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ABSTRACT

The scandium phosphate pretulite has been identified with scandian zircon and xenotime-(Y) in an apatite-rich oolitic
Ordovician ironstone at Saint-Aubin-des-Chateaux, Armorican Massif, France. Pseudo-octahedral crystals of pretulite, up to 400
m across, have grown epitactically on detrital zircon. They reveal complex zoning due to incorporation of Y and HREE, as well
as to an extended solid-solution toward the zircon end-member. Characteristic compositions in the pretulite — xenotime-(Y) —
zircon system are: Prly.973Xntg.020Z1rng.007, Prlo.907Xnto.088Z1rn0.005, Prlo.873Xnto.042Z1n0.085, Prlo.718Xnto 02472100258 and
Prly 453Xntp 042Zrng 505. A single-crystal X-ray refinement of the structure in space group /4;/amd (R = 0.0389) gives a 6.5870(9),
¢ 5.809(1) A, for the formula (Sc0.904Y 0.032HREE( 016Z10,048)(P0.952S10.048)O4. The Raman spectrum is presented. Detrital zircon
shows phosphate-rich metamict zones containing HREE and Sc (up to 3.2 wt.% Sc,03). Analytical and crystallographic data
suggest a complete solid-solution between zircon and pretulite. Xenotime-(Y), also epitactic on zircon, shows distinct stages of
crystallization, with a decrease in Y together with an enrichment in the lighter REE and Sc (up to 0.7 wt.% Sc,03). The scandium
minerals at Saint-Aubin reflect the evolution of the iron ore, from sedimentation to diagenesis and metamorphism, followed by
multistage hydrothermal leaching and recrystallization. Despite the high concentration of Fe in the environment, this quite unique
occurrence of Sc minerals illustrates the high capacity of the phosphate ion to extract scandium and precipitate it as a specific
phase, at relatively low-temperature conditions.
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SOMMAIRE

Un phosphate de scandium, la prétulite, a été identifié, en association avec du zircon et du xénotime-(Y) scandiféres, dans un
minerai de fer oolithique ordovicien riche en apatite a Saint-Aubin-des-Chateaux, Massif Armoricain, en France. Les cristaux
pseudo-octaédriques de prétulite (jusqu’a 400 wm) sont en surcroissance épitaxique sur du zircon détritique. Ils montrent une
zonation complexe due a I’incorporation du Y et des terres rares lourdes, ainsi qu’a une solution solide étendue vers le pole zircon.
Des compositions-types dans le systeme prétulite — xénotime-(Y) — zircon sont: Prly ¢73Xntg 020Z1rng 007, Prlo.g07Xnto.08sZrno oos,
Prly g73Xntg g42Zrng ggs, Prly 718Xnto 024Z1rng 255 et Prlg 453Xntg g42Zrng s05. L’ affinement de la structure cristalline aux rayons X sur
monocristal (groupe spatial [4,/amd, R = 0,0389) a été faite avec a 6,5870(9), ¢ 5,809(1) A, sur la base de la formule
(S¢0.904Y0,032TRL0,016Z10,048)(P0,952510,048)O4. Le spectre Raman est présenté. Le zircon détritique montre des zones métamictes
riches en phosphate, avec terres rares lourdes (TRL) et scandium (jusqu’a 3,2% pds Sc,03). Les données tant analytiques que
cristallographiques suggerent une solution solide compléte entre prétulite et zircon. Le xénotime-(Y), également en épitaxie sur
le zircon, montre plusieurs stades de cristallisation, traduisant un appauvrissement en Y corrélatif d’un enrichissement en faveur
de terres rares plus légeres, ainsi qu’en scandium (jusqu’a 0,7% pds Sc,03). La minéralogie du scandium a Saint-Aubin reflete
I’évolution du minerai de fer: sédimentation, diagenése et métamorphisme, et enfin lessivage et recristallisation par des venues
hydrothermales polyphasées. Malgré la haute concentration en fer de I’environnement, cette occurrence tres particuliere illustre
la forte capacité de I’ion phosphate & se combiner au scandium et & le précipiter sous forme d’une phase minérale spécifique a
relativement basse température.

Mots-clés: scandium, phosphate, prétulite, zircon, xénotime-(Y), minerai de fer, Ordovicien, Massif Armoricain, France.

INTRODUCTION

Scandium is rarely expressed as specific mineral
species, owing to its dilution in common silicates, where
it substitutes for Fe, Mg and Al. There exist at present
only nine approved species of scandium minerals: six
silicates (bazzite, thortveitite, cascandite, jervisite,
scandiobabingtonite and kristiansenite), and three phos-
phates (kolbeckite, pretulite and juonniite) (Mellini e?
al. 1982, Orlandi et al. 1998, Hey et al. 1982, Bernhard
et al. 1998b, Liferovich et al. 1997, Raade et al. 2002).

Pretulite was discovered at Hollkogel, in eastern
Austria, by Bernhard et al. (1998b), who described nu-
merous occurrences within quartz—lazulite veins in the
Lower Austro-alpine Grobneis complex. Another prob-
able occurrence of pretulite was incompletely described
as an unnamed Sc phosphate by Novak & Srein (1989)
in the Dolni Bory pegmatites of western Moravia, Czech
Republic. The present study deals with a new occurrence
of pretulite, identified in a sandstone quarry located at
Saint-Aubin-des-Chateaux, Loire-Atlantique, in western
France. Here, pretulite is closely associated with
scandian zircon and xenotime-(Y) within a sedimentary
iron ore showing a complex paragenetic evolution. This
occurrence presents new insight concerning aspects of
the geochemistry and crystal chemistry of scandium.

GEOLOGICAL SETTING AND PETROLOGY

Figure 1 gives the geographic location of the quarry
of Saint-Aubin-des-Chateaux. This quarry is situated in
the lower member of the Grés armoricain Formation, of
Arenigian age. This member is mainly composed of
sandstone; at a regional scale, it includes oolitic iron-
stones (Chauvel 1974) at four main horizons, A to D,
from top to bottom. These ironstones have been mined
in the past (Puzenat 1939). According to Chauvel

(1974), they are essentially composed of iron oxides
(magnetite, hematite, ilmenite), silicates (chlorite,
stilpnomelane) and quartz, siderite, pyrite and apatite.
The phosphate is ubiquitous (mean concentration over
2 wt.%; up to 6 wt.% in the B horizon).

