SCANDIUM SUBSTITUTION IN COLUMBITE-GROUP MINERALS AND IXIOLITE

MICHAEL A. WISE¹

Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560, U.S.A.

PETR ČERNÝ

Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2

ALEXANDER U. FALSTER

Department of Geology and Geophysics, University of New Orleans, New Orleans, Louisiana 70148, U.S.A.

Abstract

Columbite-group minerals and ixiolite with extremely variable concentrations of scandium are widespread in moderately to highly fractionated rare-element granitic pegmatites. Columbite-group minerals with 1–3 wt.% Sc₂O₃ are referred to as scandian columbite – tantalite and show degrees of structural order similar to columbite – tantalite lacking Sc. Disordered structures remain orthorhombic and become ordered upon heating. Pseudo-orthorhombic stannian (Sn-rich), titanian (Ti) and wolframian (W) variants of ixiolite may contain as much as 3.7 wt.% Sc₂O₃ and revert to monoclinic phases upon heating. Similarly, scandian ixiolite that contains Sc in excess of 3.0 and up to 18.8 wt.% Sc₂O₃ converts from orthorhombic to monoclinic symmetry upon heating and has a stoichiometry that approaches Sc(Nb,Ta)O₄. Scandium-bearing columbite – tantalite and ixiolite show similar ranges in Mn/(Mn + Fe) and Ta/(Ta + Nb) values, but noticeably different Sn, Ti and Sc contents. Scandium is incorporated into the columbite and ixiolite structures *via* the coupled substitution Sc³⁺ + (Ti,Sn)⁴⁺ = (Fe,Mn)²⁺ + (Nb,Ta)⁵⁺; it is strongly partitioned into the (Fe,Mn) site, whereas the Ti and Sn prefer the (Nb,Ta) site. Within the (Fe,Mn) site, titanian ixiolite and wolframian ixiolite is erratic, unlike scandian ixiolite, which shows strong enrichment in Sc with increasing Mn, Ta and Sn.

Keywords: scandium, columbite, tantalite, ixiolite, granitic pegmatite.

SOMMAIRE

Les minéraux du groupe de la columbite et l'ixiolite des pegmatites granitiques à éléments rares dont le degré d'évolution est moyen à avancé font preuve de concentrations extrêmement variables de scandium. Les minéraux du groupe de la columbite ayant de l à 3% (poids) de Sc_2O_3 ont un degré d'ordre semblable à celui de la columbite – tantalite sans Sc. Les structures désordonnées demeurent orthorhombiques et deviennent ordonnées suite au chauffage. Les variantes pseudo-orthorhombiques de l'ixiolite riches en étain, en titane et en tungstène peuvent contenir jusqu'à 3.7% de Sc_2O_3 (poids), et deviennent monocliniques après chauffage. De même, l'ixiolite, dont la teneur en Sc dépasse 3.0% et peut atteindre 18.8% de Sc_2O_3 , passe de la modification orthorhombique à monoclinique suite au chauffage, et possède une stoechiométrie se rapprochant de $Sc(Nb,Ta)O_4$. La columbite – tantalite et l'ixiolite contenant le Sc montrent des intervalles de valeurs de Mn/(Mn + Fe) et de Ta/(Ta + Nb) semblables, mais leurs teneurs en Sn, Ti et Sc diffèrent beaucoup. Le scandium serait accommodé dans la structure de la columbite et celle de l'ixiolite selon la substitution couplée $Sc^{3+} + (Ti,Sn)^{4+} = (Fe,Mn)^{2+} + (Nb,Ta)^{5+}$; le Sc favorise le site (Fe,Mn), tandis que le Ti et le Sn préfèrent le site (Nb,Ta). Dans le site (Fe,Mn), le remplacement du Fe par le Sc est plus important. Dans la plupart des pegmatites, le degré d'enrichissement du Sc dans la columbite – tantalite et dans l'ixiolite stannifère, titanifère ou tungstènifère est aléatoire, en comparaison de l'ixiolite, qui fait preuve d'un fort enrichissement en Sc à mesure qu'augmente la teneur en Mn, Ta et Sn.

(Traduit par la Rédaction)

Mots-clés: scandium, columbite, tantalite, ixiolite, pegmatite granitique.

¹ E-mail address: wise.michael@nmnh.si.edu

INTRODUCTION

Scandium is one of several lithophile elements that may be a minor constituent in Nb, Ta oxide minerals from rare-element granitic pegmatites. The presence of trace amounts of Sc in columbite-group minerals and ixiolite from a number of localities has been well documented (cf. Borisenko 1963, Hodkinson & Clark 1977, von Knorring & Fadipe 1981, Černý & Němec 1995). However, it is only in Sc-rich provinces, such as those found near Tørdal (Norway), Antsirabe (Madagascar), Muiane (Mozambique) and the Imen Mountains, in the central Urals (Russia), that significant Sc enrichment, up to several percent, may occur in Nb,Ta oxide minerals. In such instances, these minerals may also be accompanied by other Sc-rich minerals such as thortveitite and bazzite. The Sc content of most columbite - tantalite and ixiolite is typically very low, in most cases ranging from near the detection limits to just less than 1 wt.% Sc₂O₃ (cf. Neumann 1961, Borisenko 1963, Haapala et al. 1967). However, ixiolite with a Sc content in excess of 5.0 wt.% Sc₂O₃ has been reported from Mozambique, Madagascar and Norway (Borisenko et al. 1969, von Knorring et al. 1969, Bergstøl & Juve 1988).

