.48	-	0.07
<pre>.100 g} .100 h} .100 h} .100 h] .100 j} .101 a} .101 a} .101 a} .101 d} .101 e} .101 f} .102 .102 .102 .102a } .102b } .102c } .102d } .1</pre>	Fe ₂₊	-	-		0.48	-	0.07
.100.h} 100 i} 100 j} 101 j 101 a} 101 b} 101 c} 101 d} 101 e} {101 f} {101g} {102} {102a} {102b} {102c} {102d}	Fe ² +	-	-	-	0.49	- .	0.06
100 i} 100 j} 101 } 101 a} 101 b} 101 c} 101 d} 101 e} {101 e} {101g} {102} {102a} {102b} {102c} {102d}	Fe ₂₊	-	-	-	0.51	. –	0.05
100 j} 101 a 101 a 101 b 101 c 101 c 101 e 101 e 101 e 101g 102 102a 102b 102c 102c 102c 102d 102d	Fe ₂₊	-	-	-	0.51	-	0.05
101 } 101 a 101 a 101 b 101 c 101 d 101 c 101 f 101g 102 102a 102b 102c } 102c } 102d 102d	Fe ₂₊	-	-	-	0.51	-	0.05
101 a} 101 b} 101 c} 101 d} 101 e} 101 g} 101g} 102g 102a} 102b} 102c} 102c} 102c}	Fe	-	-	-	0.41	-	0.01
101 b} 101 c} 101 d} 101 d} 101 e} {101f} {102} {102} {102a} {102b} {102c} {102d} }	Fe ^{2T}	÷	-		0.30	-	0.06
101 c} 101 d} 101 e} {101f } {101g } {102} {102a } {102b } {102c } {102d } {102d }	Fe	-	-		0.32	-	0.05
.101 d} .101 e} {101f } {101g } {102} {102a } {102b } {102c } {102d }	Fe	-	~	_	0.32	. –	0.05
101 e} {101f } {101g } {102} {102a } {102b } {102c } {102d }	Fe	-	_	-	0.34	-	0.05
<pre>{101f } {101g } {102g } {102a } {102b } {102c } {102d } </pre>	Fe ²⁺	-	-	-	0.34	-	0.05
{101g} {102} {102 ^a } {102 ^a } {102 ^b } {102 ^c } {102 ^d }	F_2+	· _	_	_	0.35	_	0.04
{102} {102a } {102b } {102c } {102d }	2 +	_		_	0.35	_	0.03
{102a } {102b } {102c } {102d }	² ² / ₂ 2+		_	_	0.50	_	0.06
{102b } {102b } {102c } {102d }	f ^e 2+	_	_	_	0.00	_	0.00
{102c } {102d } {102d }	² 2+	-	-	-	0.52		0.12
{102d }	^{re} 2+	-	-	-	0.55	-	0.12
$\{102^{4}\}$	^{re} 2+	-	. –	-	0.54	-	0.12
	^{re} 2+	-	-	-	0.55	-	0.12
1102e }	re2+		-	-	0.56	-	0.11
(102)	re	-	-	-	0.50	-	0.11
1102g }	Fe 2+		-	-	0.58	-	0.10
{IUZh }	Fe ⁻ 2+	-	-	-	0.59	-	0.10
103	Fe ²⁺	-	-	-	0.61	-	0.06
103 a}	Fe ₂₊	-	-	-	0.46	-	0.12
{103 b}	Fe5+	-	-	-	0.46	• . - -	0.11
{103 c}	Fe	-	-	-	0.47	-	0.11
{103 d}	Fe	-	-	-	0.48	→ ,	0.11
{103 e}	Fe ²⁺	-	-		0,47	-	0.11
{103 f}	Fe ²⁺	-	-	-	0.47	-	0.11
{103 g}	Fe	-	-	-	0.50	-	0.10
{103 h}	Fe	-	. –	-	0.50	-	0.10
{103 1}	Fe ²⁺	-	-	-	0.50		0.10
{103 1}	Fe ²⁺	-	-	-	0.51		0.10
{103 k}	Fe ²⁺	<u> </u>		-	0.52	-	0.09
{1031}	Fe ²⁺	_	-	_	0.51	-	0.10
{103 m}	<u> </u>	-	_	_	0.51		0.09
103 -1	F 2+	_	_	_	0.53	_	0.09
{102 al	÷2+	_	-	_	0.53	-	0.09

APPENDIX F4. MISCELLANEOUS INFORMATION AND COMMENTS

Bancroft et al. (1967a), Bancroft et al. (1968)

Combined Mössbauer – infrared spectroscopic examination of cummingtonite $\{1\}$ – $\{3\}$, grunerite $\{4\}$ – $\{6\}$ and tirodite $\{7\}$; complete sitepopulations derived by application of both methods (note misprint in tirodite $\{7\}$ values, correct values given in this appendix). Chemical analyses and cell dimensions are from: $\{1\}$ Ghose & Weidner (1972), who give further spectroscopic data on this specimen; $\{2\}$ Mason (1953); $\{3\}$, $\{5\}$, $\{7\}$, Klein (1964, 1966); $\{4\}$, $\{6\}$ Mueller (1960), Viswanathan & Ghose (1965).

Grunerite $\{5\}$ is grunerite $\{22\}$, the structure of which is reported by Finger (1969a). Burns (1969, 1970a) gave optical absorption spectra for grunerite $\{6\}$.

Bancroft et al. (1966)

Combined Mössbauer and infrared spectroscopic study of anthophyllite $\{8\}$ and $\{9\}$, cummingtonite $\{1\}$ and grunerite $\{6\}$; same data in Bancroft *et al.* (1967a, b). Adams *et al.* (1972) gave a X-ray photoelectron spectrum for anthophyllite $\{8\}$.

Bancroft et al. (1967b)

Mössbauer examination of anthophyllite{8} and {9} and actinolite{10} and {11}; there was incomplete resolution for both amphibole types, with two Fe²⁺ doublets in anthophyllite (M1+M2+M3 and M4) and two Fe²⁺ doublets in actinolite [M(1)+M(3) and M(2)]. Chemical analyses are from: {8} Rabbitt (1948); {9} Tilley (1957); {10} Burns & Greaves (1971), who gave further spectroscopic data on this sample; {11} Mueller (1960). Burns (1969, 1970a) gave optical absorption spectra for actinolite{10} and {11}.

Häggström et al. (1969)

Mössbauer spectroscopic study of edenitic hornblende {12}, edenite {13} and edenite {14}; there was incomplete resolution, with two doublets due to Fe^{3+} at M(1)+M(3) and M(2), and one doublet due to Fe^{3+} at M(2). Chemical analyses are from Annersten (1968).

Bancroft & Burns (1969)

Combined Mössbauer – infrared spectroscopic examination of glaucophane{15} and {16},

crossite $\{17\}$ and $\{18\}$ riebeckite $\{19\}$ and magnesio-riebeckite{20} and {21}; fairly complete site-populations were derived. For magnesio-riebeckite{21}, the spectrum wat fitted to three quadrupole doublets (magnesio-riebeckite {21a}) and four quadrupole doublets (magnesioriebeckite{21b}), respectively. Chemical analyses and cell parameters are from: {15} Ernst & Wai (1970) who give additional spectroscopic data on this sample; also note that this is glaucophane(26), the structure of which was refined by Papike & Clark (1968), with detailed structural data being listed in Appendix B; {16}, $\{17\}$ Borg (1967b); $\{18\}$, $\{19\}$ this reference; {20} Whittaker (1949), who reported the structure of this amphibole, magnesio-riebeckite (3) that is listed in Appendix A; {21} Ernst (1963), Ernst & Wai (1970). For {21}, the large discrepancy between the chemical analysis and Mössbauer results for the Fe³⁺/Fe²⁺ ratio prompted a new partial chemical analysis of this amphibole. The results (Fe₂O₃ 9.91, FeO 7.07 wt. %) agreed with the Mössbauer results; additional spectroscopic results are given by Ernst & Wai (1970), who noted that with the newly determined Fe₂O₃ and FeO values, the oxide sum for {21} is unrealistically low at 95.98 wt. %.

Ernst & Wai (1970)

Combined Mössbauer – infrared spectroscopic examination of glaucophane{15a} and $\{22\}$ – $\{24\}$, crossite{25} and $\{26\}$, magnesio-riebeckite $\{27\}$ and $\{21c\}$, riebeckite{28} – $\{31\}$; fairly complete site-populations were derived. Cell dimensions from this study, chemical analyses from: $\{15a\}$, $\{22\}$ and $\{23\}$ this study; $\{24\}$ and $\{25\}$ Banno (1959); $\{26\}$ Borg (1967b); $\{27\}$ Ernst (1960); $\{21\}$ Whittaker (1949); $\{28\}$ Switzer (1951); $\{29\}$ Peacock (1928); $\{30\}$ and $\{31\}$ Onuki & Ernst (1969). Extensive heating experiments were performed, and the products were examined spectroscopically (samples $\{15b\}$ – $\{15d\}$, $\{27a\}$, $\{27b\}$, $\{29a\}$, $\{29b\}$, $\{31a\}$).

Greaves et al. (1971)

See following reference.

