JENSENITE, A CUPRIC TELLURATE FRAMEWORK STRUCTURE WITH TWO COORDINATIONS OF COPPER

JOEL D. GRICE

Research Division, Canadian Museum of Nature, P.O. Box 3443, Station "D", Ottawa, Ontario KIP 6P4

LEE A. GROAT

Department of Geological Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4

ANDREW C. ROBERTS

Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8

ABSTRACT

The crystal structure of jensenite, $Cu_2^{3+}Te^{6+}O_6\cdot 2H_2O$, has been determined and refined to indices R = 3.3 and $R_w = 2.5\%$. The structure is monoclinic, P_{2_1}/n (14), with cell parameters a 9.224(2), b 9.180(1), c 7.600(1) Å, β 102.38(1)°, V 628.5(2) Å³, with Z = 4. The structure analysis was essential in determining the valence state of Cu^{2+} and Te^{6+} and the number of O^{2-} atoms and H_2O groups in the formula. The crystal structure of jensenite contains a sheet of fully occupied edge-sharing [CuO₆] and [TeO₆] octahedra. These (101) sheets are bonded together through [Cu₂ φ_8] dimers (where φ represents either O atoms or H_2O groups). The dimers contain two H_2O groups, which reinforce the intersheet linkages *via* H-bonding. The hexagonal closest packed (HCP) layering in jensenite differs from that in other synthetic and natural cupric tellurates in either the sequence of stacking or the composition of the layers.

Keywords: jensenite, crystal structure, tellurate, cupric, dimers.

SOMMAIRE

Nous avons affiné la structure cristalline de la jensenite, $Cu_3^{2+}Te^{6+}O_6\cdot 2H_2O$, jusqu'à un résidu *R* de 3.3% ($R_w = 2.5\%$). Il s'agit d'une structure monoclinique, P_{2_1}/n (14), dont les paramètres réticulaires sont *a* 9.224(2), *b* 9.180(1), *c* 7.600(1) Å, β 102.38(1)°, *V* 628.5(2) Å³, avec Z = 4. L'ébauche de la structure a été essentielle pour établir la valence du cuivre et du tellure (Cu^{2+} et Te⁶⁺, respectivement), et la proportion d'atomes O^{2-} et de groupes H_2O dans la formule. La structure contient des feuillets d'octaèdres [CuO_6] et [TeO_6] sans lacunes, partageant leurs arêtes. La liaison d'un tel feuillet (101) à un autre est assurée par des dimères [$Cu_2\phi_8$] dans lesquels φ représente soit un atome O, soit un groupe H_2O . Les dimères contiennent deux groupes H_2O qui renforcent les liaisons inter-feuillets par des liaisons hydrogène. L'agencement des feuillets à empilement compact hexagonal diffère ici de celui d'autres cupriques synthétiques ou naturels, soit dans la séquence d'empilement des feuillets, soit dans la composition d'un feuillet.

Mots-clés: jensenite, structure cristalline, tellurate, cuprique, dimères.

INTRODUCTION

Jensenite, described by Roberts *et al.* (1996) from the mineralized dumps of the Centennial Eureka mine, Juab County, Utah, is one of several Cu-bearing tellurates that occur in this deposit. Associated Cuand Te-bearing minerals include mcalpineite (Roberts *et al.* 1994), xocomecatlite and unnamed Cu(Mg,Cu,Fe,Zn)₂Te⁶⁺O₆·6H₂O. Additional Cu- and Te-bearing secondary minerals that have been found at this locality are cesbronite, frankhawthorneite (Roberts et al. 1995, Grice & Roberts 1995), dugganite and quetzalcoatlite. Additional information about the geology and mineralogy of the Centennial Eureka mine may be found in Marty et al. (1993).