In the Saint-Aubin quarry, only the A horizon is well
developed. It is mainly composed of siderite and chlo-
rite, but locally very enriched in Sr-bearing fluorapatite
(4 wt.% SrO: Chauvel & Phan 1965). It was affected by
diagenesis and very low grade metamorphism. The pri-
mary sedimentary features, where preserved, consist of
millimetric layers of oolites. Some of these layers are
enriched in fluorapatite (abundant), or minor detrital
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FiG. 1. Geographic location of the Bois-de-la-Roche quarry
at Saint-Aubin-des-Chateaux (arrow on the inset map).
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titanium oxides and zircon. Carbonaceous phases
(organic matter and late graphite) are disseminated
throughout the rock, giving it a characteristic black
color. SEM examinations reveal rare minute crystals of
galena, sphalerite and monazite-(Ce). Pretulite and
xenotime-(Y) are only present as epitactic overgrowths
on zircon crystals.

The primary texture was later altered by hydrother-
mal processes (at least three stages of hydrothermal ac-
tivity), as indicated notably by the presence of massive
pyrite, together with minor base-metal sulfides like
marcasite, galena, and sphalerite (Herrouin et al. 1989,
Moélo et al. 2000, Gloaguen 2002). Centimetric to
decimetric veinlets of quartz, siderite, pyrite and
lulzacite (a recently described Sr—Al-Fe phosphate:
Moélo et al. 2000, Léone et al. 2000) were formed
within the ironstone (incorrectly called “limestone” in
Moélo et al. 2000). Hydrothermal processes have also
transformed the ironstone itself locally by recrystalliza-
tion of siderite, dissolution and recrystallization of Sr-
rich fluorapatite, crystallization of graphite lamellae at
the expense of organic matter, and formation of a red-
brown variety of chlorite.

PRETULITE

Descriptive aspects

Pretulite was first discovered in an apatite-rich frag-
ment from the A horizon, showing numerous submilli-
metric hexagonal platelets of “red-brown chlorite” (a
Mg-poor, Al-rich chamosite). This fragment was dis-
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solved in HCI; the whole residue contains a dozen crys-
tals of pretulite with a flattened pseudo-octahedral habit
(Fig. 2). The main form is the bipyramid {011}, with
subordinate basal faces {001}; faces of the prismatic
form {110} are rare. The size of these crystals varies
from 150 to 400 wm across; they are translucent, yel-
lowish white, with an adamantine luster.

In polished section, one of these crystal appears to
be an overgrowth on a rounded crystal of zircon (Fig.
3); xenotime-(Y) also is present. Thin sections made of
samples of the A horizon show other crystals of
pretulite, invariably as an epitactic overgrowth on zir-
con crystals (Fig. 4); gangue minerals are chamosite
with fluorapatite and graphite.

Chemical characterization

Imaging by scanning electron microscopy (SEM)
and with back-scattered electrons (BSE) invariably re-
veals the presence of chemical zoning in the crystals of
pretulite. Figure 3 reveals a complex pattern of growth-
induced zoning, showing schematically first a dark grey
core (A zone), secondly, a narrow intermediate rim (B
zone, light grey), then a wide grey outer zone (C zone),
and finally (at the opposite side) a thinner white layer
located close to the zircon crystal (D zone). These zones
were characterized chemically by elemental mapping
and quantitative electron-probe micro-analysis (EPMA;
Figs. 5a-d, Table 1).

In the A zone (anal. 1-7), the pretulite is the richest
in Sc, with low contents of yttrium (1.2 to 3.0 wt.%
Y,03) and heavy rare-earth elements (HREE) (mostly

(110)

FiG.2. SEM-BSE image of a euhedral crystal of pretulite (left), and proposed crystal forms (right): combination of main {011}

bipyramid with minor {001} and rare {110}.
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FiG. 4. Epitactic overgrowth of euhedral pretulite (Ptl, grey-

Fic. 3. Overgrowth of a zoned crystal of pretulite (~150 X black), with an external Zr-rich rim [Ptl(Zr), light grey) at
50 wm), together with a crystal of xenotime-(Y) (Xnr) over the two opposite ends of a detrital crystal of zircon (Zrn,
a detrital zircon crystal. SEM-BSE image of a polished light grey). The white zones correspond to an epitactic
section. Central zone A (dark grey): REE- and (Zr, Si)-poor overgrowth of xenotime-(Y) (Xnt). Chlorite (Chl) with
pretulite; intermediate zone B (light grey) enriched in REE graphite lamellae (within black area) is the matrix mineral.
and (Zr, Si); zone C (medium grey, upper and right border): A smaller zircon — xenotime-(Y) — pretulite aggregate is
REE-rich pretulite; zone D (white rim close to zircon): (Zr, visible at right. SEM-BSE image; for clarity, the contrast
Si)-rich pretulite. between the central part [zircon and xenotime-(Y)] and the

rest of the image has been attenuated.

FiG. 5. Chemical zoning of a section of a pretulite crystal (see also Fig. 3), observed with EPMA elemental mapping (a to d: Sc,
Zr,Y and Yb, respectively). Colors range from violet to red, and indicate an increasing concentration of the element. In a, red
areas correspond to zone A of Figure 3; zone D (black) is not visible. In b, well-defined red areas correspond to Zr-rich parts
of zone B (center) and to zone D (bottom, with zircon). Individual maps do not allow us to distinguish zone C.
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Yb, then Er, Dy and Lu, with a total below 1.3 wt.% of
the respective oxides); zirconium and silicon contents
are very low, below 0.6 wt.% ZrO, and 0.4% SiO,. The
composition richest in Sc (no. 1) corresponds to the for-
mula: [Sco.983(Y0.017Yb0.002E70.001)50.020Z10.007](Po.981
Si0.006A10.004)O3.989, simplified as Prtg.973Xntg.020
Zrng gg7. In the B zone (nos. 8-9), the pretulite shows a
significant enrichment in Zr and Si, up to 6.9 wt.% ZrO,
and 3.4% SiO,. Composition 9 corresponds to [Sco gsg
(Y0.024YDbo.011E1r0.0031.110.003)50.041Z10.083] (P0.933510.083
Alp003)O4.018, or Prtg g73Xnto 042Zrno ogs.