Burns & Greaves (1971)

Combined Mössbauer – infrared spectroscopic examination of actinolite{10a}, {11a}, {33}, manganoan actinolite{32}, tschermakitic hornblende{34}, manganoan ferro-actinolite{35}, ferro-actinolite $\{36\}$ and pure ferro-actinolite $\{37\}$; complete site-populations were assigned. Chemical analyses and cell dimensions are from: $\{10a\}$, $\{33\}$ this study; $\{11a\}$ Mueller (1960); $\{32\}$, $\{36\}$ Klein (1966); $\{34\}$ Tilley (1957); $\{35\}$ Mitchell *et al.* (1971); $\{37\}$ Ernst (1963). Manganoan ferro-actinolite $\{35\}$ is the same sample as manganoan ferro-actinolite (37), the structure of which is reported by Mitchell *et al.* (1971). A detailed comparison of results from Mössbauer and infrared methods is given, together with the advantage and disadvantages of both methods for site-population characterization.

Hafner & Ghose (1971)

Mössbauer spectroscopic examination of grunerite $\{4a\}$, $\{5a\}$, $\{6a\}$, $\{38\} - \{47\}$, cummingtonite $\{48\} - \{54\}$ and $\{56\} - \{60\}$, manganoan cummingtonite $\{55\}$ and magnesio-cummingtonite $\{61\}$; there was incomplete resolution, with two Fe²⁺ doublets [M(1)+M(2)+M(3) and M(4)] resolved.

Spectra were recorded at room temperature and liquid-nitrogen temperature; {5a}, {60} and {61} are at room temperature, {56}, {60a} and $\{61a\}$ are at low temperature (77 K). Chemical analyses and cell dimensions are from: $\{4a\}$, $\{6a,\}$ $\{38\} - \{42\}$, $\{44\} - \{48\}$, $\{50\}, \{51\}, \{53\}, \{54\}, \{56\}, \{57\}, \{59\}, \{60\}$ Mueller (1960), Viswanathan & Ghose (1965); $\{5a\}, \{43\}, \{49\}, \{52\}, Klein (1964, 1966);$ {55}, {58} Butler (1969); {61} Kisch (1969). Grunerite{5a}, is grunerite(22), the structure of which is reported by Finger (1969a). Cummingtonite{60} is cummingtonite(21), the structure of which is reported by Ghose (1961) with additional modifications by Fischer (1966) and Mitchell et al. (1971), with preferred parameters being given in Appendix B.

Buckley & Wilkins (1971)

Combined Mössbauer and infrared spectroscopic study of cummingtonite $\{62\}$ at room temperature and 77 K; cimplete cation sitepopulations were assigned from combined results. Also reported is a magnetic hyperfine spectrum recorded at 4.2 K.

Babeshkin et al. (1971)

A Mössbauer spectroscopic examination of a grunerite $\{63\}$ (called cummingtonite) after heat treatment at several different temperatures. With increasing temperature, increasing Fe³⁺ is formed at the M(1, 2, 3) sites, whereas the Fe²⁺ content of the M(4) site remains the same. The ratio of the recoil-free fraction at the M(1, 2, 3) and M(4) sites was determined "semi-empirically" to be 0.9 (*cf.* Bancroft *et al.* 1967a). The isomer shifts are not listed in Appendix F2, as it is not clear to what referent they are referred; the relevant values are: M(4): $\{63a\}$ 1.09 mm/s, $\{63b\}$ 1.14 mm/s, no other values quoted. M(1)+M(2)+M(3): $\{63a\}$ 1.26 mm/s, $\{63b\}$ 1.28 mm/s, $\{63d\}$ 1.26 mm

Ghose & Weidner (1972)

Mössbauer spectroscopic examination of cummingtonite $\{1a\} - \{1e\}, \{60a\}, \{60b\}$ and magnesio-cummingtonite $\{61a\}, \{61b\}$ at low temperatures (77 K); there was incomplete resolution, with two Fe²⁺ doublets [M(1)+M(2) +M(3) and M(4)] resolved. Chemical analyses and cell dimensions are from: $\{1a\} - \{1e\}$ this study; $\{60a\}, \{60b\}$ Mueller (1960), Viswanathan & Ghose (1965); $\{61a\}, \{61b\}$ Kisch (1969). This study concentrates primarily on ordering as a function of equilibration temperature.

Singh & Bonardi (1972)

Mössbauer spectroscopic examination of an arfvedsonite; the analysis of the spectrum is incompatible with the amphibole structure, and the results are not reproduced here.

Virgo (1972a)

Mössbauer spectroscopic study of "pure" ferro-richterite $\{64\}$ at low temperature showed the presence of Fe³⁺ in the structure. However, there was incomplete resolution, and the data are incomplete.

Law (1973)

Mössbauer spectroscopic examination of a holmquistite{65} that is holmquistite[31], the structure of which is reported by Irusteta & Whittaker (1975). An excellent discussion of spectrum fitting is also given.

Kamineni (1973)

A Mössbauer spectral study of grunerite{66} (called cummingtonite) at both room (298 K) and low temperature (77 K). Site populations were calculated assuming the ratio of the recoilfree fractions at the M(1, 2, 3) and M(4) sites to be 0.9 (*cf.* Bancroft *et al.* 1967a). Note that the peak widths are extremely large.

Khristoforov et al. (1973)

A Mössbauer spectroscopic examination of a variety of apparently uncharacterized calcic amphiboles. Virtually no numerical data are given, quadrupole splitting and site populations are presented graphically. However, the two spectra reproduced show off-resonance counts of $\sim 1.6 \times 10^3$ and $\sim 3.8 \times 10^3$, respectively, together with excessive absorption.

Semet (1973)

A combined Mössbauer and infrared spectroscopic examination of "pure" magnesiohastingsite{67} and natural magnesio-hastingsite{68}. The "pure' magnesio-hastingsite was synthesized (and further equilibrated) on a variety of oxygen buffers; the Mössbauer studies showed that Fe occurs as both Fe^{3+} and Fe^{2+} , the oxidation ratio being a function of the oxygen fugacity of synthesis. The ideal chemical composition (with Fe_2O_3 expressed as FeO) is given Appendix F1, together with two microprobe analyses of amphiboles synthesized at 850°C and 2 kbar on the cuprite-tenorite and iron-quartz-fayalite buffers, with $Fe^{3+}/(Fe^{3+} +$ $Fe^{2+})$ ratios of 1.0 and 0.13, respectively.

Litvin et al. (1973c)

Combined Mössbauer spectroscopic and X-ray diffraction study of potassian ferri-taramite (69), which is the same specimen as potassian ferri-taramite(51), the structure of which is also reported in this paper.

Barabanov & Tomilov (1973)

Mössbauer spectroscopic study of anthophyllite{70} – {72}, cummungtonite{73} and {74}, dannemorite{75} and grunerite{76} and {77}; incomplete resolution obtained, with two Fe²⁺ doublets due to occupancy of M(1) +M(2)+M(3) and M(4) sites, respectively. Cell contents are the only numerical data given; a discussion of variation in hyperfine parameters and Fe²⁺ ordering in the Fe-Mg-Mn amphiboles is given.

Seifert & Virgo (1974)

Low-temperature (77 K) Mössbauer spec-

troscopic study of anthophyllite{78} after heat-treatment at various temperatures; incomplete resolution attained, with two Fe^{2+} doublets due to occupancy of M1+M2+M3 and M4, respectively. This is anthophyllite[23], the structure of which is reported by Finger (1970a, b).

Borg et al. (1973)

Mössbauer spectroscopic study of crossite $\{17a\}$ manganoan riebeckite $\{79\}$ and arfvedsonite $\{80\}$; chemical analyses and cell dimensions from Borg (1967b). Manganoan riebeckite $\{79\}$ includes Li₂O 0.14, ZnO 0.29, CuO 0.13 to give Li 0.09, Zn 0.03, Cu 0.02 p.f.u.; arfvedsonite $\{80\}$ includes Li₂O 0.44, ZnO 0.67, CuO 0.01 to give Li 0.28, Zn 0.08 p.f.u. This study demonstrates the utility of using magnetic hyperfine spectra at very low temperatures (4 – 30 K) to achieve increased resolution, particularly with regard to the determination of accurate Fe³⁺/Fe²⁺ ratios; see also Borg & Borg (1980).

Hawthorne & Grundy (1975)

Room- and low-temperature (77 K) Mössbauer spectroscopic study of potassian oxykaersutite{81}, the structure of which is reported by Hawthorne & Grundy (1973b). Only Fe³⁺ is present, and an attempt was made to resolve Fe^{3+} in all three M(1), M(2) and M(3) sites using area constraints derived from the site occupancies from the X-ray study. However, the X-ray site-occupancies are probably not correct (see Appendix B). The spectrum is not adequately represented by a single quadrupole-split Fe³⁺ doublet ($\chi^2 - 874$), and the half-width (0.68 mm/s) is high. Either the spectrum is the result of overlap of Fe³⁺ in more than one site (but with occupancies different from the ones given) or there is broadening due to next-nearest-neighbor occupancy, or both of these factors are operative simultaneously.

Bancroft & Brown (1975)

Mössbauer spectroscopic study of actinoyltic hornblende{82}, magnesio-hornblende{83} – {87} and tschermakitic hornblende{34a}; complete resolution was obtained (three Fe²⁺ doublets and one Fe³⁺ doublet). Chemical analyses and cell dimensions are from Dodge *et al.* (1968), with the exception of {34a}, which is from Burns & Greaves (1971). A fairly extended discussion and justification of the spectrum resolution and peak assignment are given.