EXPERIMENTAL

The small amount of pure material available precluded standard chemical analytical techniques capable of differentiating the valence states of Cu and Te and establishing the amount of H_2O ; the structure-

analysis method (Hawthorne & Grice 1990) has established these quantities; the formula is $Cu_3^{2+}Te^{6+}O_6\cdot 2H_2O$. Two electron-microprobe analyses (Roberts *et al.* 1996) of the material gave an average of CuO 50.91, ZnO 0.31, TeO₃ 38.91, H₂O (from structure analysis) 8.00, total 98.13 wt.%. Based on O = 8, the empirical formula is $(Cu_{2.92}Zn_{0.02})_{\Sigma 2.94}$ Te⁶⁺_{1.01}O_{5.97}·2.03H₂O. The ideal formula given above requires CuO 53.00, TeO₃ 39.00, H₂O 8.00, total 100 wt.%. It is evident that the material studied is practically ideal, end-member jensenite.

The single crystal of jensenite used for the collection of X-ray-diffraction intensity data (cotype material from the National Mineral Collection of Canada, Systematic Reference Series, catalogue number NMC 67424) is a roughly equant fragment that measures $0.05 \times 0.05 \times 0.07$ mm. Single-crystal precession photographs yielded the unique monoclinic spacegroup $P2_1/n$ (14), based on systematic absences of reflections. The cell orientation is consistent with c < a(Roberts et al. 1996), which leads to the less conventional space-group for this set of systematic absences. Intensity data were collected twice on the same crystal with a fully automated Nicolet P3 four-circle diffractometer operated at 50 kV, 40 mA, with graphitemonochromated MoKa radiation. Initially, only one asymmetric unit of intensity data was collected, but the resultant structure-refinement led to poor bond-valence summations. As these summations are critical to the determination of the precise composition of the mineral, a second collection of intensities was necessary, on which the paper is based. This improved data-set lowered the final R values for the refinement. with isotropic thermal parameters, from 7.4 to 5.2%.

A set of 20 reflections was used to orient the crystal and to subsequently refine the cell dimensions. Four asymmetric units of intensity data were collected up to

TABLE 1. DATA-COLLECTION INFORMATION FOR JENSENITE

		······································		
Space Group	P2 ₁ /n (14)	Measured/unique reflections	3458/869	
a (Å)	9.224(2)	Observed reflections [>68(F)]	605	
b (Å)	9,180(1)	Minimum transmission	0.283	
c (Å)	7.600(1)	Maximum transmission	0.373	
β (°)	102.38(1)	R (%)	3.3	
V (Å ³)	628.5(2)	R. (%)	2.5	
Unit-cell conter	nts 4[Cu ₃ ²⁺ Te ⁶⁺ C	D ₆ •2H₂O]		
μ (mm ⁻¹)	14.7	$R_{w} = [\Sigma w(F_{o} - F_{o})^{2} / \Sigma wF_{o}^{2}]^{2}$	$w = [\sigma^2(F_0)]^{-1}$	

 $2\theta = 60^{\circ}$ using a $\theta:2\theta$ scan mode (3458 reflections), with scan speeds inversely proportional to intensity, varying from 4 to 29.3°/minute. The merging *R* for the four asymmetric units is 3.3%. Data pertinent to the collection of intensity data are given in Table 1.

Reduction of the intensity data, structure determination and structure refinement were done with the SHELXTL (Sheldrick 1990) package of computer programs. Data reduction included a correction for background, scaling, Lorentz, polarization and linear absorption. For the ellipsoidal absorption correction, eleven intense diffraction-maxima in the range 17 to 37° 20 were chosen for ψ diffraction-vector scans after the method of North *et al.* (1968). The merging *R* for the ψ -scan data set (396 reflections) decreased from 4.4% before the absorption correction to 2.6% after the absorption correction.