In the C zone (nos. 10-14), the pretulite shows mi-
nor amounts of Zr and Si (below 2.8% ZrO; and 1.4%
Si0,), with an enrichment in Y (up to 4.3% Y,03) and
HREE (especially Yb, up to 2.5% Yb,03). The compo-
sition richest in (Y,HREE), no. 10, corresponds to
[S¢0.906(Y 0.057 Yb0.019ET0.006L10.004DY0.002)50.088Z10.005]
(P0.988S10.010A10.002)O3.994, OT Prtg.907Xnto,088Z1n0 005 In
the D zone (nos. 15-19), the pretulite reveals high Zr
and Si contents (17-20% ZrO, and 9—-11% SiO,); minor
quantities of Y and Yb are present in similar propor-
tions (about 1 wt.% of the respective oxides). Composi-
tion 19 COI'I'CSpOIldS to [S00.702(Y0.014Yb04006Er0.002
Lu.001DY0.002)50.023Z10.250H£0.0021(Po.738S10.280A10.003)
03,997, or Prtg 718Xnto 024Zrng 258.

In all cases enriched in Zr and Si (over 0.02 atoms
per formula unit, apfur), the atomic ratio Zr/Si is invari-
ably close to 1, in agreement with a solid-solution
scheme according to the coupled heterovalent substitu-
tion Sc3* + P?* — Zr* + Si**; the molar ratio ScPO.4/
ZrSiOy4 attains 2.8. Electron-microprobe data on
pretulite from a thin section confirm these results. In
the areas with the higher Zr and Si contents, in the D
zone (Table 1, nos. 20-30), the molar ratio ScPO,/
ZrSiO4 generally varies between 3.5 and 2.1, but was
found to be as low as 0.90 for one composition (no. 30),
thus corresponding to a scandian zircon with formula
[S¢0.452(Y0.022Ybo.012Er0.00sDY0.003)50.042Z10.500Hf0.004]
(P0.493Si0.495F€0.014)O4.000, OF Prt 453Xnto.042Z1n0 505.

The pretulite from Saint-Aubin is much richer in Y
and HREE (Yb, Er and Dy, and Lu) than the sample
from Hollkogel, the type locality (Bernhard et al.
1998b). It is also distinguished by its complex growth-
induced zoning, and by the development of composi-
tions intermediate between ideal pretulite and zircon.

Crystallography

Despite its relatively large size, the pretulite crystal
shown in Figure 2 was used for a single-crystal X-ray
study, with an imaging plate system. Operating condi-
tions and related data are given in Table 2. On the basis
of its tetragonal symmetry, the unit-cell parameters of
the Saint-Aubin material are a 6.5870(9), ¢ 5.809(1) A.
Table 3 and Figure 6 compare these new data with those
of pretulite from the type locality, pure synthetic ScPOy,
and related isotypic compounds (synthetic YPOy, zir-
con and various HREE phosphates).

THE CANADIAN MINERALOGIST

Diffraction data were used to solve the average struc-
ture of this sample of pretulite. Table 4 gives the coor-
dinates of the atoms in the unit cell. Owing to its
complex chemical composition, the structure was re-
fined by 1) adjusting the Sc/Zr value, and, accordingly,
the P/Si value, and 2) adjusting the Sc/(Y,HREE) value,
considering all heavy rare-earth elements (HREE) as Yb,
with Sc/Y and Yb/Y values close to the mean of Sc/Y
and HREE/Y values indicated by the electron-micro-
probe data (Table 1). The best R value (0.039) was thus
obtained for the simplified structural formula [Scg g4
Yo.032(Yb,HREE) 016Zr0.048]1(P0.952510.048)O4, close to a
composition of the C zone. This solution represents an
average structure of a relatively inhomogeneous crys-
tal, which explains the lower accuracy of these data
compared to those of Bernhard et al. (1998b) (R =0.019)
for the Austrian pretulite. Nevertheless, the relatively
low R value, as well as the homogeneity of U factors,
indicate that this solution is a good approximation of
the real structure. A listing of observed and calculated
structure-factors is available from the Depository of
Unpublished Data, CISTI, National Research Council,
Ottawa, Ontario K1A 0S2, Canada.

According to Table 3, the a and ¢ parameters in-
crease in going from pure synthetic ScPO4 to the
pretulite from Saint-Aubin owing to the substitution of
larger cations, Y and HREE, for Sc, as well as to the
presence of the zircon component. The two ratural ex-
amples of pretulite have very close unit-cell volumes,
but a higher density (3.83 g/cm?) was calculated for the
Saint-Aubin material owing to its enrichment in the
heavier elements.

TABLE 2. DATA ON THE CRYSTAL OF PRETULITE FROM
SAINT-AUBIN-DES-CHATEAUX CHOSEN FOR STRUCTURE REFINEMENT,
AND EXPERIMENTAL DETAILS

Crystal data

(Senom Yous Yo 20005} {Poor Sl Oy
Space group: f4/amd (# 141}
(3

Simplified structural formula,
Crystal system: tetragonet

a 6.5870(%) A 5.20%1)
I8 25205(T K? z 4
Density 3.834 glem’ (caleulated) Absurption coefficient 4.56 mm™

Daca Collection

Temperature: ambient

Radiation: Mok (A = 0.71073 &)
Diffractomerer: STOE IPDS single ¢ axis
 range: 0-201°

Crystal-to-detector distance ([P}
Irradiation time per exposure

0 range: 1.9 40 2827

Independent reflections: %0

Reflections with I > 20(I): 34
Indexranges: # = A<8 Bkl T/l g7

Crysial size: 200 = 160 « 110 pm
S0 kY, 40 mA

Method: imaging plate technology
Awp (increment): 32

64 mm

5 minutes

Reflections collected: 106
[Riint) = 0.0802]