Andersen et al. (1975)

Mössbauer spectroscopic study of a series of uncharacterized samples of arfvedsonite at a series of temperatures between 100 and 550 K, carried out in order to determine Fe^{2+}/Fe^{3+} ratios and compare them with results of conventional wet-chemical analysis. These authors suggest that there is a difference in the recoil-free fraction of Fe^{2+} and Fe^{3+} in the amphibole structure, it being necessary to correct for this to obtain accurate Fe^{2+}/Fe^{3+} ratios by Mössbauer spectroscopy.

Batievskii et al. (1975)

Mössbauer spectroscopic study of magnesiohastingstitic hornblende{88}, potassian magnesio-hornblende{89}, magnesio-hornblende{90}, ferro-hornblende{91} and ferro-tschermakitic hornblende{92}. Chemical analyses include P_2O_5 : 0.01, 0.03, 0.02, 0.02, 0.03 wt. %; Cr_2O_3 : 0.024, 0.04, 0.013, 0.04, 0.09 wt. %; NiO: 0.02, 0.04, 0.05, 0.02,-, respectively. Complete sitepopulation assignments are given assuming that all octahedrally co-ordinated trivalent cations are confined to the M(2) site.

Goodman & Wilson (1976)

Mössbauer spectroscopic examination of virtually uncharacterized amphibole designated "hornblende" {93} that was sampled at various levels through a soil profile to examine the effects of weathering [see also Wilson & Farmer (1970) for a similar infrared spectroscopic study]. In the data quoted in Appendix F2, $\{93a\}, \{93c\}$ and $\{93e\}$ refer to hornblende from various horizons, whose spectra are fitted to four quadrupole split doublets, whereas samples {93b}, {93d} and {93f} refer to the same samples fitted to five quadrupole split doublets. Up to six doublets were fitted to the spectra; however, the six-doublet fits are not justified (Law 1973). The five-doublet fits were assigned as Fe^{2+} in M(1), M(2), M(3) and M(4), with an additional wide doublet for Fe³⁺ in the M(1), M(2) and M(3) sites.

Litvin et al. (1976)

Combined X-ray structure and Mössbauer spectroscopic studies of arfvedsonite{94} and potassium-arfvedsonite{95}; these two amphiboles are identical to arfvedsonite(64) and potassium-arfvedsonite(65), details of which are given in Appendix B. Isomer shifts are not listed in Appendix F2a because it is not evident to which referent they are referred; the relevant values for Fe^{2+} at M(1), M(2) and M(3) and Fe^{3+} are: 1.31, -, 1.32, 0.57 and 1.35, 1.39, 1.37, 0.60 for {94} and {95}, respectively.

Goldman & Rossman (1977a)

A combined Mössbauer and optical-absorption spectroscopic study of tremolite {96}; incomplete resolution obtained, with two Fe^{2+} doublets [M(1)+M(2)+M(3) and M(4)] and one Fe^{3+} doublet being resolved. Strong evidence from the optical-absorption spectra of tremolite {96}, actinolite and a pargasite is provided to support the Mössbauer assignment of peaks.

Hawthorne & Grundy (1977b)

A combined Mössbauer spectroscopic and X-ray diffraction study of zincian tirodite $\{97\}$ that is identical to zincian tirodite (57); incomplete resolution obtained, with two Fe²⁺ doublets due to Fe²⁺ in M(1)+M(2)+M(3) and M(4), and two Fe³⁺ doublets due to Fe³⁺ in T(2) and M(2). Spectra at both room-temperature $\{97a\}$ and liquid-nitrogen temperature $\{97b\}$. Parameters obtained for tetrahedrally co-ordinated Fe³⁺ are: I.S. = 0.11(0.12), Q.S. = 0.49(0.52), H.W. = 0.33(0.36) mm/s for the room-temperature (low-temperature) spectrum. Chemical analysis is from Klein & Ito (1968).

Seifert (1977)

See following paper.

Seifert (1978)

Mössbauer spectroscopic study of anthophyllite{78} and $\{98\} - \{103\}$; incomplete resolution obtained, with two Fe²⁺ doublets due to Fe²⁺ in M1+M2+M3 and M4. Spectra recorded at room and liquid-nitrogen temperatures (indicated by a and b respectively). Note that anthophyllite{78} is anthophyllite[23], the structure of which was refined by Finger (1970b). Site occupancies were calculated for the amphiboles equilibrated at various temperatures up to 800°C and a pressure of 1 kbar.

Tripathi & Lokanathan (1978)

Mössbauer spectroscopic study of actinolite $\{104\} - \{109\}$, hornblende $\{110\} - \{112\}$ and winchite $\{113\}$ and $\{114\}$. The amphiboles are apparently completely uncharacterized. The winchite spectra are characterized by two Fe³⁺ doublets and no Fe²⁺ doublets.

Goldman (1979)

Combined Mössbauer and electronic-absorption spectroscopic study of grunerite{115}, actinolite{116}, ferrotremolite{117}, actinolite {118} and pargasite{119}. This paper also presents a review of some previous Mössbauer studies on calcic amphiboles together with a re-assessment of the peak assignments, suggesting that Fe^{2+} prefers to enter the M(4) site prior to the M(1) and M(3) sites and that a doublet due to this occupancy is an important feature in the spectra of Fe^{2+} -poor amphiboles. Only limited Mössbauer data are presented; the spectrum of {118} was recorded at 77 K, and the spectrum of {119} was recorded at room temperature.

Stroink et al. (1980)

Mössbauer spectroscopic

examination

of

anthophyllite{120}, cummingtonite{121} and magnesio-riebeckite{122}. Compositional and X-ray data are given by Rendall (1970) and Timbrell (1970). There was incomplete resolution for the Fe-Mg-Mn amphiboles, with two doublets due to Fe^{2+} at M(4) and M(1)+M(2) +M(3), and a small Fe^{3+} shoulder detectable. Magnesio-riebeckite{122} was resolved into two Fe^{2+} doublets, M(1) and M(3), and an Fe^{3+} doublet, M(2), and shows minor peaks due to admixture of magnetite. Note that the Q.S. value for Fe^{3+} in cummingtonite{121} must be wrong.

Law & Whittaker (1981)

Combined Mössbauer and infrared absorption spectroscopic study of holmquistite [65], that is the same as holmquistite [31]; see also Law (1973). A comparison of these results with the results of X-ray structure-refinement is given.

APPENDIX G. INFRARED SPECTRAL STUDIES OF AMPHIBOLES

This technique has found considerable application in cation-ordering studies on amphiboles, although its use has tailed off in recent years as realization of the problems encountered with this technique has become apparent. Despite these drawbacks, considerable information concerning cation ordering has been derived, and a brief outline of these results is given here. The majority of amphiboles examined by this technique have also been studied using Mössbauer spectroscopy; these amphiboles are identified in this appendix using the numbers (in curly brackets) of Appendix F where the cell data are given. Amphiboles examined solely by this method are identified by numbers in angular brackets. Cation site-populations for both $\{ \}$ and $\langle \rangle$ samples are given here; for the $\{ \}$ data, site populations are given just from the infrared method, as the site populations derived by a combination of both methods are given in Appendix F.

Many vibrational spectroscopic studies are in the near-infrared region. The following studies are considered here:

Kukovskii & Litvin (1970)	1 – 14
Barabanov et al. (1974)	15 - 53
Liese (1975)	54 - 60

The data are given in Appendices G4 and G5 and Figures 97 and 98. Amphiboles 8, 9 and 10are magnesio-hornblende(46), hastingsite(44) and potassian ferri-taramite(51), respectively.

THE THEFT OF CHARTON OUT OF TOND THE ONET OF DIT	APPENDIX	G1.	CHEMICAL	COMPOSITIONS	AND	UNIT-CELL	DATA
--	----------	-----	----------	--------------	-----	-----------	------