CRYSTAL-STRUCTURE ANALYSIS

Assigning phases to a set of normalized structurefactors gave a mean value $|E^2 - 1|$ of 1.07, suggesting a centrosymmetric space-group. The structure was

TABLE 2. POSITIONAL AND THERMAL PARAMETERS (X100, A2) FOR JENSENITE

Site	x	у	z	U11	U22	U ₃₃	U ₂₃	U ₁₃	U12	
Cu1	0 1209(2)	0 8969(2)	0 1347(2)	1 13(8)	1 91(18)	0.85(5)	-0 16(8)	0 27(5)	0.08/9)	1 29(7)
Cu2	0.1174(3)	0.9229(2)	0.6432(3)	0.77(8)	0.44(18)	1.14(7)	~0.10(0) 0.00(9)	-0.10(5)	-0.0(1)	0.83(7)
Cu3	0.1200(2)	0.5844(2)	0.6278(2)	0.84(8)	0.45(18)	0.85(6)	0.03(9)	-0.24(5)	-0.1(1)	0.77(7)
Те	-0.1357(1)	0.7564(1)	0.3869(1)	0.63(4)	0.56(10)	0.55(2)	0.00(5)	-0.05(2)	-0.03(6)	0.61(4)
01	0.241(1)	0.257(1)	0.884(1)	0.3(4)	1.1(9)	0.47(3)	-0.0(4)	-0.3(3)	-0.1(5)	0.6(4)
02	0.542(1)	0.282(1)	0.868(1)	0.8(5)	1.0(4)	0.7(3)	0.2(4)	-0.0(3)	-0.2(5)	0.9(2)
03	0.234(1)	0.572(1)	0.881(1)	0.3(5)	0.3(9)	0.5(3)	0.4(4)	-0.0(3)	0.0(4)	0.4(4)
04	0.503(1)	0.603(1)	0.823(1)	0.9(5)	1.0(4)	1.0(3)	0.3(4)	0.0(3)	-0.1(5)	1.0(2)
O5	0.000(1)	0.596(1)	0.367(1)	0.9(5)	1.9(9)	0.8(3)	0.3(4)	-0.2(3)	0.8(7)	1.3(4)
06	0.729(1)	0.617(1)	0.443(1)	0.6(4)	1.0(8)	1.2(3)	-0.0(4)	0.0(3)	-0.3(5)	1.0(4)
07*	0.438(1)	0.655(1)	0.457(1)	1.7(5)	1.2(8)	1.1(3)	0.3(4)	0.0(4)	0.2(4)	1.4(4)
08*	0.800(1)	0.538(1)	0.806(1)	1.6(5)	2.6(3)	0.9(3)	0.4(4)	0.0(3)	-0.1(5)	1.7(4)

*O7 and O8 are H₂O molecules

Temperature factors are of the form: exp $[-2\pi^2(U_{11}^2a^2 + U_{22}k^2b^2 +, 2U_{12}hka^2b^2)]$