Detailed studies describing the occurrence of Sc in Nb, Ta oxide minerals are few, and the available data are too limited to draw reliable conclusions regarding the behavior of Sc in columbite – tantalite and ixiolite. Our understanding of the mechanism of incorporation and fractionation of Sc in columbite – tantalite and ixiolite has been greatly hindered, largely by the generally low concentrations of Sc occurring in these minerals. Perhaps equally significant is the failure to acquire data on Sc during routine analysis of Nb–Ta oxide minerals. As a result of our ongoing crystal-chemical and geochemical studies on Nb,Ta oxide minerals from granitic pegmatites, a brief discussion of the behavior of Sc in columbite – tantalite and ixiolite is presented in this paper.

EXPERIMENTAL METHODS

Samples of columbite-group minerals and ixiolite used in this study were selected to cover a broad compositional range. Given the extremely rare occurrence of Sc-enriched phases and the ubiquitous association of Sc and Ti, it was not possible to select only those samples with high levels of Sc and low levels of Ti and Sn. The bulk of the data is extracted from the unpublished dataset of M. Wise and is augmented by selected data from the literature. The sources of data from the literature and a list of samples used in this study are provided in Table 1.

Columbite – tantalite and ixiolite were analyzed by means of an ARL–SEMQ electron microprobe under conditions as described in Wise & Černý (1996). Atomic contents were calculated on the basis of 24 atoms of oxygen per formula unit for direct comparison of the columbite and ixiolite unit-cells. Results that showed cation sums in excess of the structurally available sites were adjusted by converting Fe^{2+} to Fe^{3+} as required to eliminate the cation surplus (*cf.* Ercit *et al.* 1992).

TABLE 1. LOCALITIES OF Sc-BEARING COLUMBITE AND IXIOLITE

Sample	Location	Source/Reference	Mineral
Phillips	Phillips, Maine	research coll. MW	Ct
AT .	Phillips, Maine	research coll. MW	Ct
BMT	Black Mountain, Maine	research coll. MW	Ct
Pingree	Pingree, Maine	research coll. MW	Ct
Lord Hill	Lord Hill, Maine	research coll. MW	Ct
Emmons	Emmons, Maine	research coll. MW	Ct
BB#7	BB#7, Maine	research coll. MW	Ct
Hayes	Hayes, Maine	research coll. MW	Ct
Waisanen	Waisanen, Maine	research coll. MW	Ct
Songo Pond	Songo Pond, Maine	research coll. MW	Ct
DN6 #32	Kosov, Czech Republic	research coll. PC	Ct
TA-SL-62	Slocum quarty, Connecticut	research coll. PC	Ct
Animikie	Animikie Red Ace, Wisconsin	research coll. Alf	Ci
Luster	Luster, Colorado	research coll. Al	Ci Ci
Ercit-I	Blue Star, Ontario	Ercit (1994)	Ci
Ercit-3	Davis Mica, Ontano	Ercit (1994)	Ci Ci
Ercit-4	Hybla, Ontairo	Ercit (1994)	
Ercit-5	Quadeville Beryl, Ontano	Ercit (1994)	Ci Ci
Ercit-6	Quadeville Rose Qiz, Ontano	Ercit (1994)	Ci
	Kyan-Sheenan, Omano	Ercit (1994)	
Ercit-8	woodcox, Ontano	Efet (1994)	Ci
TA-SL-63,			
-65, -66	Slocum quarry, Connecticut	research coll. PC	TIX
TA-SL-68d	Simpson quarry, Connecticut	research coll. PC	
MM5-2 to -5	Maršikov, Czech Republic	research coll. PC	
DN4 #21, -23	Bradlo, Czech Republic	research coll. PC	
MSX-65	Muskox Lake, NWT	research coll. PC	
KVV-/8, -/9	Vezna II, Czech Republic	research coll. PC	
TRT-5 to -7	Tanco, Manitoba	HESELFCH COIL PC	TTV
NN-30	Locality unknown	USINIM 174077	TIX
NUR-57	Norway	USININ 107397	TIX
	Cinques Crech Pepublic	Johan & Johan (1994)	TTY
GL-74 to -77	Greer Lake Manitoha	Cerni et al (1986)	TIX
III. 96 . 97	Bradlo Czech Benublic	Černý & Němec (1995)	TTY
JIN-00, -0/	Lange Tanco Manitoha	Egration (1984)	TIX
PR-95 to -98	Presive-Dribrana Czech Ren	Iher et al (1998)	TIX
Knorring-2	Antsirabe, Madagascar	von Knorring et al. (1969)	TIX
More	Amelia Viccinia	research coll MW	SNTX
Dolni Bory	Dolni Bory, Czech Republic	research coll. PC	WIX
Cyrilov	Cyrilov, Czech Republic	research coll. PC	WIX
Carrock	Carrock Fell, England	Beadoe-Stephens &	WTY
		Fortey (1981)	WIX
Cornwall	Cornwall, England	Hockinson & Clark (19//)	WIX
Cinovec	Cinovec, Czech Republic	Jonan & Jonan (1994)	WIX
Heftetjern6	Heftetjern, Norway	research coll. MW	SCIX
Beta button	Betanimena, Madagascar	research coll. MW	SCIX
Beta beryl	Betanimena, Madagascar	research coll. MW	SCIX
C1634	Muiana, Mozambique	research coll. MW	SCIX
C1762	Naquissupa, Mozambique	research coll. MW	SCIX
Muiane			
Rosette	Muiane, Mozambique	research coll MW	SCIX
Fisher-1	Fisher, Maine	research coll. MW	SCIX
DN6 #30	Kosov, Czech Republic	research coll. PC	SCIX
Knorring-1	Naquissupa, Mozambique	von Knorring et al. (1969)	SCIX
Knoming-3	Betanimena, Madagascar	von Knoming et al. (1969)	SCIX