	〈1〉	<2>	<3>	〈 4〉	〈5〉	(6)	<u>۲۶</u>	<8>	< 9>	〈 10〉	〈 11〉	〈 12 〉
S10.	_ '	59.44	48.75	52.0	53.0	55.0	52.0	55.0	56.0	49.0	56.16	52.28
T105	_	0.04	0.57	0.05	<0.01	<0.01	<0.01	<0.01	_	<0.01	-	0.05
A1202	-	12.78	9.67	~1.0	~0.2	_	~0.3	~0.2	0.22	~0.4	0.20	0.18
Feoos		1.48	1.74	-	-	-	_ ·	-	-	-	1.81	-
FeÔ	-	9.20	11.49	20.0	18.0	16.1	14.2	12.1	8.2	5.5	6.32	22.57
Mn0	-	0.10	0.28	0.37	0.29	0.26	0.71	0.60	0.11	0.27	2.30	0.24
Mg0 [·]	· _	10.22	12.78	11.5	13.5	14.0	15.0	17.5	22.0	21.0	19.84	10.53
Ca0	-	0.71	11.91	11.0	10.0	10.0	10.5	12.0	11.0	11.0	9.34	11.26
Na ₂ 0	-	0.18	° 0.77	-	-	-	0.08	0.60	-	-	1.30	0.16
K ₂ Ö	-	- 0.32	0.17	-	-	-	0.04	0.08	-	-	0.14	0.07
н_0	-	2.08	1.81	-	-	-	-	-	-	-'	2.46	2.56
F	-	0.12	0.12	-	-	-				_	0.79	
	-	100.43	100.24	95.92	95.00	95.37	92.84	98.09	97.53	87.18	100.66	100.20
0 ≈ F	-	0.06	0.06								0.33	
Total	-	100.37	100.18	95.92	95.00	95.37	92.84	98.09	97.53	87.18	100.33	100.20
Si	7.94	7.82	7.00	7.88	7,99	8.15	7,94	7.88	7.86	7.69	7.90	7.86
A1 `	0.03	0.18	1.00	0.12	0.01	_	0.05	0.03	0.04	0.07	0.03	0.04
$\sum iv$	7.97	8.00	8.00	8.00	8.00	8.15	7.99	7.91	7.90	7.76	7.93	7.90
A1.	_	1.80	0.64	0.06	0.03	×	-	-	-	-	-	-
Ti.	-	-	0.06	0.01	-	-	-	-	-	-	-	0.01
Fe ³⁺	2.10	0.15	0.19	-	-	-	-		-	-	0.22	-
Fe ²⁺	1.88	1.01	1.38	2.53	2.27	1.99	1.81	1.45	0.96	0.72	0.74	2.82
Mn	-	0.01	0.03	0.05	0.04	0.03	0.09	0.07	0.01	0.04	0.27	0.03
Mg	1.04	2.00	2.73	2.60	3.03	3.09	3.41	3.74	4.60	4.91	4.16	2.34
$\sum vi$	5.02	4.97	5.03	5.25	5.37	5.11	5.31	5.26	5.57	5.67	5.39	5.20
∑ vi-5	0.02	Li=1.99	0.03	0.25	0.37	0.11	0.31	0.26	0.57	0.67	0.39	0.20
Ca	0.17	0.10	1.83	1.79	1.62	1.59	1.72	1.84	1.65	1.85	1.40 .	1.81
Na M(4)	<u>1.75</u>		0.04								0.21-	
$\Sigma^{n(4)}$	<u>1.94</u>	2.09		2.04	1.99	1.70	2.03	2.10	2.22	2.52	2.00	2.01
Na	-	0.05	0.17	-	-	-	-	0.17	-		0.14	0.05
K A		0.05	0.03		<u> </u>			0.02			0.02	0.02
Σa		0.10	0.10					0.10			0.16	0.07
a (Å)	-	-	-	-	-	-	-	-	-	-	9.803(2)	9.894(2)
b (Å)		-	-	-	-	-	-	-	-	-	18.083(5)	18,198(5)
c (Å)	-	-	-	-	-		-	-	-	-	5.292(2)	5.299(2)
β (°)	-	-			-	-	-	-	-	-	104.35(3)	104.58(2)
v (Å ³)	-		-	-	. –	-	-	-	-	-	909.0(4)	923.5(4)
Space Group	C2/m	Pnma	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m

	M(1)+M(2)			M(2) per site
-	m(1) + m(3) per sit			
(1)	0.28Mp+0.67Fp ²⁺ +0.05	5Fe ²⁺	().03Mg+0.97Fe ³⁺
145	0.54 (Fe ^{2++Mn})			$0.44(\text{Fe}_{21}^{2+}+\text{Mn})$
(5)	0.47 (Fe ²⁺ +Mn)			$0.37 (Fe_{0.1}^{2+} + Mn)$
(5)	$0.45(\text{Fe}^{2+1\text{m}})$,		$0.33(Fe_{0.}^{2+}+Mn)$
175	$0.40(\text{Fe}^{2+}+\text{Mn})$, ,		$0.30(Fe_{a}^{2+}+Mn)$
	$0.33(\text{Fe}^{2+}+\text{Mm})$	/ .		$0.23(\text{Fe}_{-}^{2+}+\text{Mn})$
	$0.10(\text{Fe}^{2+}+\text{Mn})$			0.14 (Fe ²⁺ +Mn)
\3/	$0.13(Fe^{2+4Mn})$	/)		$0.13(Fe^{2+})$
(107	0.21 (Fe ^{2+4Mn})			$0.16(\text{Fe}_{-}^{2+}+\text{Mn})$
<117 /195	$0.57(F_{2}^{+1})$,		0.52 (Fe +Mn)
(12)	$0.57(Fe_{2+1Me_{2}})$			$0.02(\text{Fe}^{2+1}\text{Mm})$
< <u>1</u> 3/	0.17 (Fe $2+100$			0.11 (Fe ²⁺ +Mp)
<14>	$0.20(\text{Fe}_{+\text{Mi}})$			$0.06(\text{Fe}^{2+1\text{Mm}})$
<15>	$0.23(\text{Fe}_{+\text{Mi}})$			$0.03(\text{Fe}^{2+}+\text{Mn})$
<16>	$0.23(\text{Fe}_{+\text{Mn}})$	2		$0.03(Fe^{2+4Mr})$
$\langle 17 \rangle$	$0.23(\text{Fe}_{2+100})$	2		$0.01(Fe^{2+Mp})$
< 18>	0.23(Fe ⁻ +Mn))	10	
<19>	_(0.77Mg+)0.23A1		(0	.84Mg+)0.16AL
-	M(1) per site	M(2) pe	r site	M(3) per site
-	2+		2+	2+
〈 20〉	$0.88Mg + 0.12Fe_{2+}$	0.90Mg+0	.01Fe ₂₊	0.61Mg+0.38Fe ₂ +
Z 21>	0.85Mg+0.22Fe ₂₊	0.30Mg+0	.03Fe ₂₊	$0.59Mg+0.39Fe_2+$
<22>	0.94Mg+0.07Fe ₂₊	0.83Mg+0	.16Fe_2+	$0.62Mg+0.38Fe_{2+}$
<23>	0.84Mg+0.17Fe ₂₊	0.75Mg+0	$16Fe_{2+}^{-}$	0.62Mg+0.40Fe ₂₊
<24>	0.74Mg+0.26Fe ₂₊	Mg+0	.11Fe_+	0.55Mg+0.45Fe ₂₊
<25>	0.72Mg+0.29Fe ₂₊	0.54Mg+0	$10Fe_{2+}^{-}$	$0.58Mg+0.42Fe_{2+}$
<26>	0.78Mg+0.22Fe ₂₊	0.67Mg+0	.21Fe ₂₊	$0.59Mg+0.41Fe_{2+}$
< 27>	0.66Mg+0.33Fe ₂₊	0.56Mg+0	.16Fe ₂₊	0.55Mg+0.45Fe_2+
<28>	0.69Mg+0.31Fe ₂₊	0.46Mg+0	.29Fe ₂₊	0.54Mg+0.46Fe_2+
<29>	$0.56Mg + 0.42Fe_{2+}^{2+}$	0.27Mg+0	1.24Fe_{2+}^{2+}	$0.53Mg + 0.47Fe_{2+}$
<30>	0.50Mg+0.48Fe	0.46Mg+0	.29Fe ₂₊	$0.59Mg+0.41Fe_{2+}$
<31>	$0.55Mg+0.44Fe_{0}^{2+}$	0.50Mg+C	.33Fe	$0.58Mg + 0.47Fe_{2+}^{-1}$
<32>	$0.55Mg+0.46Fe_{0}^{2T}$	0.23Mg+0	.69Fe ²	0.59Mg+0.39Fe ₂₊
< 33>	$0.70Mg+0.30Fe_{0}^{2+}$	0.83Mg+C	0.04Fe_{21}^{2+}	0.58Mg+0.42Fe ₂₊
(34)	$0.75Mg+0.25Fe_{0}^{2+}$	0.75Mg+0	0.02Fe_{21}^{2T}	0.58Mg+0.42Fe ₂₊
<35>	0.78Mg+0.22Fe ²⁺	0.65Mg+0	.02Fe ²⁺	0.53Mg+0.48Fe ²
	· · · · · · · · · · · · · · · · · · ·			
	M(1)+M(3) per site	2	M(2)-	-M(4) per site
{ 1 }	0.24Fe^{2+}			$0.44 Fe_{2}^{2+}$
623	0.50Fe^{2+}			$0.53 Fe_{2}^{2+}$
3	$0.65Fe^{2+}$			0.61Fe_{2}^{2+}
1-35 {/(3	0.87Fe^{2+}			0.83Fe
151	0.85Fe^{2+}			0.89Fe_{-}^{2+}
105	0.98Fe ²⁺			$0.93Fe^{-2+}$
103 37L	0.15Fo2+			$0.24Fe^{2+}$
1/3	0.09%-2+			$0.34Fe^{2+}$
{0} {0}	0.21 E 2+			0.40Fe^{2+}
ርሃታ /10-ኑ	0,2158 0 83Mal0 17(Falma)		0.85%	(Fe+Mn)
(11)	0 67Mato 60 (E-2tima)	04Fa3+	0 50Mal0	$49(Fe^{2+}+Mn)+0.04Fe^{3+}$
1117 *	$0.4/\text{MgT}0.49(\text{re}^{-1}\text{Tm})+0$	•04re- 3+	0.0018-0.0	12Fo 2++0.86Fo 3+
1133 (00) *	0.09Mg+0.84Fe ⁻⁺ +0.0/Fe	3+	O DOMATO	2F-2++0 77F-3+
{20}	U.82Mg+U.14Fe ⁻ +U.04Fe		0.20mgTU.	DIE TU.TTE
{32}	0.81Mg+0.19(Fe+Mn)		0.00Mg+0.	
{33}	0.80Mg+0.20(Fe+Mn)	orm. 3+	0./2Mg+0.	23(re+rm)
{35}	0.43Mg+0.52(Fe ₂ +Mn)+0	.U5Fe3+	0.29Mg+0.	$(10^{-1})^{-1}$
{36}	0.45Mg+0.49(Fe ⁻⁺ +Mn)+0	.0/Fe ⁻	0.52Mg+0.	os(re+m)

APPENDIX G2. SITE OCCUPANCIES IN AMPHIBOLES BY INFRARED SPECTROSCOPY

APPENDIX G3. MISCELLANEOUS INFORMATION AND COMMENTS

Burns & Strens (1966)

Examination of actinolite $\{10\}$, $\{11\}$ and $\{33\}$, cummingtonite $\{1\} - \{3\}$ and grunerite $\{4\}$ and $\{5\}$, in which partial site-populations were derived.