TABLE 3. SELECTED INTERATOMIC DISTANCES (Å) AND ANGLES (°) FOR JENSENITE

Cu1 square pyramid				Cu2 octahedron			
Cu1-O4d	1.973(9)	Ó4d-07b	94.6(4)	Cu2-O1c	2.014(10)	O4d-O1c	92.6(3)
Cu1-O6d	1.942(9)	O4d-O7d	88.7(3)	Cu2-O2c	1.947(10)	O4d-O2c	74.4(3)
Cu1-07b	2.502(10)	O4d-O8c	92.0(4)	Cu2-O3b	1.973(10)	O4d-O3b	97.7(3)
Cu1-O7d	1.978(8)	O6d-O7b	88.3(4)	Cu2-O4b	2.038(11)	O4d-O4b	94.1(3)
Cu1-O8c	1.966(8)	O6d-O7d	88.4(3)	Cu2-O4d	2.444(8)	O4d-O8e	165.3(4
(Cu1∽φ) _{eq}	1.958	O6d-O8c	91.2(4)	Cu2-08e	2.319(7)	01c-04b	172.2(3
		07b-07d	88.4(4)	⟨Cu2-O⟩ _{eq}	(1.992)	O2c-O3b	171.9(3
		O7b-O8c	90.0(3)	(Cu2-O) _{sp}	(2.132)		
	Cu3 oct	ahedron			Te oct	ahedron	
Cu3-01c	2.029(10)	O2c-O1c	78.3(4)	Te-O1a	1.941(6)	O1a-O3d	81.6(4)
Cu3-O2c	2.362(10)	020-03	103.7(3)	Te-O2c	1.896(7)	O1a-O4d	91.2(3)
Cu3-O3	1.986(7)	O2c-O5	76.0(3)	Te-O3d	1.975(10)	01a-05	94.4(4)
Cu3-O5	2.053(8)	O2c-O5b	108.5(4)	Te-O4d	1.952(10)	01a-08a	88.0(4)
Cu3-O5b	2.000(10)	O2c-O6b	168.3(3)	Te-O5	1.953(10)	O1a-02c	175.3(4
Cu3-O6b	2.442(10)	O1c-O5b	174.4(4)	Te-O8a	1.898(10)	O3d-O5	173.5(4
(Cu3-O) _{eq}	(2.017)	03-05	179.4(4)	⟨Te-O ⟩	(1.936)	04d-06a	178.9(4
(Cu3-O) _{ep}	(2.402)						
O-O H-bonded			Cu-Cu distances				
07-01c	2.538(12)	O8-O3a	2.671(12)	Cu1-Cu1	3.285(5)	Cu2-Cu2	3.068(4
07-02b	2.580(11)	O8-O5c	2.775(13)	Cu1-Cu2	3.485(3)	Cu2-Cu3	3.047(3
				Cu1-Cu3	3 834(3)	Cu3-Cu3	3 038/4

O7 and O8 are H₂O groups

solved and refined in the space group $P2_1/n$. The *E*-map coordinates were assigned to appropriate scattering curves, and three Cu, one Te and eight O atoms were located. This structure model refined to R = 5.2%.

In the final least-squares refinement, all atomic positions were refined with anisotropic displacementfactors, to final residuals of R = 3.3% and $R_w = 2.5\%$. The weighting scheme is inversely proportional to $\sigma^2(F)$. The addition of an isotropic extinctioncorrection did not improve the refinement. Structure refinement in the noncentrosymmetric space-group $P2_1$ did not improve the R values, nor did it indicate in any way that lower symmetry was justified when tested by MISSYM (Le Page 1987). The final positional and thermal parameters are given in Table 2, and selected bond-lengths and angles, in Table 3. A table listing the observed and calculated structure-factors has been submitted to the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa. Canada K1A 0S2.

DESCRIPTION OF THE STRUCTURE

The analysis of the structure of jensenite permitted the calculation of bond-valence sums for the various atomic sites. Based on the constants of Brese & O'Keeffe (1991), the sums are: Cu1 atom 1.96, Cu2 atom 2.02, Cu3 atom 1.90, Te atom 5.70, O1 atom 1.73, O2 atom 1.69, O3 atom 1.74, O4 atom 1.86, O5 atom 1.68, O6 atom 1.86, O7 atom 0.56, and O8 atom 0.46 vu (valence units). These calculations allow the assignment of the correct valence to the cations Cu²⁺ and Te⁶⁺ and the recognition of O7 and O8 as H₂O groups. The resultant formula for jensenite is $Cu_{2}^{2+}Te^{6+}O_{6}\cdot 2H_{2}O$ with Z = 4. The low bond-valence sums at the oxygen atom positions is attributed to H-bonding. Each H₂O group is H-bonded to two O atoms at bond distances ranging from 2.54 to 2.78 Å (Table 3). In the structure, there are two $[CuO_6]$ octahedra, one $[TeO_6]$ octahedron and a $[CuO_2(H_2O)_3]$ (subsequently designated $[Cu\phi_5]$) square pyramid. The [Cuo₅] square pyramids link to form isolated edgesharing $[Cu_2\varphi_8]$ dimers (Fig. 1). These dimers are the most common polyhedron for 5-fold coordinated Cu in mineral structures, and several examples are given by Eby & Hawthorne (1993). Mineral structures that contain these dimers are blossite, kinoite, libethenite, olivenite, stoiberite, stranskiite, and ziesite. From Table 3, it can be seen that the $[Cu\phi_n]$ polyhedra are distorted from regular octahedral and regular squarepyramidal coordination. The Jahn-Teller effect on the Cu^{2+} cation is evident in each octahedron; its elongate axes have bond lengths (Cu2-O4: 2.44 Å, Cu2-O5: 2.32 Å. Cu3-O2: 2.36 Å and Cu3-O6: 2.44 Å) which are much longer in comparison to the average (1.992 Å and 2.017 Å) for the other four Cu2-O and Cu3-O bonds. The elongate square pyramid's axis has a Cu1-O bond length of 2.502 Å, whereas the average for the other four is 1.956 Å (predictably shorter than those bonds in the square-equatorial plane of the