Symbols: Ct: columbite, TIX: titanian ixiolite, SNIX: stannian ixiolite, WIX: wolframian ixiolite, SCIX: scandian ixiolite.

CHEMICAL COMPOSITION

TABLE 2 REPRESENTATIVE COMPOSITIONS OF SC-BEARING COLUMBITE – TANTALITE AND DOLLITE

Back-scattered electron images of Sc-bearing columbite – tantalite and ixiolite show various degrees of patchy to oscillatory zoning. Crystals of columbite – tantalite and ixiolite that are zoned with respect to variations in Mn/(Mn + Fe) and Ta/(Ta + Nb) do not show zoning in terms of Sc. In all specimens examined, the distribution of Sc appears to be homogeneous throughout the crystal.

The composition of all the analyzed samples and selected data from the literature are plotted in the columbite quadrilateral and the $(Sc) - (Fe, Mn)^{2+} - (Nb, Ta)^{5+}$ diagram (Fig. 1). Representative compositions of Sc-bearing columbite – tantalite and ixiolite are given in Tables 2 and 3, respectively. On the whole, columbite-group minerals contain significantly lower levels of Sc than scandian ixiolite.

FIG. 1. Plot of Sc-bearing columbite and ixiolite in (A) columbite quadrilateral and (B) the Sc – (Fe,Mn) – (Nb,Ta) diagram. Open circles: scandian columbite, diamonds: scandian ixiolite, squares: stannian ixiolite, triangles: titanian ixiolite, dots: wolframian ixiolite. Black field in B represents data for columbite and stannian and titanian ixiolites.

	BMT Ct	Lord Hill Ct	Luster Ct	AMB-59 TTX	TRT-5 TTX	More-L1 SNIX	JOH-1 ⁺ WIX
FeO wt%	3 49	9.25	13 59	11 54	3 40	6 64	15 74
	0.00	0.00	0.00	0.00	0.20	0.00	0.08
MnO	15 57	8 54	3 24	7 16	7 90	6 52	3 40
Nb ₂ O.	64.58	66 84	55.45	69.64	13.50	15.01	47.86
Ta ₂ O.	14.05	6.89	20.09	5.13	55.10	54.29	10,78
TiO,	0.04	2.01	4.49	5.57	15.80	3.84	1.81
SnO,	0.06	0.37	0.00	0.00	3.60	11.68	0.23
Sc ₂ O ₁	0.41	0.78	2.27	1.52	1.00	0.17	0.66
Fe ₂ O ₁	1.10	3.34	0.00	0.00	0.00	0.00	2.91
MgO	0.00	0.07	0.00	0.00	0.00	0.00	0.00
wō,	0.73	2.15	0.00	0.00	0.00	1.57	16.82
ZrO2	0 00	0 00	0.00	0.00	0.00	0.51	0.00
Total	100.03	100.33	99.13	100.56	100.50	100.25	100.47*
Fe ²⁺	0.692	1.774	2.724	2.139	0.755	1.625	3.228
Ca ²⁺	0.000	0.012	0 0 0 0	0.000	0.000	0.000	0.020
Mn ²⁺	3.131	1.651	0.665	1.344	1.776	1.617	0.708
Nb ⁹⁺	6.931	6.896	6.007	6.979	1.620	1.986	5.308
Ta ^{\$}	0.907	0.428	1.309	0.309	3.978	4.321	0.720
Tï⁴⁺	0.007	0 345	0.809	0.928	3.154	0.846	0.332
Sn⁴*	0.006	0 034	0.000	0 000	0.381	1.363	0.024
Sc³⁺	0.085	0 155	0.473	0 294	0.231	0.043	0.140
Fe³⁺	0.197	0.574	0.000	0.000	0.000	0.000	0.536
Mg ²⁺	0.000	0.022	0,000	0.000	0.000	0.000	0.000
₩	0.045	0.127	0.000	0.000	0.000	0.119	1.068
Zr ⁴⁺	0 000	0 000	0.000	0.000	0.000	0.073	0.000
Total	12.000	12.018	11. 98 0	11.993	11.952	11.996	12.0 8 4

Symbols: Ct: columbite, TTX: tranian ixiolite, SNIX: stannian ixiolite, WIX: wolframian ixiolite * Joban & Joban (1994). * total includes 0.03% ThO₂, 0.15% Y₂O₃.