Strens (1966)

Infrared study of several amphibole series (holmquistite, glaucophane, riebeckite, tremolite, anthophyllite, cummingtonite - grunerite); no quantitative results are given. However, it is noted that Fe^{2+} "definitely" prefers the M(1) site in glaucophane, with a slight preference in riebeckite; this is not in accord with the X-ray results of Papike & Clark (1968) or the Mössbauer results of Bancroft & Burns (1969) and Ernst & Wai (1970). In addition, cation clustering (the occurrence of FeFeFe and MgMgMg arrangements in adjacent 2M(1)+ M(3) sites, in amounts greater than that expected for random mixing) was reported to occur in all series except the cummingtonite - grunerite amphiboles.

Bancroft et al. (1966)

Combined Mössbauer and infrared spectroscopic study of anthophyllite $\{8\}$ and $\{9\}$, cummingtonite $\{1\}$ and grunerite $\{6\}$.

Bancroft et al. (1967a)

Combined Mössbauer – infrared spectroscopic examination of cummingtonite $\{1\} - \{3\}$, grunerite $\{4\} - \{6\}$ and tirodite $\{7\}$.

Burns & Prentice (1968)

Infrared spectroscopic study of riebeckite $\{19\}$, magnesio-riebeckite $\{20\}$ and crocidolite <1>. Site occupancies are derived for the M(1)+M(3) and M(2) positions; using the criteria of Strens (1966), it is noted that the M(1) positions are favored in preference to M(3) positions in the order $Fe^{3+} > Fe^{2+} > Mg$, and that significant clustering of cations occurs.

Bancroft & Burns (1969)

Combined Mössbauer and infrared spectroscopic study of glaucophane{15} and {16}, crossite{17} and {18}, riebeckite{19} and magnesio-riebeckite{20} and {21}. The spectra indicate that the majority of the Al^{3+} and Fe^{3+} cations occupy the M(2) positions, although additional inflections in the spectra occur that could be due to trivalent cations at the M(1) or M(3) positions (or both).

Wilkins et al. (1970)

Infrared spectroscopic study of holmquistite <2> and magnesio-hornblende <3>; chemical analyses include Li₂O 3.76 and 0.18 wt. % for <2> and <3>, respectively. Holmquistite shows four bands, the intensities of which indicate a nearly random distribution of Mg and Fe^{2+} over the M(1) and M(3) sites; no minor bands occur, indicating that no univalent or trivalent cations occur at M(1) and M(3). The hornblende shows four main bands, due to Mg and Fe²⁺ configurations, a high-frequency band at ~ 3690 cm⁻¹ and at least two broad bands around 3600 cm⁻¹; the high-frequency band was assigned to configurations involving a filled A-site, and the low-frequency bands were assigned to "various combinations of trivalent and divalent ions"; no exact site-populations were assigned. $\Sigma M(4)$ for magnesio-hornblende <3> includes 0.10 Li.

Wilkins (1970)

Infrared spectroscopic study of actinolite $\langle 4 \rangle - \langle 13 \rangle$, $\langle 33 \rangle$, $\langle 14 \rangle - \langle 18 \rangle$; site populations are given as occupancies of M(1)+M(3) and M(2), assuming negligible occupancy of M(4). Chemical analyses are from: $\langle 4 \rangle - \langle 10 \rangle$, Mueller (1960); $\langle 11 \rangle$ and $\langle 12 \rangle$, Klein (1966); $\langle 33 \rangle$, see Appendix F. Actinolite $\langle 13 \rangle - \langle 18 \rangle$ are only characterized by $(Fe^{2+}+Mn^{2+})/(Fe^{2+}+Mn^{2+}+Mg)$ ratios that were derived by analysis for Fe²⁺ assuming an "ideal actinolite formula"; these ratios are not listed in Appendix G1, but are retrievable by summing the $(Fe^{2+}+Mn^{2+})$ site-populations and dividing by 5.0. Note that actinolite $\langle 53 \rangle$.

Burns & Law (1970)

A discussion of the problems associated with estimating site populations in anthophyllite and gedrite by the infrared method, with cumming-tonite $\{1\}$ and anthophyllite $\{9\}$ as illustrations.

Ernst & Wai (1970)

Combined Mössbauer and infrared spectroscopic study of glaucophane{15a}, magnesioriebeckite{27} and riebeckite{29}, as well as the heated products $\{15b\} - \{15d\}$, $\{27b\}$ and $\{27c\}$, and $\{29b\}$ and $\{29c\}$, the heating conditions being given in Appendix F1.

Burns & Greaves (1971)

Combined Mössbauer and infrared spectroscopic study of actinolite $\{10a\}$, $\{11\}$ and $\{33\}$, manganoan actinolite $\{32\}$, manganoan ferro-actinolite{35} and ferro-actinolite{36}; further details are given in Appendix F4.

Buckley & Wilkins (1971)

Combined Mössbauer and infrared spectroscopic study of cummingtonite{62}; complete site-populations assigned.

Rowbotham & Farmer (1973)

Examination of the variation of principal stretching frequency in synthetic richterite – tremolite amphiboles, together with a comparison with natural amphiboles. The samples of pure richterite appear to be nonstoichiometric.

Semet (1973)

Combined Mössbauer and infrared spectroscopic study of "pure" magnesio-hastingsite $\{67\}$, natural magnesio-hastingsite $\{68\}$ and pure pargasite<19>. Semet 1973 suggested that the "broad absorption band in the infrared spectra of the Fe²⁺-rich synthetic magnesio-hastingsites in the OH-stretching region may be attributed to extra hydroxyl ions". The spectrum of pure pargasite<19> is interpreted as indicating random distribution of Mg and Al over the M(1). M(2) and M(3) sites.

Nikitina et al. (1973)

Infrared spectroscopic study of sixteen apparently uncharacterized calcic amphiboles $\langle 20 \rangle - \langle 35 \rangle$ (the sequence followed is that of Table 4, this reference); $\langle 20 \rangle$, $\langle 22 \rangle$, $\langle 24 \rangle$ and $\langle 27 \rangle$ have also been examined by Mössbauer spectroscopy (Khristoforov *et al.* 1973), and a comparison of results is given here.

F	e^{2+} (in	nfrared	Fe ²⁺	bauer		
	M(1)	M (2)	M(1)	M (2)	M(3)	
<20>	0.12	0.01	0.38	0.10	0.03	0.39
<22>	0.07	0.16	0.38	0.12	0.15	0.30
<24>	0.26	0.11	0.45	0.27	0.08	0.47
<27>	0.33	0.16	0.45	0.39	0.12	0.42

Spectra were fitted using Lorentzian line-shape, and the site populations were calculated from the "normalized intensities of the bands at their peaks"; this presumably refers to peak heights, as the authors indicate that site populations assigned on the basis of "integral intensities" are inconsistent with the chemistry of the samples. The authors offer a rather peculiar argument to arrive at the conclusion that the B and C bands are due to the configurations MgMgFe²⁺ and Fe²⁺Fe²⁺Mg, respectively, at M(1)M(1)M(3), presumably with configurations involving both Mg and Fe²⁺ at M(1)M(1) not. in evidence. With this assumption, complete sitepopulations were derived. The occurrence of prominent clustering of cations was also noted.

Strens (1974)

A review of infrared spectroscopic work on chain, ribbon and ring silicates, with special emphasis on the hydroxyl-stretching region in the spectra of alkali amphiboles.

Law (1976)

A discussion of the peak-intensity criteria for cation ordering and clustering in amphiboles.

Maresch & Langer (1976)

Synthesis and infrared study of three synthetic amphiboles $L_{i_0.27}$ ($L_{i_1.11}$ Mg_{0.80}) Mg₅ (Si_{8.01} O_{21.20} OH_{0.80}) (OH)₂ <36>, Na₂Mg₆Si₈O₂₂(OH)₂ <37> and Na₃Mg₅(Si₈O₂₁OH)(OH)₂ <38>; cell data for <37> and <38> are from Witte *et al.* (1969). The fine structure in the hydroxyl-stretching region of <36> could not be completely interpreted; however, a band at 3727 cm⁻¹ was assigned to hydroxyl in an Si-OH configuration.

Law & Whittaker (1981)

Combined Mössbauer and infrared-absorption spectroscopic study of holmquistite [65], which is equivalent to holmquistite [31].