Refinement

Refinement method: Full-marix least-squares on F*
Datafrestraints/parameters: 90/0¢12 Goodness-of-fit on F?: 2,466
RI[E > 20(I)] D 0389 wR2; 04,1407

R index (all data): ©0.0408 wR2 91412

Largest diff. peak/hofe: 1.598, -0.720 2 4°
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TABLE 3. VARIATION OF THE UNIT-CELL PARAMETERS OF NATURAL AND
SYNTHETIC REE PHOSPHATES WITH THE ZIRCON STRUCTURE-TYPE

Compound atdy oAy V(A) Dighm" cfa Reference

Zircon (synthetic) 6.603 5982 2610 467 0.906 Siggel & Jansen (1950)
Zircon 6612 5994 2620  (469* 0907 Finger (1974)

$cPO, (synthretic) 65 5791 2503 371 088!  Milliganeial (1982)
S6PO, (syntheticy 6578 5796 2508 371 088l Rasmussen ef af. {1993)
{8¢,YIPO, Pretulite 5.589 5.806 2521 an 0881 Bernhard ef ai. {1998b)
(Se.YYB),ZAP.SH0, 6587 5809 2521  3.83 0882  this study (Table2)
LuPQ, {synthetic} 6783 5,947 2736 6,55 0877 Ni et al. {1995)

YHPO, (synthetic) 6803 5964 2765 640 0876  Nieral (1995)

YbPO, {synthetic) 58l6 $960 2772 6.40 0875 Milligan & Mullica {1983)
TmPO, (synthetic) 6820 5980 2789 626 0876 Nief ol (1995)

ErPO, {synthetic) 6851 5997 2Bl4 619 0875 Ni of . (1995)

HoPQ, (synthetic) 6877 6018 2845 607 0875 Ni et e, (1995)

YPOQ, (synthetic) 6 882 6018 2850 4,25 0.874 Milligan ef af. {1982)
Henatime<{Y) 6.895 6028 2865 4.68** 0874 Ni ef o, {1995)
Kenotime-{Yh) 5 866 6004 2830 5.85%%+ 0874 Buck et af. {1999)
DyPO, (synthetic) 6605 6038 2870 594 084 Niefol (1995)

ThPQ, (synthetic) 6931 6,061 2911 5719 G.374 Ni er af (1995)

* Watural zircon with unknown HE content; & caleulated an the basis of hypothetical HEZs = 2% {atomic).

** Also with HREE and Ca.

TABLE 4. ATOM COQORDINATES [N THE STRUCTURE OF FRETULITE
FRCM SATNT-AUBIN-DES-CHATEAUX, FRANCE

site x ¥ z {feq) ok

Sc 4h b Y A G.00%(1) 0.904
¥ - “ 0.009(1) 0.012
Yb 0.00%1} 0016
Zr . - “ “ 0.009(1) 0,048
F 4a % Y By 000713 0952
si " . . - 0.007(1) 0.048
a 1ok G1BOG(5) Y 043608 0.009{1) 1

The equi isotropic displ. p % Fieq){in A% (s defined as one third

of the orthogonalized £ tensor. 0.f.: nceupancy factar.

Raman spectroscopy

The Raman spectrum of pretulite is presented for the
first time; it was obtained on the largest crystal shown
in Figure 4, as well as on a sample (HK1A) from the
type locality, provided by F. Bernhard. As the presence
of REE in pretulite induces strong fluorescence lines,
pure synthetic ScPO4 (provided by Eugene Jarosewich),
used as Sc standard for the electron-probe micro-analy-
ses, also was studied for comparison. Data were ob-
tained with a DILOR XY800 Raman microprobe
(BRGM - CNRS - Université d’Orléans, Dr. J.-M.
Bény, ISTO-CNRS, Orléans, analyst). Operating con-
ditions were: Ar* laser, \ of the exciting radiations 488
and 514.5 nm, 25 mW (~3 mW on the sample), record-
ing window 60-2020 cm™!, objective X 100, and acqui-
sition time 120 s.

*** Also with Y and HREE.

The spectra obtained on pretulite from Saint-Aubin
with the two laser sources allow us to distinguish com-
plex groups of strong REE-fluorescence-induced bands
from fine specific Raman bands (Fig. 7a). A compari-
son of the Raman spectrum of pretulite from the type
locality with that of REE-free synthetic ScPO, (Fig. 7b)
confirms the discrimination between fluorescence and
Raman bands. All three samples present eleven well-
defined Raman bands (Raman shift in cm™): a very
strong pair at 1079-1082 and 1024-1026, with an inter-
mediate doublet at 1049-1053 and 1043-1045, then
seven medium to weak bands at 595, 474-475, 331-334,
326, 240-243, 234 and 186—187. This Raman spectrum
is similar to that obtained for xenotime-(Y) (C. Bény,
unpubl. data), but with an increase of about 30 cm™! of
the Raman shift of the two strongest bands.

SCANDIAN ZIRCON
Zoned detrital zircon

The finely stratified ironstone shows numerous de-
trital crystals of zircon, generally with titanium oxides
in peculiar millimetric layers. In reflected light and
SEM-BSE images, these zircon crystals commonly dis-
play concentric zoning (Fig. 8) indicative of a primary
oscillatory growth. The usually anhedral to subhedral
morphology of the zircon crystals, which cuts this
growth zoning, clearly indicates their detrital origin,
without recrystallization. This kind of zircon was de-
scribed in iron ores of Lower Ordovician age by Chauvel
(1968, 1974), as well as in rutile- and zircon-rich sand-
stones from the Armorican Massif by Faure (1978).
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FIG. 6. Variation of the unit cell parameters a (A) and V (A3) within the series of HREE
phosphates related to the zircon structure-type, compared to that of zircon (according to

data of Table 3).

Nevertheless, in the A horizon at Saint-Aubin, the pro-
portion of such zoned crystals (about one third) is par-
ticularly high.