Columbite-group minerals

Columbite – tantalite with low levels of Sc show bulk compositions that cover the full range of Mn/(Mn + Fe) and Ta/(Ta + Nb) values (Fig. 1). Scandium contents fall within the range of 0 to ~3.0 wt.% Sc₂O₃, but less than 1.0 wt.% in most cases. Subordinate Fe³⁺, Sn, Ti, and W also vary greatly, with maximum concentrations of 4.4 wt.% Fe₂O₃, 2.0 wt.% SnO₂, 3.6 wt.% TiO₂ and 3.2 wt.% WO₃ occurring in addition to Sc. In the (Sc) – (Fe,Mn)²⁺ – (Nb,Ta)⁵⁺ diagram, most of the columbite data plot near the composition represented by (Fe,Mn)(Nb,Ta)₂O₆ stoichiometry (Fig. 1).

Titanian, stannian and wolframian ixiolite

Ixiolite with up to 3% Sc₂O₃ typically shows variable Mn/(Mn + Fe) and Ta/(Ta + Nb) values. The range of Mn/(Mn + Fe) and Ta/(Ta + Nb) values is slightly less than in the case of Sc-bearing columbite. Titanian ixiolite with Ti > Sn generally contains low to moderate concentrations of Sc (0 - 2.8 wt.% Sc₂O₃). Mn/(Mn + Fe) and Ta/(Ta + Nb) values are highly variable, ranging from 0.10 to 0.82 and from 0.05 to 0.76, respectively. Representative stannian ixiolite (Sn > Ti), by comparison, typically shows high, yet more

TABLE 3. REPRESENTATIVE COMPOSITIONS OF SCANDIAN IXIOLITE

	BBe	FIS	BBu	C1634	C1762	ROS	HEF	HEF
wo,	0.99	0.00	1.51	2.17	2.12	4.20	0.12	0.20
Nb ₂ O.	39.67	58 82	23 78	24.55	28,45	26,69	16.78	17.58
Ta,O,	26.18	13.26	41.81	35,90	37,18	37.52	52.80	51.57
ZrO,	1.16	0 00	2 37	2.09	2.13	0.69	2.25	1.71
TiO,	5.99	6.79	6.38	7.56	4.72	3 32	0.34	0.41
SnO ₂	2.76	0.02	2.30	5,57	5.94	5 24	7.27	7.66
Sc ₂ O ₃	4.81	5,36	5.75	6.81	7.83	11.09	13.56	15.17
Fe ₂ O ₃	9.72	0.00	7.87	7.50	5 39	2 90	0.00	1.65
FeO	6.65	11.71	5.61	4.57	6.42	5.63	3.22	1.65
MnO	1.74	2 92	1.53	1.63	1.45	1.88	2.74	2.87
CaO	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.13	0.17	0.10	0.14	0.08	0.00	0.00	0.00
Total	99.79	99 .08	99 .01	98.49	101.71	99.16	99.0 8	100.47
₩ ⁶⁺	0.061	0 000	0.101	0.143	0.137	0.281	0.009	0.014
Nb ⁵⁺	4.295	6.065	2.782	2.820	3.214	3.119	2.112	2.144
Ta⁵⁺	1.705	0.822	2.942	2.480	2,527	2.637	3.998	3.782
Zr⁴⁺	0 135	0.000	0.299	0.259	0.260	0.087	0.305	0.225
Ti⁴⁺	1.079	1.164	1.241	1.444	0.887	0.645	0.071	0.083
Sn⁴⁺	0.264	0.002	0.237	0.564	0.592	0.540	0 807	0.824
Sc³*	1.004	1.065	1.296	1.508	1.705	2.498	3.290	3.565
Fe ³⁺	1.751	0 0 0 0	1.533	1.434	1.014	0.565	0.000	0.335
Fe ^{2*}	1.331	2.232	1.213	0.971	0.307	1.217	0.750	0.371
Mn ²⁺	0.353	0.564	0.335	0.351	1.341	0.412	0.646	0.656
Ca ²⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg²⁺	0.046	0.058	0.039	0.053	0.030	0.000	0.000	0.000
Total	12.023	11.972	12.019	12.026	12.014	12.000	11.988	11.999

Compositions quoted in wt.% oxides. Localities: BBe: Beta Beryl, FIS: Fisher, BBu:Beta Button, ROS: Rosette, HEF: Heftetjern.

restricted ranges of Mn/(Mn + Fe) [0.49–0.74] and Ta/(Ta + Nb) [0.67–0.78]. Scandium concentrations are generally less than 1.0 wt.% Sc₂O₃, but can attain 4.0 wt.% Sc₂O₃ in rare instances. Rare W-rich "wolframo-ixiolite", usually with subordinate Ti, may contain up to 3.65 % Sc₂O₃ (Novák & Šrein 1989). The Mn/(Mn + Fe) values are highly variable [0.11 < Mn/(Mn + Fe) < 0.72] whereas Ta/(Ta + Nb) values are extremely limited [0.02 < Ta/(Ta + Nb) < 0.15].

Scandian ixiolite

The Sc values of scandian ixiolite are typically in excess of 4.0 wt.%, with the highest values reaching ~19 wt.% Sc₂O₃. Scandian ixiolite typically contains significantly higher Sn (up to 9 wt.% SnO₂) and Ti contents (up to 10 wt.% TiO₂) than Sc-bearing columbite-group minerals. With few exceptions, Ti and Sn concentrations of scandian ixiolite are generally lower than those of stannian or titanian ixiolite. The Mn/(Mn + Fe) of scandian ixiolite is highly variable, but the Ta/(Ta + Nb) ratios are more limited, ranging primarily from ~0.35 to ~0.70. In terms of the $(Sc) - (Fe,Mn)^{2+} - (Nb,Ta)^{5+}$ diagram, scandian ixiolite generally plots between the $(Fe,Mn)(Nb,Ta)_2O_6$ – $Sc(Nb,Ta)O_4$ and $(Fe,Mn)(Nb,Ta)O_4 - Sc(Nb,Ta)O_4$ joins (Fig. 1) suggesting that Fe³⁺ is an important component of the scandian ixiolite composition.