FIG. 1. The $[Cu_2O_2(H_2O)]$ dimers in jensenite. The water groups (represented by the largest spheres) are denoted as O7 and O8.

FIG. 2. The $\{10\overline{1}\}$ HCP layer in the jensenite structure. The $[CuO_6]$ octahedra are shown with light shading, and the $[TeO_6]$ octahedra, with dark shading.

FIG. 3. The [101]-axis projection of the jensenite structure showing the HCP layer with $[CuO_6]$ octahedra (light shading), $[TeO_6]$ octahedra (dark shading) and the interlayer $[Cu_2\varphi_8]$ dimers (also light shading). The H₂O groups, as part of the dimers, lie in a plane midway between the layers of octahedra.

octahedra). The Cu–Cu distance within the $[Cu_2\varphi_8]$ dimer (3.28 Å) is not significantly different from Cu–Cu distances between adjacent Cu octahedra (Table 3). The $[TeO_6]$ octahedron is regular, with an average Te–O bond length of 1.936 Å (Table 3).

The crystal structure of jensenite contains a sheet of fully occupied edge-sharing $[CuO_6]$ and $[TeO_6]$ octahedra; the sheet composition is $[Cu_2TeO_6]$ (Fig. 2). The sheets are parallel to the cleavage plane (101), and adjacent sheets are bonded together through $[Cu_2\phi_8]$ dimers (Fig. 3). The $[Cu_2\phi_8]$ dimers contain two H₂O groups, which reinforce the intersheet bonding via H-bonding.

Eby & Hawthorne (1993) classified this type of copper oxysalt structure as an infinite framework M = M - M = M, where the M denotes cations in octahedral or square-pyramidal coordination, the double hyphen denotes edge sharing, and the single hyphen denotes corner sharing.

To date, there are two other cupric tellurate minerals that have been structurally characterized: frankhawthorneite, Cu₂TeO₄(OH)₂ (Grice & Roberts 1995) and parakhinite, Cu₃PbTeO₆(OH)₂ (Burns et al. 1995). Like jensenite, both structures consist of hexagonal closest packed (HCP) layers, but of differing kinds. In jensenite, there is a fully occupied single HCP layer. In frankhawthorneite, the HCP layers have one-half of the octahedrally coordinated sites occupied. Each layer has the unique ribbon with a $[Te\phi_6]$ octahedron alternating with a $[Cu\phi_6]$ doublet of octahedra (Grice & Roberts 1995). The stacking sequence of these layers is ... ABAB... . In parakhinite, the HCP layers are also one-half occupied and have a stacking sequenceABAB, but the individual layers have differing compositions and contain edge-sharing chains similar to those found in rutile (see Fig. 3a, Grice & Roberts 1995). These double layers are cross-linked by $[Pb\phi_{s}]$ polyhedra and H-bonding. The structure of synthetic Cu₃TeO₆ (Falck et al. 1978) has fully occupied HCP layers with a stacking sequence ... AAAA... along [111]. These layers are linked by corner-sharing octahedra. It is of interest to note that the hydrated equivalent of this synthetic phase, jensenite, adopts a different composition of the HCP layer and, in addition, one of the Cu atoms is in square-pyramidal coordination.