Results of the electron-probe micro-analyses are
given in Table 5. The dark zones correspond to a phos-
phate enrichment, together with Sc, Y, Yb, Er, Fe, Ca
and Al (and, in some cases, Lu and Th; U is below de-
tection limit). These dark zones give low analytical to-
tals, from 95 down to 92 wt.%, whereas the light zones
(pure zircon) give totals close to 100 wt.%. Such a defi-
cit is not strictly correlated with the cumulative sum of
P and associated cations, and could not be explained by
the omission of less abundant HREE, or LREE in the
analytical process. It reveals a metamict state of these
zones, enriched in H,O (maximum ~5-8 wt.%). It is
well known that there is a positive correlation among
Y, U and P in zircon (see, for instance, Koppel &
Sommerauer 1974), which explains the indirect corre-
lation observed between Y (and the REE) and the
metamictization process (Larsen et al. 1953).

An increasing P content is correlated positively with
the amount of HREE, Y and Sc (but negatively with Fe,
at high P contents). The level of scandium reaches 3.18
wt.% Sc,03 for the composition richest in P (8.2 wt.%
P,0s), which corresponds to the formula (without H,O):
Zrg.76HT0.01[Sc0.00Y 0.07(HREE)0.03]50.19Al0.03F€0.03
Cag 2 (Sig75P022)30.9704.02. In the 1ight zones, P, Sc, Ca
and Al are below detection limits, and HREE and Fe
decrease significantly; only hafnium is systematically
present (0.8 to 2.3 wt.% HfO,), as in all crystals.

According to Geisler & Schleicher (2000) and
Geisler et al. (2001), a significant Ca content (>0.2 wt.%
CaO) in the metamict zones of zircon is indicative of

hydrothermal leaching or of weathering, which intro-
duces Ca (and probably Fe, Al and Mn), with a loss of
Zr, Si and radiogenic Pb (possibly U also). In contrast,
at Saint-Aubin, Y, Sc and the HREE are clearly primary,
to counterbalance the phosphate anion, and the zoning
of zircon indicates an oscillatory growth between end-
member zircon and a phosphate-type component [a mix-
ture of pretulite and xenotime-(Y)].

Except for scandium, all minor elements detected in
the zoned crystals are commonly found in natural zir-
con (Deer et al. 1997). An analysis for scandium is gen-
erally omitted in analytical work on zircon. However,
this element may commonly be present as a minor com-
ponent together with Y and HREE in phosphorus-rich
varieties of this mineral. Among others, Romans ez al.
(1975) have demonstrated that scandium is systemati-
cally present, with a mean content of 0.2 wt.%, in the
magnetic fraction of zircon enriched in Y and P from
three commercial concentrates, with a maximum of 0.7
wt.% Sc in a zoned crystal (together with 7.5% Y and
4.1% P). Zircon with about 1 wt.% Sc,03 has been dis-
covered at Baveno (Italy) by Gramaccioli et al. (2000).
Another example is an exotic occurrence of a “solid
solution of zircon and xenotime-(Y)” described recently
by Mordberg et al. (2001) in the Schugorsk bauxite de-
posit, in Russia. This phase crystallized during bauxite
weathering at the contact between zircon and xenotime
grains. Chemically, it corresponds to zircon with up to
5.8 wt.% Y,03, and 3.3% Sc,03 (and up to 3.8% P,0s),
but the level of the HREE was apparently not established
(total below 92 wt.%). This composition is very close
to that of the zones richest in P in the detrital zircon
from Saint-Aubin.
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FiG. 8. Growth zoning of detrital zircon crystals (SEM-BSE images). (a) Square section with major pure zircon (light grey)
with a rim of phosphate-rich variety (grey); white: xenotime-(Y) (Xnt in all images); grey area at left is pyrite (Py). (b)
Dominant phosphate-rich zircon (grey) with a rim of normal variety (also at the center as four sector-growth zones). (c)
Oblique section of a zircon crystal (light grey) with rhythmic zoning of phosphate-rich zones (grey). (d) Complex zoned
crystal with a phosphate-rich center (grey-black), normal zircon (intermediate, light grey) and a phosphate-rich rim.

Neoformation of a zircon-type compound
with an unusual composition

A systematic SEM-BSE examination of one thin
section revealed the sporadic development of a micro-
crystalline rim around some crystals of zircon. Such a
rim may appear on one side of the crystal, with an oscil-
latory development (Fig. 9a), or all around the detrital
core (Fig. 9b). In some cases, the overgrowth seems to
replace an initial volume of zircon, i.e., as a result of a
solution-and-redeposition process. According to Ewing
(2001), such a local destabilization of zircon could be
due to a leaching process under hydrothermal condi-
tions.

A SEM-EDS analysis reveals a complex chemical
composition, but the rim seems homogeneous in each
case. In Figure 9a, the rim contains major amounts of
Zr, Sc, Si and P, with minor Fe (4 wt.% Fe,03), Y (2.5%
Y,03), Hf, Ca, Sr, Yb and U (approximately 1-1.5% of
the respective oxides). The formula is: (Zro 49Hf0.01)30.50

[Sc0.42Y0.04(HREE)0,01]30.47U0.085r0.02F€0.10Ca0,05(Sio 51

Po36)50.8704.
The rim shown in Figure 9b contains major amounts

of Zr and Si (35% ZrO; and 17% SiO,, mean result of
three spot analyses), along with (wt.% of the respective
oxides): Fe 5.7, P 8.0, Y 4.3,Sc 4.3, Ca2.2,U 1.8, Sr
1.6 and Hf 1.5. Not considering Fe, Ca, Sr and U, this
composition is close to 70% ZrSiO4, 20% ScPO,4 and
10% YPO,. Like for the composition of the dark zones
within detrital zircon, the totals are low (80 to 90 wt.%),
probably owing to partial or complete metamictization
(leading to a high H,O content), but also reflecting the
fine-grained texture of the rim.