STRUCTURAL STATE

Columbite-group minerals and ixiolite commonly show large variations in structural states (*i.e.*, degree of order), which can be evaluated qualitatively from a plot of *c versus a* cell edges (Černý & Turnock, 1971, Wise *et al.* 1985). Enrichment of Ti and Sn in the Nb- and Ta-bearing oxide minerals may affect the structural state (*cf.* Černý *et al.* 1986), but the role of Sc on the structural state of columbite-group minerals and ixiolite has yet to be determined. Assessing the effect of Sc on the structural state is complicated by the fact that most samples of Sc-bearing columbite and ixiolite also contain appreciable Ti and Sn.

The structural state of natural Sc-bearing columbite - tantalite is similar to that of Sc-free columbite tantalite. Partially to fully ordered orthorhombic structures were noted, with no correlation existing between Sc content and degree of order. Titanian and stannian ixiolite also is orthorhombic, but these variants are highly disordered in their natural state. After heating, their structures revert to an ordered (monoclinic) wodginite cell (Wise & Černý 1986). "Wolframoixiolite" is monoclinic in its natural state with a unit cell that is similar to that of wolframite, but forms a mixture of ordered columbite - tantalite and UTa2O8type phase upon heating (Ginsburg et al. 1969). The structure of natural, unheated scandian ixiolite has been described as orthorhombic (von Knorring et al. 1969, Bergstøl & Juve 1988). However, a recent refinement of the structure of scandian ixiolite from the Heftetjern locality indicates that the structure is highly disordered and pseudo-orthorhombic, with a slight departure toward monoclinic symmetry (unpubl. data of MW). The monoclinic symmetry of the structure, which is apparently related to that of wolframite, becomes more obvious after heating.

CRYSTAL CHEMISTRY

The pattern of substitution of the major components (Fe^{2+} , Mn, Nb, Ta) and the incorporation of minor elements (Fe^{3+} , Ti and Sn) in the cation sites of the columbite structure have been well established. However, the amount of Sc normally found in columbite – tantalite is usually so small that its structural role cannot be easily identified; thus the mechanism of incorporation by which Sc enters the columbite structure has been less clearly defined.

The ionic radius (0.75 Å) and charge (3+) of 6-coordinated Sc are intermediate to that of Fe, Mn, Nb and Ta, and so it is expected that Sc will reside in both the A and B sites of the columbite structure. However, the charge and ionic radius of Sc are closer to Fe (and, to a lesser degree, Mn) than to Nb or Ta. The mean Sc-O distance for 6-coordinated Sc in Sc₂O₃ is ~2.10 Å (cf. Geller et al. 1967), which is very similar to the mean A-O distance of 2.14 Å found in the columbite

structure. The *B* site (mean *B*–O distance ~2.02 Å), on the other hand, is significantly smaller than the *A* site and therefore probably less favorable for the enery of Sc into the ordered structure of columbite. Highly disordered structural states (*i.e.*, ixiolite structure), by comparison, tend to favor the introduction of high Sc contents.

TABLE 4. SCHEMES OF SUBSTITUTION FOR THE ENTRY OF Sc IN COLUMBITE AND IXIOLITE

1. $Sc^{3*}_{*,2}$ (Fe,Mn)^{2*}₋₁ (Ti,Sn)^{4*}₋₁ 3. $Sc^{3*}_{*,4}$ (Fe,Mn)^{2*}₋₂ (Nb,Ta)^{5*}₋₁ 5. $Sc^{3*}_{*,4}$ (Fe,Mn)^{2*}₋₃ W^{4*}₋₁ 5. $Sc^{3*}_{*,1}$ (Ti,Sn)^{4*}₊₁ (Fe,Mn)^{2*}₋₁(Nb,Ta)^{5*}₋₁

The substitution of trivalent Sc into the columbite structure requires a charge-distribution mechanism in order to maintain electrostatic balance. Table 4 lists a variety of possible coupled substitutions that may be responsible for the entry of Sc into the columbite structure. In all of the samples considered, W was found invariably to be extremely low, and thus was probably not a significant factor in the incorporation of Sc into the columbite structure. Therefore, substitution schemes (3) and (5) are probably of minor importance, if any. Substitution scheme (2) is similar to that proposed for Fe³⁺, and involves no other cations except the major components (Fe, Mn) and (Nb, Ta). However, in columbite - tantalite with appreciable Sc, the number of atoms per formula unit of Ti or Sn (or both) is always greater than that of Sc, thus suggesting that R^{4+} cations may play a significant role in the entry of Sc into the columbite structure. Plots of Sc versus R²⁺ + R^{4+} as well as Sc versus $R^{2+} + R^{5+}$ failed to show any

FIG. 2. Relationship between $\Sigma R^{3+}R^{4+}$ and $\Sigma R^{2+}R^{5+}$ cations (atoms *pfu*). Symbols as in Figure 1.