APPENDIX G4. CHEMICAL ANALYSES AND UNIT-CELL DATA FOR AMPHIBOLES EXAMINED BY VIBRATIONAL SPECTROSCOPY

	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9
c+0	56 30	55 73	50.00	46.11	42.28	48.10	41.91	44.61	37.93
510 ₂		0.35	0.47	0.87	0.57	0.10	0.69	1.79	3.30
1102	0 51	3.75	4.92	8.21	11.66	11.05	15.15	8.70	7.96
Eeo03	0.83	0.67	3.47	5.21	3.74	0.67	6.22	3.46	3.96
FeO	2.73	5.03	9,91	9.05	9.69	1.65	8.38	16.09	28.32
MnΩ	0.34	0.10	0.28	0.48	0.39	-	0.14	0.29	0.57
MeO	23.10	19.44	16.27	14.12	13.22	20.60	13.40	10.45	2.56
CaO	12.94	12.14	11.13	11.76	12.67	12.50	9.74	10.36	9.66
Na ₂ 0	0.34	0.43	1.14	1.33	2.00	2.54	1.05	1.47	1.71
K 0	0.12	0.04	0.17	0.82	1.05	1.24	0.55	0.39	1.55
Pa0c	_	0.11	0.14	0.11	0.51	-	1.22	0.11	0.11
-2-5 S0a	0.21	0.13	0.12	0.12	0.34	-	0.39	0.12	0.33
н.О	0.22	0.01	0.08	0.08	0.26	0.11	0.14	0.06	0.08
-2	2.62	2.36	2.19	2.14	1.45	0.71	0.96	2.04	2.42
F	_	-	-	-	-	1.90			
-	100.21	100.29	100.29	100.41	99.85	101.17	99.86	99.84	100.36
0 ≡ F	-	- ' .				0.80			
Σ	100.21	100.29	100.29	100.41	99.85	100.37	99.86	99.84	100.36
					6 00		F 01	6 50	6 11
Si	7.82	7.73	7.10	6.69	6.29	6.66	2.91	1 41	1 51
Al	0.09	0.27		-1.31	$\frac{1.71}{0.00}$	<u> </u>		8 00	8.00
Σ^{iv}	<u> </u>	8.00	7.92	8.00	8.00	<u> </u>	<u> </u>		
۵1	_	0.35	_	0.09	0.35	0.47	0.44	0.10	-
л Т.f	_	0.04	0.05	0.10	0.08	0.01	0.08	0.19	0.40
<u>+</u> 3+	0.09	0.07	0.31	0.58	0.41	0.08	0.66	0.39	0.10
F 2+	0.30	0.58	1.18	1.10	1.21	0.19	0.99	1.99	3.80
Min	0.03	0.01	0.03	0.06	0.05	-	0.02	0.04	0.08
Mo	4.67	3.93	3.43	3.07	2.92	4.25	2.81	2.30	0.62
$\tilde{\nabla}$ vi	5.09	4.98	5.00	5.00	5.02	5.00	5.00	5.01	5.00
$\Sigma^{v\iota-s}$	0.09	-	-	-	0.02	-		0.01	1 (0
Ca	1.92	1.81	1.70	1.84	2.02	1.85	1.55	1.64	1.08
Na M(A)		0.10	0.30	0.16		0.15		0.35	<u> </u>
$\Sigma^{M(4)}$	2.01	1.91	2.00	2.00	2.04	2.00	<u>1.85</u>	2.00	2.00
			0.01	0.33	0 57	0 53	_	0.06	0.20
Na	0.08	-	0.01	0.23	0.37	0.12	0.12	0.07	0.33
K A	0.02	-	0.03	0.10	0.21	0.65	0.12	0.13	0.53
Σ.			0.04		. 0.78				
~ (⁸)	0 830	9.831	9.842	9,862	9.865	9.887	9.818	9.843	9.952
	18 062	18 063	18.076	18.080	18.060	17.991	18.004	18.113	18.243
	5 278	5.284	5,296	5.309	5.316	5.299	5.281	5.316	5.339
	104.7	104.6	104.8	104.9	105.2	105.4	104.5	105.0	105.0
w 83	907.3	908.0	911.0	914.3	913.7	908.6	909.1	915.4	936.0
*\^ /	201+3	20000							

THE CRYSTAL CHEMISTRY OF THE AMPHIBOLES

		and the second second		and the second			an a		5.7
	<u>10</u>	11	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
S10.	37.55	48.76	48.66	49.48	62.09	56.74	56-68	55,12	46.50
T105	0.89	1.82	0.38	0.08	-	-	-	0.29	0.36
A1 0	9.90	3.43	0.04	1.26	0.68	0.27	0.72	1.22	14.21
Fe2 02	11.98	10.05	0.25	0.21	0.09	0.47	1.16	1.63	2.15
FeÔ	21.40	14.66	39.63	22.62	1.00	12.90	16.37	16.42	17.24
Mn0	1.25	2.18	1.30	15.62	0.02	0.49	0.37	0.42	0.20
MgO	1.31	5.81	6.13	9.00	32.52	24.67	22.24	21.06	16.17
Ca0	7.28	1.51	0.69		0.52	2.27	0.90	1.99	0.48
Na ₂ 0	4.05	8.00	0.05	0.05	0.10	-	0.03	0.15	1.12
ĸĴ	2.11	1.80	-	0.04	0.02	0.05	0.02	0.02	0.06
P205	0.14	0.07	0.03	_	0.12	_ '	<u> </u>	-	-
sō _ຈ ້	0.12	-	0.37	-		. —	_	- .	_
H ₂ Ŏ	0.04	0.04	0.04	0.16	-	1.87	1.76	1.43	1.32
	1.80	1.87	2.71	1.56	3.24		-	-	-
F				_		0.14	0.20	0.07	0.03
	99.82	100.01	100.34	100.10	100.39	99.87	100.45	99.82	99.84
0 = F						0.06	0.08	0.03	0.01
Σ	99.82	100.01	100.34	100.10	100.39	99.81	100.37	99.79	99.83
									<u></u>
SI	6.14	7.50	8.00	7.78	8.00	7.91	7.94	7.81	6.63
Al	1.86	0.50		0.22		0.04	0.06	0.19	<u> </u>
200	8.00	8.00	8.00	8.00	8.00	7.95	8.00	8.00	8.00
A.T.	0.04	0 10				·- ·			
AL TH	0.04	0.12	0.04		0.10	-	0.06	0.01	1.01
F-3+	1 45	0.21	0.05	0.01		-		0.03	0.04
F 2+	1.40	1.10	0.04	0.02	0.01	0.05	0.12	0.17	0.23
Ma	2.92	1.90	2.24	2.96	0.11	1.51	1.92	1.94	2.05
Mo	0.10	1 22	1 43	2.06	6.01	0.06	-0.04	0.05	0.02
S vi	5.00	5.00	1.43	Z.TT	0.24	5.13	4.05	4.44	3.43
<u>د</u>	/			-	· · ·	-	-	- .	
Σ^{vi-5}		-		_		_	_	· _ ·	_
Ca	1.27	0.25	0.09		0.07	0.34	0.14	0.30	0.07
Na	0.73	1.75	-		0.02	-	0.01	0.04	0.13
$\Sigma^{M(4)}$	2.00	2.00	7.37	7.16	6.53	7.08	6.94	7.00	7.00
	Sector States	territoria de la constante de	<u> منتخف</u>						
Na	0.56	1.05	-	-	_	-	_	— 11	0.18
ĸ	0.45	0.35	-	-	-	0.01	-	• <u>L</u> C.	0.01
$\sum \mathbf{A}$	1.01	1.40	5. •• . **	-	-	0.01	-	; 	0.19
			in the second			1997 - 1997 - 1997 - 1997 - 1 997 - 1997 -			
a(Ă)	9.951	9.903	•••• :	9.575	18.50	 .	-	-	-
b (A)	18.166	18.066	-	18.27	17.94	,	-	مري 🚑	-
c(X)	5.354	5.332	-	5.343	5.37	-	-		-
B(°)	105.0	104.0	 '	102.2	90	90	90	.90	90
V(A)	934.4	925.6		914.2	1782	T .	-	· -	-
		- 10 I.							