ScanpiaN XENOTIME-(Y)

Detrital crystals of zircon very commonly show an
epitactic overgrowth of anhedral to subhedral xenotime-
(Y) crystals (Figs. 4, 8), as has been observed in other
deposits (i.e., Petersen & Secher 1993). Such an over-
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growth is generally related to hydrothermal processes,
but a diagenetic formation also is possible (Fletcher et
al. 2000, Cabella et al. 2001).

Figure 10 presents another well-developed example,
where a zoned crystal of zircon is nearly completely
surrounded by xenotime-(Y). The inner zone of
xenotime-(Y) (Xnt2a), at the contact with zircon, pre-
sents a porous texture (“poikilitic crystallization™),
whereas an outer zone (Xnt2b) has virtually no pores. A
third zone (Xnt2c) is visible as a very fine light rim (less
than 2 pm thick). Such a zoning has been observed in
various crystals, and indicates multistage crystallization.
Minute inclusions of galena have been observed in some
cases in such overgrowths of xenotime-(Y).

Results of electron-probe micro-analyses of
xenotime-(Y) are given in Table 6. Among the REE,
holmium has been omitted, and some minor interfer-
ences involving REE emission lines (Roeder 1985) have
been neglected. Nevertheless, it appears that the zoning
of xenotime-(Y) is directly related to a decrease in the
amount of Y, from the contact with zircon to the rim,
together with a zonation in the distribution of the REE.

FiG. 9.
late microcrystalline zircon-type rim (black arrow,
composition between pretulite and zircon end-members)
developed around detrital crystals of Sc-free zircon (Zrn).
Xnt: xenotime-(Y).

a and b. SEM-BSE images of two examples of the

THE CANADIAN MINERALOGIST

In the first generation of xenotime-(Y), Xntl and
Xnt3a have quite similar compositions, very close to that
of Xnt2a (Xntl, 2 and 3: distinct crystals). The major
REE are Yb (7.0 to 7.3% Yb,03), Er and Dy (up to 5.5
wt.% of the respective oxide), with minor Gd (less than
1.1% Gd;03). The scandium content is around 0.2%
Sc;,0s. Iron, not detected in Xntl, is over 1% Fe,O3 in
Xnt2a.

In the second generation of xenotime-(Y), Xnt2b and
Xnt3b show a marked increase of middle REE (Dy from
7.4 to 8.7% Dy,03, Gd from 3.2 to 4.2% Gd,03), with
a corresponding depletion in Er and Yb (below 4.5% of
the respective oxides). The Lu content is the same, Fe
slightly increases, whereas Sc reaches 0.7% Sc,03; this
Sc maximum for Xnt2b corresponds to the formula
[Yo0.678(Dy0.080Er0.046 Yb0.045Gd0.035Tbo.011Lu0.006)30.223
Sco.022Fe0.047Ca0,002130.972P1.02004.055.

In the third generation of xenotime-(Y), the compo-
sition (Xnt2c) is close to that of Xnt2b, but with the
addition of significant Sm and Eu contents (1.6% Sm,03
and 0.8% Eu,03). Uranium has been also detected (0.8%
UO0y).

Scandium is invariably present, in the range 0.2-0.7
wt.% Sc,03. Bernhard et al. (1998a) indicated a higher
Sc content in uranium-rich xenotime-(Y) (1.9-2.7 wt.
% Sc,03) from Hollkogel, the type locality of pretulite.

Such a strong chemical contrast between generations
of xenotime-(Y) at the crystal scale has rarely been
documented. Sabourdy et al. (1997) indicated a similar
enrichment in the middle REE Gd and Dy, and a corre-
sponding decrease in Yb, from the center to the rim in
alluvial crystals of xenotime-(Y) from the Limousin
(Massif Central, France). They considered this zoning
to be primary (magmatic). Bernhard et al. (1998a) pre-
sented SEM-BSE images of strongly zoned crystals of
xenotime-(Y) from eastern Austria. At Saint-Aubin,
there is a strong chemical discontinuity between zones
of xenotime-(Y), as indicated also by the variation be-
tween zones a and b of the ratio of the middle to the
heavy REE [(Gd + Dy) / (Er + Yb), Table 6] from 0.27
to 1.28 in Xnt2, and from 0.51 to 1.98 in Xnt3. Such a
contrast necessarily reflects quite distinct thermochemi-
cal conditions of crystallization, acting at different
paragenetic stages.

SoLID SoLUTIONS WITHIN THE TERNARY SYSTEM
ScPOy4 — (Y,HREE)PO4 — ZrS104

All our analytical data (SEM-EDS and EPMA) on
pretulite, zircon and xenotime-(Y) have been plotted in
terms of ScPO4 — (Y,HREE)PO, — ZrSiO4 (Fig. 11),
together with data from the literature. Various compo-
sitions along (or close to) the zircon—pretulite join have
been encountered, and further data would very probably
fill the whole chemical spectrum between the two end-
members. This plot thus suggests a continuous solid-
solution between zircon and pretulite, corresponding to
the heterovalent substitution Zr*+ + Si** — Sc* + P3*
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FiG. 10. Zoned crystal of zircon with an epitactic overgrowth of xenotime-(Y) (SEM—
BSE image). Darkest growth-zones of zircon correspond to (Y,REE,Sc)- and P-enriched
compositions. Xenotime-(Y) shows three distinct zones: inner zone Xnt2a (porous, light
grey), outer zone Xnt2b (white grey), and fine rim Xnt2c (white).