FIG. 3. Variation diagrams. (A) Nb versus Ta; (B) Fe versus Mn (atoms pfu). Symbols as in Figure 1. Upper and lower boundaries represent trends of ideal AB₂O₆ and ABO₄ stoichiometries, respectively.

strong correlation, thereby eliminating substitution schemes (1) an (2) as likely possibilities. The remaining scheme of substitution (4) invokes a coupled entrance of Sc and R^{4+} cations with R^{2+} and R^{5+} cations. This *euxenite-type* substitution has been suggested by Beddoe-Stephens & Fortey (1981) and Novák & Čech (1996) as the primary mechanism by which Sc may enter the columbite structure. In most of the samples examined, the calculated level of Fe³⁺ was proved to be of significant importance and therefore cannot be ignored when considering the overall mechanism of substitution. Figure 2 shows a strong negative correlation between $\Sigma R^{3+}R^{4+}$ and $\Sigma R^{2+}R^{5+}$, in support of the *euxenite-type* scheme of substitution.

Figure 3 shows cation--cation plots summarizing the homovalent mechanisms of substitution mechanisms observed in Sc-bearing columbite and ixiolite. Figure 3a shows the nature of Ta-for-Nb substitution in Sc-bearing columbite-group minerals and ixiolite. The majority of the data fall between two parallel boundaries drawn to represent the ideal AB_2O_6 and ABO_4 stoichiometries. The data for columbite plot on or close to the upper boundary, whereas the data points for ixiolite with Sc contents less than 4.0 wt.% plot between the two boundaries, and those for scandian ixiolite lie along the lower boundary representing ABO₄ stoichiometry. For Sc-bearing columbite, the correlation between Nb and Ta is reasonably strong. However, many of the data points fall off the main trend, indicating that constituents other than Nb or Ta substitute at the B site. Similar behavior is observed for stannian and titanian variants of ixiolite. The few data points representing wolframian ixiolite do not follow any particular trend and require further study. Scandian ixiolite, by comparison, shows a very strong linear correlation with a slope of -1, indicating that Ta-for-Nb substitution is dominant; unlike the columbite-group minerals, no other substitution involving other elements is involved at the B site. In addition, the trend of the scandian ixiolite data along the ABO₄ boundary strongly implies a structure type other than columbite for scandian ixiolite.

Mn-for-Fe substitution results in similar trends for columbite and low-Sc ixiolite (Fig. 3b) Significant replacement of the principal constituents by Sc³⁺, Fe³⁺, Ti⁴⁺ and Sn⁴⁺ is responsible for the deviation from AB_2O_6 stoichiometry observed in columbite – tantalite. Although the correlation between Mn and Fe²⁺ is reasonably strong but based on limited data for scandian ixiolite, the majority of the data points plot well below the AB_2O_6 boundary, again implying a difference in structure type between columbite and scandian ixiolite.

The composition of stannian and titanian ixiolite generally approaches the stoichiometry of wodginite and ideal titanowodginite, ABC_2O_8 . Many of the analyzed samples can be expressed with Sc occupying the *B* site along with Ta and tetravalent Sn and Ti. As is the nature of ixiolite, Sc may be disordered over all three sites; however, this is merely speculation at this time, and the matter requires a more in-depth study.

At Sc concentrations in excess of 8 wt.% Sc₂O₃, Sc greatly exceeds (Fe,Mn), and it becomes the dominant cation occupying the A site. The result is a change in stoichiometry from AB_2O_6 to ABO_4 , with a subsequent structural change from orthorhombic to monoclinic symmetry. Few natural occurrences of ABO_4 -type niobates or tantalates are known, none of which crystallize with the orthorhombic structure of columbite (Table 5). Synthetic ScNbO₄ and ScTaO₄ have been reported to have a monoclinic wolframite-type structure, and scandian ixiolite containing in excess of 8 wt.% Sc₂O₃ has a stoichiometry approaching Sc(Nb,Ta)O₄, with a structure related to wolframite (MW, in prep.).

TABLE 5. STRUCTURAL COMPARISON OF NATURALLY OCCURRING $ABO_4\mbox{-}{\rm TYPE}$ NIOBATES AND TANTALATES

Mineral	Formula	Radius*	Crystal system	Structure type
Alumotantite	AlTaO,	0.54	Orthorhombic	Alumotantite
Stibiocolumbite	SbNbO.	0.76	Orthorhombic	Stibiocolumbite
Stibiotantalite	SbTaO.	0.76	Orthorhombic	Stibiocolumbite
Fergusonite	YNbO.	0.90	Tetragonal	Fergusonite
Formanite	YTaO.	0.90	Tetragonal	Fergusonite
Bismutocolumbite	BiNbO.	1.03	Orthorhombic	Stibiocolumbite
Bismutotantalite	BiTaO ₄	1.03	Orthorhombic	Stibiocolumbite

* Radius of A-site cation, in Å.

SC FRACTIONATION

The nature of Sc fractionation during the evolution of pegmatite-forming melts is not easily resolved. During crystallization of a granitic pegmatite, Sc is generally dispersed in garnet, micas, various oxides and rare-earth-element (*REE*) minerals. The principal carriers of Sc in granitic pegmatites are thortveitite, euxenite, samarskite, fergusonite, xenotime, gadolinite, zircon, columbite and cassiterite. Such Sc-enriched minerals usually do not occur in the earliest stages of pegmatite crystallization. Thortveitite, for example, occurs in the intermediate zone, whereas Sc-bearing *REE* minerals are generally formed during late-stage albitization (Borisenko 1963).