THE CANADIAN MINERALOGIST

· · · · · · · · · · · · · · · · · · ·	-		· · · ·						
	20	21	<u>22</u>	24	25	29	<u>32</u>	<u>33</u>	34
S102	48.55	50.19	50.51	50.95	50.77	51.47	49.65	54.15	53.69
T102	0.02	_	-	0.21	· · ·	0.04	0.07	-	0.03
A1.0.	0.72	0.80	0.62	0.54	0.86	1.10	4.14	0.65	2.47
$Fe_{2}^{2}0_{3}^{3}$	0.96	1.46	0.24	0.71	0.62	0.44	2.01	0.99	2.85
FeÖ	43.47	39.35	39.32	35.79	35.40	33.37	26.55	23.90	5.75
MnO	0.35	0.87	0.86	5.34	2.01	1.85	0.01	0.18	0.16
Mg0	2.39	3.97	4.95	3.94	6.69	9.25	13.14	16.63	18.92
Ca0	1.80	1.69	1.57	0.76	2.28	0.50	1.72	0.78	11.93
Na ₂ 0	0.08	0.03	0.03	0.13	0.03	0.08	0.29	0.03	0.57
ĸ	0.01	0.03	0.04	-	-	0.01	0.48	0.02	0.18
P_{205}^2	-	-	-	-	-	-	-		-
รอิฐ	· 🗕	-	-	-	-	-	-	-	-
н_б	2.06	1.81	1.03	1.91	0.56	1,76	1.46	1.00	2.28
2	·		-	-	-	-	-	-	-
F	-	-			0.10	0.04			
	100.41	100.20	99.17	100.28	99.32	99.91	99.52	98.33	98.83
0 == F					0.04	0.02			
$\sum_{i=1}^{n}$	100.41	100.20	99.17	100.28	99.28	<u>99.89</u>	99.52	98.33	98.83
Si	7.88	7.97	/ 8.01	8.07	7.92	7.93	7.45	7.97	7.64
A1 .	0.12	0.03	-	_	0.08	0.07	0.55	0.03	0.36
Σ^{iv}	8.00	8.00	8.01	8.07	8.00	8.00	8.00	8.00	8.00
A1	0.02	0.12	0.12	0.17	0.07	0.13	0.19	0.08	0.06
T1_	-		-	0.03	-	0.01	0.01		-
Fe ³⁺	0.12	0.17	0.03	0.09	0.07	0.05	0.23	0.11	0.31
Fe ²⁺	5.90	5.23	5.21	4.74	4.62	4.30	3.33	2.94	0.68
Mn	0.05	0.12	0.12	0.72	0.27	0.24		0.02	0.02
Mg	0.58	0.94	1.17	0.93	1.56	2.12	2.94	3.65	4.01
Σ^{vi}	-	-	-		-	410 .	-	. 	5.08
Σ^{vi-5}	-	— ,	- (*	· · –	-	-	-	÷	0.08
Ca	/ 0.31	0.29	0.27	0.13	0.38	0.08	0.28	0.12	1.82
Na	0.02	0.01	0.01	0.04	0.01	0.02	0.03	0.01	0.10
$\sum M(4)$	7.00	6.87	6.92	6.83	<u> </u>	6.95	7.00	6.93	2.00
Na	- -	-	-	-	-	· 🗕	0.06		0.06
ĸ	_	0.01	0.01 -			-	0.09		0.03
$\sum^{\mathbf{A}}$		0.01	0.01	-	- `	с. Т <mark>—</mark> , к	0.15	-	0.09
a(A)	-	_	-	-	,	 .			. –
ь(Å)	-	-	·		-	-	-	· -	, - 1
c (Å)	· 🗕	-	-	<u>ب</u> ، ب	-	<u> </u>	_ `	-	- 1
β(°)	- ,-	-	-		-	-	-	-	-
V(Å ³)	-		<u> </u>		.	-			.

THE CRYSTAL CHEMISTRY OF THE AMPHIBOLES

			S. 1999 (a)						
이 가지 않는 것 같아?	35	36	37	38	40	43	44	45	-50
620		56 00	56.01	<u>×</u> ×	10	<u> </u>	 / F 00	<u> </u>	<u>2</u> 2
S102	22.42	20123	56.04	57.28	40.28	45.18	45.20	43.22	49.84
A1 0	1 07	0.01	2 10	0.62	12.00	13 51	11 61	11 08	<u> </u>
Fea 0a	3 01	1 60	2 74	1 60	3 0/	3.85	4 54	4 11	2 00
FeÜ	4.67	4.62	4.21	4.00	11.15	14.27	11.00	11.30	15.67
MnO	0.09	0.04	0.07	0.10	0.23	0.41	0.30	0.26	0.14
MgO	19.98	20.58	19.92	21.46	11.59	7.30	11.35	11.62	12.45
Ca0/	11.68	12.18	11.15	11.76	11.40	11.50	11.32	12.20	11.90
Na ₂ 0	0.64	0.20	0.84	0.29	1.24	1.09	1.35	1.13	0.38
K ₂ Ô	0.09	0.05	0.05	0.02	0.46	1.21	0.53	0.50	0.22
P205	-	-	_	-	-	_	_	-	_
รบิ _ว ั	_	. –	· · · ·	_	i	 (*	-	C	
Ho	2.04	1.92	1.71	1.79	1.85	0.79	1.74	1.52	2,45
4	-	· · ·	-	-	_ '	_ `	<u> </u>	-	-
F	0.07	0.03		0.04	_	0.05		0.04	0.08
	98.81	98.94	99.83	99.05	100.17	99.85	99.83	99.89	100.27
0 ≡ F	0.03	0.01		0.02		0.02		0.02	0.03
Ľ	98.78	98.93	99.83	<u>99.03</u>	100.17	<u>99.83</u>	99.83	<u>99.87</u>	100.24
St	7.82	7,94	7.75	7.94	6.69	6.62	6.60	6.60	7,38
A1	0.18	0.06	0.25	0.06	1.31	1.38	1.40	1.40	0.62
$\sum iv$	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
									0.10
AL TH		0.00	0.11	0.04	0.75	0.96	0.60	0.51	0.10
3+	 	0 10	0.20		0.09	0.08	0.10	0.10	0.33
F-2+	0.52	0.10	0.39	0.10	1 25	1 75	1 24	1 39	1 0%
Mn	0.01	0.01	0.49	0.40	1.35	0.05	0.04	0.03	0.02
Mo	4.20	4.28	4 11	6.64	2.50	1.59	2 47	2.53	2.75
$\sum vi$	5.08	5.06	5.10	5.13	5.04	4.85	5.04	5.00	5.13
$\Sigma^{\nu\nu-5}$	0.08	0.06	0.10	0.13	0.04	÷ , ,	0.04	-	0.13
Ca	1.76	1.82	1.65	1.75	1.77	1.81	1.77	1.91	1.89
Na M(A)	0.16	0.05	0.23	0.08	0.19	0.19	0.19	0.09	<u> </u>
$\sum M(4)$	2.00	1.93	1.98	1.96	2.00	2.00	2.00	2.00	2.02
Na	0.02		_	_	0.16	0.12	0.20	0.23	0.11
K	0.02	0.01	0.01	·	0.09	0.23	0.10	0.09	0.04
$\sum \mathbf{A}$	0.04	0.01	0.01	÷.	. 0.25	0.34	0.30	0.32	0.15
			na jiranini		*****				
a(A)	~			<u>-</u>	-	: ° <u></u>	-		-
b(A)	•				-	-	A	· - · ·	
C(A)		-	· - ·	-		-	-		
		· · · · ·	-		-	-	. 🛥		
B() 17(83)			<u></u>	z = z + z			·		

THE CANADIAN MINERALOGIST

APPENDIX G5. INFRARED ABSORPTION FREQUENCIES (cm^{-1}) FOR AMPHIBOLES

										6 ¹			
<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	20	21	<u>22</u>	<u>23</u>	24	<u>25</u>	<u>26</u>	27	28
1132	1133	1135		1130	1130	1132	1134	1135	1135	1135	1135	1135	1136
1112	· _	1110	1110	1110	-		-	-	-		-	´	.
1097	1092	1093	1093	1100	1082	1083	1085	1088	1083	1085	1088	1090	1092
· <u></u>	-	— 1	· · - · · ·	-	-	-	-	-		-	-	-	
1000	1000	÷	-	1010	1000	1000	1000	1002	1005	997	1003	1005	1000
982	980	982	980	983	975	975	975	975	975	975	977	975	980
-		-	-	-	-	-	-	-	-	-	<u></u>	·	s: 🕂
912	-	÷	-	913	-	-	-	-	-	-	-	- ·	· -
900	901	903	910	-	890	895	890	900	895	900	900	900	899
		-	-	-	-	-	-	-	-	-	-	-	· · -
782	782	780	780	784	775	774	775	778	772	775	778	780	778
755	755	-	755	758	-	-	-	-	-	-	- '	-	-
737	-	740	-		730	730	731	735	732	732	733	734	732
710	700	-	708	712	703	704	703	708	702	708	708	710	707
691	692	697	695	692	-	-	. –	-	-	-	-	-	
672	672	668	-	-	-	-	-	-	-		-		-
659	657	655	660	660	655	655	652	653	651	655	655	652	650
-		· _	-	<u> </u>	632	635	635	635	635	638	638	640	640
537	-	-	-	535	532	532	531	528	530	530	535	532	530
522	523	525	525	-	507	508	508	508	509	509	510	512	516
500	495	495	498	500	478	480	481	480	482	480	483	483	489
470	465	465	465	468	- '		-	-	-	— — ¹	-	-	-
440	442	440	-	447	-	- .	-	-	-	452	452	-	
-	-	-	-	-	423	425	426	426	427	427	429	432	433
415	412	410	-	417		- · ·	-	-	-	-	-	-	· - ·
-	-	-	-	<u> </u>	-	· 🗕	-	- .		-	<u> </u>	-	
-	-	-	-	-	_	-	- ·	-	-		 .	-	-
. —	-	-	-	-	_	·		-	-				-

				~									
<u>29</u>	<u>30</u>	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	<u>35</u>	<u>36</u>	<u>37</u>	<u>38</u>	<u>39</u>	<u>40</u>	<u>41</u>	<u>42</u>
1137	1133	1138	1135	1134		-	-	-	-	-	1130	-	1130
-	-	-	-	-	1110	1112	1110	1110	1111	1120	-	-	-
1083	1088	1090	1090	1090	-		-	-	-	-	1090	1100	1090
-	-	-	-	-	1060	1070	-	-	_ `	-	1040	1050	1050
1000	1000	1005	1005	1000	992	1000	995	995	998	1000	-		-
975	978	975	975	975		-	-	-	-	-	-	-	-
-	-	-	-	-	955	958	952	960	955	965	955	960	960
-	-	-	7	-	922	920	920	920	920	928	-	-	-
898	900	905	898	899	-	-	-	-	-	-	-	-	-
- 	-		-	-	800	800	800	800	800	805	800	-	-
///	//8	/80	///	//8	-	-		-	-	-	-	_	
 722	- 722	-		-	/5/	/60	758	760	760	762	755	752	755
7.52	733	- 700	735	740	-	-	-	-	-	-	-	-	-
-	700	700	700	698	-	-	-	-	-	-	-	- 700	-
	_	_	_	-	007	000	007	007	607	692	697	700	/10
657	655	655	657	657	-	-	662	-	- 661			-	-
641	642	643	647	6/9	645	644	643	645	645	645		040	- 050
532	527	532	-	-	-	-	-	-	-	-	_	_	_
516	512	518	520	520	512	512	512	512	512	515	512	507	510
490	482	488	495	493	-	_	-	-		-	-	-	-
-	_	_	_	-	470	465	468	470	470	475	462	465	465
452	-	453	455	457	450	450	450	450	450	453	_	-	-
432	430	435	437	437	425	425	425	425	423	425	-	-	-
-	-	-	-	-	-	-	_	~	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-		-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