TABLE 6. ELECTRON-MICROPROBE DATA O XENOTIME-(Y}
FROM SAINT-AUBTN-DES-CHATEAUX, FRANCE

wt. % oxide cation proportions {tatal = 2 atoms)
Xml XnrZa Xnt2b Xni2e Xnt3a Xnt3b Kntl XntZza Xm2b XntZc Xni3aXntdb
Anal. 3 2 2 1 4 2 3 2 2 | 4 2

Y0 401 407 380 333 413 390 Y 0714 0710 9678 0595 0722 0441
Sm,0, - - - 16 - - Sm - - - noe - -

Fu0, - - - ng - . By - - 0009 - -

G, 0,y 0E 03 32 R 1.1 42 ad 0009 0003 0035 0042 0411 0.046
Th.Q, 0.5 4.1 1.0 0.3 05 13 ™ 0005 000] 0Ol 0003 2006 0015
Dy,D, 53 30 74 56 50 BT Dy 0057 0031 0080 0059 Q053 0093
Er,0 55 53 43 4.2 5.4 4.0 Er 0GS% 0056 0046 0.043 (056 0041
m0, 90& 09 - - 8 - Tm 0.008 009 - - 0008 -

Yb.0, 73 T3 4.4 4.5 1o 219 b 0074 0073 0045 0045 0070 0025
Lo, O, 0.9 08 0.6 04 aa 0.6 Lu 0o0% 0008 0006 0005 CO09 0.006
8¢, 03 02 07 04 02 D6 8¢ 0008 0007 0022 0013 0004 0016
U0, - - - 08 - - u - - 0008 -
a0 a1 05 01 03 01 Q1 Ca G.005 0016 0002 0010 0004 0004
Fe +X1] 1.1 17 23 4 07 Fe 0.000 0037 0047 0083 0011 0019

POy 388 30 363 370 373 368 P 1,041 1028 1029 1036 1039 1036
Zri}, 02 0w - n4 0l - Zr 0003 0014 - 0006 0002 -
50, 03 02 - a7 02 ol Si 000% 0005 - 0.024 0.00% 0.004
AlLO, - - - 06 - - Al - - - 0922

REL.%¢ G228 0.189 0244 0237 0217 0246
Tatal 985 986 974 O075* 1002 989 R(MAD 00497 0265 1275 1147 0511 1968

Xat1: sample shown in Figure 3: Xnt2: sample shown in Figure 10 (a: inner porous zone; b: ouler zone, ¢: white
external nm); Xat3: crystal from thin plate shown in Figure 4 {a: inner zone; b outer zone) RES 8o 1otal of BEE
+ Sc. RAMGEY atomic ratio between middle REE (Gd + Dy) and heavy REE (Er + Yb}. *: excess of Fe, Si and
Al due to chamosite inclusions Analvtical conditions: see Tables 1 and 5; elements programmed, not detected.
La, Ce, Pr, Nd (110 omitted). Sr. Th, Hf, $r, S. Anal.. number of spot analyses. - - below detection limit.
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(although one cannot totally exclude a syntactic
intergrowth at a submicrometric scale). On the contrary,
there is a large miscibility-gap between pretulite and
xenotime-(Y), as shown initially by Bernhard et al.
(1998a, b). Compositions of detrital zoned crystals of
zircon give a linear trend, with an atomic ratio Sc/
(Y,HREE) close to 1. Data on the zircon — xenotime-
(Y) join are scarce; Deer et al. (1997) cited two cases of
zircon from Japan with a (Y,REE) content close to 10
wt.% of the oxides, which corresponds to about 20
mol.% substitution. Romans et al. (1975) gave another
example with about 25 mol.% substitution. These data
are in accordance with the experimental study of Finch
et al. (2001), which proved a wide miscibility-gap be-
tween zircon and xenotime-(Y).

The unit-cell volume of pretulite is closer to that of
zircon than that of xenotime-(Y) (Table 3, Fig. 6): Vpy
=250.6, Ve = 261.0, Vi = 286.5 A3; 8Vpyyzee = —4.0%;
3Vxnyzic = +9.8%). These findings imply that the sub-
stitution Sc3* + P>* < Zr** + Si** should be easier than

THE CANADIAN MINERALOGIST

the substitution (Y,HREE)** + P>* «— Zr** + Si**, which
would favor an extensive solid-solution between zircon
and pretulite.

In zircon, the simultaneous incorporation of Sc and
(Y,HREE) will minimize the volume change, and thus
enlarge the field of solid solution near the zircon end-
member. This inference may explain the linear chemi-
cal trend observed in detrital zoned crystals of zircon.

Another geometric constraint is the variation of the
ratio ¢/a, which decreases from zircon to pretulite [ c/a)
=-2.8%], then to xenotime-(Y) [& c/a) = -3.5%]. Such
a distortion factor may also favor the solid solution be-
tween pretulite and zircon. In any case, in a phospho-
rus-rich environment, the structure of zircon can better
retain scandium in solid solution than yttrium or HREE.
The scarcity of intermediate members in the continuous
solid-solution series between zircon and pretulite, as
well as in natural (Y,HREE)-rich zircon, thus probably
is not due to crystal-chemical reasons, but rather to
geochemical constraints, i.e., probably the rarity of

Zircon
ZrSiQ,

Chemical trend
of detrital zircon

Fine Sc-rich rims
around zircon

Pretulite from
Moravia

Crystal core \
- Azone -

Pretulite

1/ Intermediate rim - B zane
a* Crystal structure

Scrich zircon - D zone type

{(Zr, Si}-rich pretulite - D zane type

(¥, REE)-rich pretulite - C zone

Schugorsk

Héllkogel, Austria

Xenotime-(Y)

ScPO
¢ WHsllkogs!, Austria

FiG. 11.

(Y,HREE)PO,

Projection of the electron-microprobe data for pretulite, zircon and xenotime-(Y) from Saint-Aubin in the ScPO4 —

(Y,HREE)POy — ZrSiO4 system, supplemented with data from the literature. Open squares: EPMA data of the four zones of
pretulite (Fig. 5a, Table 1); full square: composition from the crystal-structure study; full triangles with associated tie-line:
EPMA data for detrital zircon along a chemical trend; full circles: SEM-EDS data for Sc-rich rim around zircon; full lozenges:
xenotime-(Y). For comparison (open circles): pretulite and xenotime-(Y) from Hollkogel, Austria (type locality: Bernhard et
al. 1998a, b) and from Dolni Bory, Moravia (Novdk & Srein 1989); Y- and HREE-rich zircon from Japan (Deer et al. 1997),
Australia (Romans et al.1975), and Schugorsk, Russia (Mordberg et al. 2001).
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coprecipitation of zircon with phosphates of (Y,HREE)
or Sc, especially during magmatic processes.