ACKNOWLEDGEMENTS

The financial support of a Research Advisory Committee Grant from the Canadian Museum of Nature to JDG is gratefully acknowledged. LAG acknowledges the support of a Natural Sciences and Engineering Research Council of Canada Research Grant. The authors thank Dr. Frank Hawthorne for the use of the single-crystal diffractometer at the Department of Geological Sciences, University of Manitoba, for collection of the first data-set. The authors appreciate the helpful suggestions of the two referees, Drs. Peter Burns and Ray Eby, and of the Editor, Dr. Robert Martin.

REFERENCES

- BRESE, N.E. & O'KEEFFE, M. (1991): Bond-valence parameters for solids. Acta Crystallogr. B47, 192-197.
- BURNS, P.C., COOPER, M.A. & HAWTHORNE, F.C. (1995): Parakhinite, Cu₃²⁺PbTe⁶⁺O₆(OH)₂: crystal structure and revision of chemical formula. *Can. Mineral.* 33, 33-40.
- EBY, R.K. & HAWTHORNE, F.C. (1993): Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr. B49, 28-56.
- FALCK, L., LINDQVIST, O. & MORET, J. (1978): Tricopper(II) tellurate(VI). Acta Crystallogr. B34, 896-897.
- GRICE, J.D. & ROBERTS, A.C. (1995): Frankhawthorneite, a unique HCP framework structure of cupric tellurate. *Can. Mineral.* 33, 649-653.
- HAWTHORNE, F.C. & GRICE, J.D. (1990): Crystal-structure analysis as a chemical analytical method: application to light elements. *Can. Mineral.* 28, 693-702.
- Le PAGE, Y. (1987): Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 20, 264-269.
- MARTY, J., JENSEN, M.C. & ROBERTS, A.C. (1993): Minerals of the Centennial Eureka mine, Tintic district, Eureka, Utah. Rocks and Minerals 68, 406-416.

- NORTH, A.C.T., PHILLIPS, D.C. & MATHEWS, F.S. (1968): A semi-empirical method of absorption correction. Acta Crystallogr. A24, 351-359.
- ROBERTS, A.C., ERCIT, T.S., CRIDDLE, A.J., JONES, G.C., WILLIAMS, R.S., CURETON, F.E., II & JENSEN, M.C. (1994): Mcalpineite, Cu₃TeO₆·H₂O, a new mineral from the McAlpine mine, Tuolumne County, California and from the Centennial Eureka mine, Juab County, Utah. *Mineral. Mag.* 58, 417-424.
-, GRICE, J.D., CRIDDLE, A.J., JENSEN, M.C., HARRIS, D.C. & MOFFATT, E.A. (1995): Frankhawthorneite, Cu₂Te⁶⁺O₄(OH)₂, a new mineral species from the Centennial Eureka mine, Tintic District, Juab County, Utah. *Can. Mineral.* **33**, 641-647.
- GROAT, L.A., CRIDDLE, A.J., GAULT, R.A., ERD, R.C. & MOFFATT, E.A. (1996): Jensenite, Cu₃Te⁶⁺O₆·2H₂O, a new mineral species from the Centennial Eureka mine, Tintic District, Juab County, Utah. Can. Mineral. **34**, 49-54.
- SHELDRICK, G.M. (1990): SHELXTL, a Crystallographic Computing Package (revision 4.1). Siemens Analytical Instruments, Inc., Madison, Wisconsin.
- Received June 15, 1995, revised manuscript accepted September 12, 1995.