The elevated Sc content of pegmatite-forming melts has been attributed to two possible mechanisms: 1) accumulation of Sc resulting from the contamination by mafic country-rocks by the pegmatite-forming melt, and 2) destabilization of Sc complexes that are thermally stable in the parental granitic melt, with Sc incorporated in precipitating phases in lower-temperature pegmatite-forming melts. Neumann (1961), Ercit (1986) and Bergstøl & Juve (1988) cited examples where the reaction of a pegmatite-forming melt with mafic country-rocks is considered to be responsible for the presence of thortveitite, Sc-bearing columbite or scandian ixiolite in pegmatites. However, the enrichment of Sc in pegmatites hosted by granite (e.g., Kobe, Japan: Sakurai et al. 1962) or tonalitic to granitic gneisses (e.g., Greer Lake, Manitoba: Černý et al. 1986) suggests that the accumulation of Sc in the residual melt without assimilation of mafic country-rocks is equally viable.

Within the columbite-group minerals, the behavior of Sc during the fractionation of pegmatites is highly erratic. Ercit (1994) observed that Sc contents generally increase with increasing Ta/(Ta + Nb), but show a negative correlation with Mn/(Mn + Fe) for some poorly fractionated pegmatites within the southwestern Grenville province of the Canadian Shield. However, some of the columbite samples also show increasing Sc with Mn enrichment, but no enrichment in Ta. In the Tanco (Manitoba) pegmatite, the concentration of Sc decreases nonlinearly in columbite, from the outer

FIG. 4. Correlation of amounts of Sc with relative enrichment in (A) Mn, (B) Ta and (C) Sn. Symbols as in Figure 1.

zones toward the central units (Ercit 1986). Columbite from the spodumene-bearing Black Mountain (Maine) pegmatite shows similar fractionation of Sc (unpubl. data of C. Brown); a decrease in Sc correlates with increasing Mn and Ta enrichment. On the other hand, columbite from the Animikie Red Ace pegmatite, in Wisconsin, which is unusual in that the highest Mn/Fe and Ta/Nb values occur in the wall zone and decrease toward the interior zones, show decreasing levels of Sc from the margins to the core. Regional fractionation trends of Sc are similarly enigmatic. A decrease in Sc with increasing fractionation has been observed in the Sebago group of granitic pegmatites in southwestern Maine (unpubl. data of M. Wise). The average Sc contents range from $0.22 \text{ wt.\% Sc}_2O_3$ in columbite from the most moderately fractionated beryl – columbite subtype pegmatites to 0.04 in complex spodumene- and petalite-bearing pegmatites. However, the Greer Lake leucogranite and related pegmatites, in southeastern Manitoba, exhibit an increase in Sc in columbite – tantalite (and associated ixiolite) with progressive fractionation (Černý *et al.* 1986). Our data for columbite – tantalite and ixiolite show no general relationship between Sc and degree of fractionation in the pegmatite (Fig. 4).

On the basis of the samples of scandian ixiolite examined thus far, Sc behaves in a fairly regular manner during pegmatite fractionation. Figure 4 shows that, on the whole, the Sc content of scandian ixiolite increases with increasing Mn, Ta and Sn enrichment. Scandian ixiolite with Ti > Sn from Maine, Madagascar and Mozambique is characterized by low to moderate Mn and Ta enrichment [0.10 < Mn/(Mn + Fe) < 0.26;0.12 < Ta/(Ta + Nb) < 0.56]. By comparison, scandian ixiolite with Sn > Ti, as represented by the Heftetjern locality, in Norway, shows a more advanced level of fractionation [0.40 < Mn/(Mn + Fe) < 0.58], 0.60 < Ta/(Ta + Nb) < 0.75].

CONCLUSIONS

Scandian columbite is an orthorhombic phase with stoichiometry AB_2O_6 , containing up to 3 wt.% Sc₂O₃. Scandian ixiolite, by comparison, contains between 4 and 19 wt.% Sc₂O₃, and its formula approaches ideal Sc(Nb,Ta)O₄. The structure of scandian ixiolite is probably a modification of the monoclinic wolframite-type structure.

Scandium enters the columbite structure via a coupled substitution. For Sc-bearing columbite and ixiolite, a euxenite-like substitution $(Sc^{3+} R^{4+} R^{2+}_{-1} R^{5+}_{-1})$ seems to be responsible for the incorporation of Sc. Scandium is disordered over the A and B sites of the columbite structure. Fe³⁺ plays a significant role in the entry of Sc into the columbite and ixiolite structures, particularly in the case of scandian ixiolite, which almost always contains abundant Fe³⁺.

The fractionation trend of Sc is not clearly defined for single crystals of columbite or ixiolite, within individual pegmatites or within granite – pegmatite systems. The behavior of Sc in columbite and stannian, titanian and wolframian ixiolite is erratic and warrants further study. In scandian ixiolite, the concentration of Sc increases with increasing enrichment of Mn,Ta and Sn, whereas for columbite – tantalite and other varieties of ixiolite, the concentration of Sc is relatively constant regardless of the extent of pegmatite fractionation.