The data of Table 3 also permit a better understand-
ing of the epitaxy of pretulite and xenotime-(Y) on zir-
con. The a parameter of pretulite is very close to that of
zircon, which will favor an epitaxy on the (001) plane,
and its growth along [001]; it explains the nucleation of
two crystals of pretulite at the opposite sides of the elon-
gation (along the A4 axis) of the main crystal of zircon
in Figure 4. This inference was also confirmed by a
morphological examination with an SEM of another
pretulite—zircon association. On the contrary, the ¢ pa-
rameter of xenotime-(Y) is very close to that of zircon,
which will favor an epitaxy on a crystallographic plane
containing the [001] direction, i.e., a (hk0) plane; the
growth of xenotime-(Y) crystal will be favored perpen-
dicular to the A4 axis, as is the case in Figure 4.

GENETIC MODEL FOR SCANDIUM-BEARING
MINERALS AT SAINT-AUBIN

We propose the following genetic scheme for the
formation of Sc-bearing minerals at Saint-Aubin.

The first scandium-bearing mineral is zoned detrital
zircon. Pretulite appeared later, but scandium required
to grow pretulite crystals [like Y for xenotime-(Y)] can-
not be inherited from this primitive zircon. For instance,
the large crystal of pretulite in Figure 3 crystallized over
a crystal of Sc-free zircon. A diffuse pre-concentration
of scandium in the ironstone of the A horizon is neces-
sary; it could lodged in sedimentary phosphates, or in
(Fe, Mg)-silicates.

In a second step, the diagenetic and very low-grade
metamorphic evolution of the ironstone induced a re-
crystallization process. Precursor phosphates gave the
first generation of Sr-rich fluorapatite, and the bulk of
the REE, Y and Sc was released (from phosphates or
silicates), giving the first generation of xenotime-(Y) as
well as pretulite (A-zone type, with nearly end-member
composition). The same process may be proposed for
the crystallization of disseminated monazite-(Ce). On
the basis of the composition of the chlorite, the tem-
perature did not reach 400°C during this phase (Prof.
J.-J. Chauvel, Université de Rennes, pers. commun.).

Hydrothermal processes induced by tectonic events
led to the destabilization of this metamorphic associa-
tion by percolation through the A horizon. The early
crystallization of a second generation of fluorapatite,
followed by the formation of lulzacite, a Sr—Al-Fe phos-
phate, in quartz—siderite veins, suggests the partial dis-
solution of primary fluorapatite, which caused a fraction
of its lanthanides to be released. This step could explain
the next generations of xenotime-(Y), enriched in lighter
REE (Gd and Dy), and of pretulite (B- and C-type
zones), enriched in Y and HREE. This scheme would
also explain the Sc enrichment of the second generation
of xenotime-(Y), the enrichment in Zr and Si of the last
generation of pretulite (D-type zone), and the formation
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of mixed phases with various intermediate compositions
between pretulite and zircon.

CONCLUSIONS

Saint-Aubin is the third geological area in which
pretulite is found, after the Austrian type-locality
(Bernhard et al. 1998b), and the Dolni Bory pegmatites,
in the Czech Republic (Novdk & Srein 1989). It is also
the third occurrence of scandium minerals in France,
after the recent discovery of bazzite in the La Lauziere
Massif, Savoie, French Alps by N. Meisser (De
Ascencao Guedes & Valverde 2000), and thortveitite in
the talc deposit of Trimouns, Ariege, Pyrénées (P. de
Parseval, pers. commun.).

Sc-bearing minerals at Saint-Aubin reveal a complex
geological and geochemical evolution, which is only
partly understood. Whereas most occurrences of scan-
dium minerals are linked to late hydrothermal processes
generally related to felsic magmatism, the formation of
pretulite at Saint-Aubin is quite unique, without any
equivalent up to now. Whereas scandium is generally
dispersed in rocks, owing to its crystal-chemical simi-
larity with Fe, Mg and Al, paradoxically, at Saint-Aubin,
Sc-bearing minerals are found within an iron ore. De-
spite the high Fe content of the A horizon, scandium
can thus be concentrated in specific Fe-free minerals at
low-temperature conditions (supergene to hydrother-
mal), owing to its strong affinity with phosphate ions
(Gramaccioli et al. 2000, Liferovich et al. 1998). An-
other interesting fact is the late formation of various
intermediate compositions between zircon and pretulite,
which suggests a complete solid-solution between these
two end-members. Implicit in our reconstruction is a
local mobility of zirconium in solution at a low tem-
perature.

At Saint-Aubin, the ironstone is particularly enriched
in fluorapatite. According to mineralogical and petro-
graphic studies, as well as bulk-rock analyses (Chauvel
& Phan 1965, Chauvel 1974), this phosphate appears
ubiquitously in all iron ore deposits of the Martigné—
Ferchaud Paleozoic syncline. In such phosphate-rich
environments, one may thus expect the discovery of new
occurrences of diagenetic and metamorphic xenotime-
(Y) and pretulite. In fact, Chauvel (1968) described an
overgrowth around detrital crystals of zircon in some
samples: it may correspond to epitactic xenotime-(Y)
(or pretulite ?), rather than to a new generation of zir-
con. More generally, the presence of these accessory
minerals in phosphate-rich metasedimentary rocks, as
exemplified by the recent description by Cabella ez al.
(2001) of authigenic xenotime-(Y) and monazite in
pelitic metacherts from central Liguria, in Italy, hold
much promise as an indicator of the geological evolu-
tion of sedimentary units.

Another interesting problem is the origin of the de-
trital scandian zircon at a regional scale. According to
Chauvel (1974), the ironstone horizons within the lower
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member of the Arenigian Gres armoricain Formation are
related to the weathering and destruction of Cadomian
uplands, which are mainly formed of granitic to grano-
dioritic batholiths. These magmatic rocks could thus be
the main source of scandian zircon.

The phosphate-rich sedimentary iron ore at Saint-
Aubin-des-Chateaux constitutes a new type of occur-
rence of scandium-bearing minerals at low-temperature
conditions. It opens a new field of investigations of the
mineralogy, geochemistry and metallogeny of scandium.
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