								<u> </u>
<u>43</u>	<u>44</u>	<u>45</u>	46	<u>47</u>	<u>48</u>	<u>49</u>	<u>50</u>	<u>51</u>
-	1130	1125	-	-	- "	-	-	-
1080	1090	1090	1100	_	1105	-	1110	1112
1050	1040	1040	1062	1068	_	1062	1065	1065
_	_	_	_	-	_	_		-
950	955	955	955	955	965	965	960	960
-	-	-	-	-	-	-	_	-
 798	- 797	800	-	- 802	803	-	-	800
- 755	- 752	- 754	- 755	- 753	- 753	- 755	- 760	- 760
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
695 -	695 	695 	700	697 -	700	698 	695	- 693
655	655	657	648	648	645	645	655	655
-	-	·		-	-	-	-	-
- 515	 515	- 515		-	- 508	- 505	- 512	- 517
-	-	-	-	-		-	-	-
465	465	465	466	467	467	468	468	470
-	_	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	. 🛥	-
-	-		-	_	_	_	_	_
<u>52</u>	<u>53</u>	<u>54</u>	<u>55</u>	, <u>56</u>	<u>57</u>	<u>58</u>	<u>59</u>	<u>60</u>
-	1130	_	1126		-	_	-	1125
-	_	1010	-	-	-	-	1105	-
1085	1105	_	1085	1043	1098	1060	1050	10//
-	_	_	1000	994	993	-	-	-
-	-	-	978	-	-	-	980	-
962	-	_		956 918	950	965	_	969
-	_	880	900	-	-		900	900
803	-	-	-	-	-	-	789	-
-	- 762	780	778	- 760	- 758	- 745	_	 750
-	-	_	740	-	720	-	730	-
-	-	-	-	-	-	-	-	700
700	710		690	682	683	_		-
660	- 642	-	- 648	_	660	661	_	_
-	-	-	-	-	640	-	-	644
-	-	530	-	530	540	- 510	555	538
500	= 00		119	204	200	710	-	470
520 -	500 	- 500	492	-	-	-	-	-
520 - 470	500 475	- - 462	492 -	- 465	- 461	-	- 475	-
520 - 470 -	500 475 	- 462 448	492 - 455	- 465 445	461	 450	- 475 450	- - 453
520 - 470 - -	500 475 -	- 462 448 423 392	492 - 455 433	- 465 445 422 400	- 461 - 420 400	 450 -	- 475 450 -	- 453 - 398
520 - 470 - - - -	500 475 - -	500 462 448 423 392 	492 - 455 433 -	 465 445 422 400 388	- 461 - 420 400 389	 450 -	- 475 450 - - 368	- 453 - 398 -
520 - 470 - - - - - - -	500 475 - - - -	- 462 448 423 392 - 340	492 - 455 433 - - -	- 465 445 422 400 388 357	- 461 - 420 400 389 356	- 450 - - -	- 475 450 - - 368 330	- 453 - 398 -

THE CRYSTAL CHEMISTRY OF THE AMPHIBOLES

APPENDIX H. MAGNETIC SUSCEPTIBILITY OF AMPHIBOLES

	CHI	EMICAL CC	MPOSITIC SUSCEPT	ONS* OF A	MPHIBOLI DATA ARE	ES FO	OR WHI	CH MAGI	NETIC		
	1	2	<u>3</u>	4	5	<u>6</u>	<u>7</u>	8	<u>9</u>	<u>10</u>	11
S10.	52.41	43.20	44.07	54.09	56.61	45		· · ·	_		_
TiO_{2}^{2}	0.45	1.65	1.70	3.54	1.04	0	_			_ **	·
A1.0.	0.61	12.44	12.37	0.22	0.24	4	_		_	, . 	2
Fe ₂ 0	14.37	3.21	0.18	0.66	1.10	10	1.00	1.82	2.52	7.13	5.2
Feð	14.82	10.10	10.23	4.69	3.90	26	4.90	8.93	3.14	8.13	8.2
MnO	1.46	0.21	0.18	0.26	0.29	0	0.14	0.16	0.12	0.14	0.1
MgO	5.07	13.27	14.20	21.29	22.27	0	-	· _ ·	-		
CaO	1.33	11.36	12.42	12.14	12.33	2	- .	·	_		-
Na ₂ 0	4.94	2.72	1.00	0.21	0.06	7	_	_	_	_	-
κ _α δ	2.10	0.40	0.30	0.16	0.18	3	. _ * ,	<u> </u>	— ¹	-	
H_0	2.12	1.45	2.88	2.90	2.45	1	<u> </u>	-	-	_	-
F	0.30	-		_	-	_	. –	<u> </u>	-	·	
	99.98	100.08	99.53	100.16	100.57	98					
D≡F	0.13		-		· · ·	<u> </u>	-	· 	-	<u> </u>	-
da i A Martina	99.85	100.08	99.53	100.16	100.57	<u>98</u>			۰.		
											- - -
1997 - 1999 1997 - 1999 1997 - 1998	19	13	1.4	15	16	u sir L	17	110	10	20	ata ing e
		1-1- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- 1744	=	10		<u> </u>	10	19	- 20	~
Fe ₂ 03	-	1.93	1.95	1.62	10.50	- 6	.27	1.26	-	-	
₹e0	4.24	7.79	5.45	2.78	2.26	9	.27	10.46	-		
ln0	0.08	0.16	0.16	0.03	0.17	0	.09	0.02	: , -	-	4 ¹ 4
	21	- -		27	9E		26	07	10	. یا د د د د ه بر	20
3. T		<u></u>	<u></u>		25		20	<u> </u>	20		<u> </u>
Fe ₂ ∔	550	560	-	이 나는 것이 같이 많이	643		787	1830	134	5	3000
Fe ^r	221	730	i - 1	<u> </u>	900	1	.168	522	82	0	- 10 <u>1</u> 10
ſn	85	50	s an y statistic Statistics - Sa Sa	-	10		182	38	53	0	40
	30	21	30	22	34		25	26	37		20
9.1	<u> </u>	4	34	<u> </u>	<u> </u>		<u></u>	<u> </u>	37		30
Fe	1540	1710	1697	_	1440	1	480	1726	51	0	1216
Fe ²⁺	1060	790	1179	. . .	1935	1	960	1781	312	3 .	3002
In	185	460	127	230	189	1	510	49	8	6	69
		<u> </u>									1.1.1
	39	40	41	42	<u>43</u>		44	45			
							-			i	
_{الم} 3+	670	875	730	22204	1200		_				
Fe ³⁺ Fe ²⁺	670 3280	875 3230	730	1204 3627	1200		-				

*For samples $\underline{19} - \underline{45}$, the magnetic ion contents are given as cation contents (×100?).

		<u></u>	
1	Riebeckite	29	Hornblende
2	Hornblende	30	Arfvedsonite
3	Hornblende	31	Riebeckite
4	Actinolite	32	Riebeckite
5	Actinolite	33	Arfvedsonite
6	Arfvedsonite	34	Arfvedsonite
19	Tremolite	35	Arfvedsonite
20	Pargasite	36	Riebeckite
21	Richterite	37	Hastingsite
22	Hornblende	38	Riebeckite
23	Pargasite	39	Hastingsite
24	Hornblende	40	Hastingsite
25	Hornblende	41	Hastingsite
26	Katophorite	42	Hastingsite
27	Magnesioriebeckite	43	Hastingsite
28	Arfvedsonite	44	Hastingsite
	i.	45	Hastingsite

AMPHIBOLE	NAMES	ASSIGNED TO	ABOVE	AMPHIBOLES
-		BY AUTHORS		· •

MAGNETIC SUSCEPTIBILITY (×10⁶ emu/g) OF AMPHIBOLES

	1	2	3	4	5	6	7	8	9	<u>10</u>	11	12	13
R.T.	75	22	33	13	13	80	11	18	9	28	24	7	16
95 K	-	-	· 🗕 .	_	_	. 	29	44	29	82	71	24	43
90 K	330	130	120	30	30	420	-	. 🛏			-	-	-
	14	15	16	<u>17</u>	18	<u>19</u>	<u>20</u>	<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	25	26
R.T.	13	6	21	29	20	2	5	12	13	17	20	25	32
95 K	35	18	62	69	63	-	-	-	_			-	
90 K	-	-	-	_	_	âșan.	, - '	-		÷	7	-	, - ,
	27	28	29	30	31	<u>32</u>	33	<u>34</u>	35	36	37	38	39
R.T.	33	34	37	38	38	41	41	47	47	53	54	60	62
	40	<u>41</u>	42	<u>43</u>	44	<u>45</u>							
R.T.	63	64	68	65	69	70							

<u>19</u> - <u>45</u> Efimov et al. (1972).