ACKNOWLEDGEMENTS

This research was supported in part by NSERC operating grants to P. Černý and Sprague funding through the Smithsonian Institution to M. Wise. The paper has benefitted greatly from the critical reviews of S.L. Hanson and W.B. Simmons, Jr.

REFERENCES

- BEDDOE-STEPHENS, B. & FORTEY, N.J. (1981): Columbite from the Carrock Fell tungsten deposit. *Mineral. Mag.* 44, 217-223.
- BERGSTØL, S. & JUVE, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in Tørdal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin. *Mineral. Petrol.* 38, 229-243.
- BORISENKO, L.F. (1963): Scandium, its Geochemistry and Mineralogy. Russian Consultants Bureau, New York, N.Y.
 - MAKSIMOVA, N.V. & KAZAKOVA, M.YE. (1969): Scandium ixiolite, a new tantalo-niobate species with formula (A,B)_nO_{2n}. *Dokl. Akad. Nauk SSSR* **189**, 148-151 (in Russ.).
- ČERNÝ, P., GOAD, B.E., HAWTHORNE, F.C. & CHAPMAN, R. (1986): Fractionation trends of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am. Mineral. 71, 501-517.
 - <u>& NĚMEC</u>, D. (1995): Pristine vs. contaminated trends in Nb, Ta-oxide minerals of the Jihlava pegmatite district, Czech Republic. *Mineral. Petrol.* 55, 117-129.
 - <u>& TURNOCK</u>, A. (1971): Niobium tantalum minerals from granitic pegmatites at Greer Lake, southeastern Manitoba. *Can. Mineral.* **10**, 755-772.
- ERCIT, T.S. (1986): The Simpsonite Paragenesis: The Crystal Chemistry and Geochemistry of Extreme Ta Fractionation. Ph.D. thesis, Univ. Manitoba, Winnipeg, Manitoba.

_____(1994): The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville province, Canadian Shield. *Can. Mineral.* **32**, 421-438.

, ČERNÝ, P., HAWTHORNE, F.C. & McGAMMON, C.A. (1992): The wodginite group. П. Crystal chemistry. *Can. Mineral.* **30**, 613-631.

- FERREIRA, K.J. (1984): The Mineralogy and Geochemistry of the Lower Tanco Pegmatite, Bernic Lake, Manitoba, Canada. M.Sc. thesis, Univ. of Manitoba, Winnipeg, Manitoba.
- GELLER, S., ROMO, P. & REMEIKA, J.P. (1967): Refinement of the structure of scandium sesquioxide. Z. Kristallogr. 124, 136-142.

- GINSBURG, A.I., GORZHEVSKAYA, S.A., SIDORENKO, G.A. & UKHINA, T.A. (1969): Wolframoixiolite a variety of ixiolite. *Zap. Vses. Mineral. Obshchest.* **98**(1) 63-73 (in Russ.).
- HAAPALA, I., SIIVOLA, J. & LÖFGREN, A. (1967): On the Haapaluoma Sc-bearing columbite and its inclusions. C.R. Soc. géol. Finlande 39, 95-100.
- HODKINSON, I.P. & CLARK, A.M. (1977): Columbite from St. Austell, Cornwall. *Mineral. Mag.* **41**, 131-132.
- JOHAN, V. & JOHAN, Z. (1994): Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic. 1. Nb-, Ta- and Ti-bearing oxides. *Mineral. Petrol.* 51, 323-343.
- VON KNORRING, O.V. & FADIPE, A. (1981): On the mineralogy and geochemistry of niobium and tantalum in some granite pegmatites and alkali granites of Africa. *Bull. Minéral.* 104, 496-507.
- , SAHAMA, T.G. & LEHTINEN, M. (1969): Scandian ixiolite from Mozambique and Madagascar. Bull. Geol. Soc. Finland **41**, 75-77.
- NEUMANN, H. (1961): The scandium content of some Norwegian minerals and the formation of thortveitite, a reconnaissance survey. Norsk Geol. Tidsskr. 41, 197-210.
- NOVÁK, M. & ČECH, F. (1996): Scandian columbite and niobian rutile from pegmatites penetrating the Trebíc durbachite massif, western Moravia, Czech Republic. Acta Mus. Moraviae, Sci. nat. 80, 3-8.
- & ŠREIN, V. (1989): Chemical composition and paragenesis of wolframite from the Dolní Bory pegmatites, western Moravia, Czechoslovakia. *Acta Univ. Carolinae* 4, 495-500.
- SAKURAI, K., NAGASHIMA, K. & KATO, A. (1962): Thortveitite from Kobe, Omiya, Kyoto, Japan. *Chem. Soc. Japan Bull.* 35, 1776-1779.
- UHER, P., ČERNÝ, P., CHAPMAN, R., HATÁR, J. & MIKO, O. (1998): Evolution of Nb,Ta-oxide minerals in the Prasivá granitic pegmatites, Slovakia. I. Primary Fe,Ti-rich assemblage. *Can. Mineral.* **36**, 525-534.
- WISE, M.A. & ČERNÝ, P. (1986): The status of ixiolite. Int. Mineral. Assoc., 14th Gen. Meeting, 265 (abstr.).

- _____, TURNOCK, A.C. & ČERNÝ, P. (1985) Improved unit cell dimensions for ordered columbite – tantalite end-members. *Neues Jahrb. Mineral., Monatsh.*, 372-378.
- Received August 15, 1997, revised manuscript accepted May 15, 1998.