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ABSTRACT

The bismuthinite – aikinite (Bi2S3 – CuPbBiS3) series of ordered derivatives (superstructures) is based on the incremental Bi 
+ vacancy → Pb + Cu substitution. Selected structures of this series, gladite, salzburgite, paarite and krupkaite, were refi ned as 
commensurately modulated structures using the superspace approach. The superspace group Pmcn(0�0)00s was used for all these 
structures, � assuming the value of 1/3, 1/4, 1/5, and 2 in the above order. Two independent large-cation positions, one Cu position 
(in oversubstituted members, two) and three S positions were refi ned for the sequence of one or three to fi ve subcells forming 
the above structures using the summation of sinusoidal functions for positional and displacement parameters. In this paper, we 
describe, in terms intended for non-specialists, our choice of the superspace group, its application to individual superstructures, 
the details of the structure refi nement, and the structural interpretation of the results.

Keywords: bismuthinite – aikinite series, gladite, salzburgite, paarite, krupkaite, superspace approach, commensurately modulated 
structures.

SOMMAIRE

La série bismuthinite – aikinite (Bi2S3 – CuPbBiS3) de dérivés ordonnés (surstructures) est fondée sur la substitution par 
incréments de Bi + lacune → Pb + Cu. Nous avons affi né la structure de certains membres de cette série, dont gladite, salzburgite, 
paarite et krupkaïte, en les traitant de structures à modulations commensurables en termes de surespace. Le groupe de surespace 
Pmcn(0�0)00s a été utilisé pour toutes ces structures, � prenant une valeur de1/3, 1/4, 1/5, et 2 dans ces minéraux, respective-
ment. Deux positions indépendantes occupées par de gros cations, le Cu dans une (deux dans les membres sursubstitués), et 
trois positions occupées par le S ont été affi nées pour la séquence de une ou trois à cinq sous-mailles formant ces structures en 
utilisant les fonctions sinusoïdales des paramètres de position et de déplacement. Dans ce travail, nous décrivons, en termes 
convenables pour les non-spécialistes, notre choix du groupe de surespace, son application aux surstructures individuelles, les 
détails de l’affi nement de la structure, et l’interprétation structurale des résultats.

 (Traduit par la Rédaction)

Mots-clés: série bismuthinite – aikinite, gladite, salzburgite, paarite, krupkaïte, concept de surespace, structures à modulations 
commensurables.
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INTRODUCTION

The bismuthinite – aikinite series (Bi2S3 – CuPbBiS3) 
is one of the classical series of sulfosalts. This series 
of ordered derivatives CuxPbxBi2–xS3 has been a 
subject of long and intense research about the textural, 
compositional and structural aspects (Ohmasa & 
Nowacki 1970a, b, Kohatsu & Wuensch 1971, 1976, 
Syneček & Hybler 1974, Mumme 1975, Horiuchi & 
Wuensch 1976, 1977, Harris & Chen 1976, Mumme 
& Watts 1976, Mumme et al. 1976, Chen et al. 1978, 
 Mako vicky & Makovicky 1978, Žák 1980, Pring 1989, 
1995, Mozgova et al. 1990, Balić-Žunić et al. 2002, 
Topa et al. 2002). The most recent of these investi-
gations focused on descriptions of three new crystal 
structures, among which are two four-fold derivatives, 
salzburgite, Cu1.6Pb1.6Bi6.4S12 (Topa et al. 2000), and 
emilite, Cu2.7Pb2.7Bi5.3S12 (Balić-Žunić et al. 2002) and 
a new fi ve-fold derivative, paarite, Cu1.7Pb1.7Bi6.3S12 
(Makovicky et al. 2001). This enlargement of the 
bismuthinite–aikinite series establishes it as a series 
of one-, three-, four-, and five-fold superstructures 
built by compositional and positional modifi cation of 
the basic Bi2S3 structure. An attempt to give an alter-
native, unifi ed description of these superstructures for 
the gladite CuPbBi5S9 – krupkaite CuPbBi3S6 range as 
commensurately modulated structures by means of the 
superspace approach is the topic of the present contri-
bution. The rationale of this study was to fi nd out how 
closely and how clearly the local and the global features 
of this structural series are refl ected in the results of this 
novel approach. We attempt to describe the basis and 
the procedures of the superspace refi nement in terms 
that are clear to the non-specialist.

THE BISMUTHINITE – AIKINITE SERIES

Bismuthinite – aikinite derivatives are superstruc-
tures of the structure of bismuthinite, Bi2S3, formed 
by incremental substitution of bismuth in one of the 
two Bi sites by lead, connected with gradual fi lling of 
the adjacent, void coordination tetrahedron by Cu, in 
agreement with the scheme Bi + � → Pb + Cu. In a 
classical description, these structures are composed of 
M4S6 ribbons with metal atoms in two distinct posi-
tions (Fig. 1). The M2 sites (Bi2 in bismuthinite) are 
centrally situated in the ribbon; both Bi and Pb occur 
in them. The terminal Bi1 sites accept only bismuth. 
Both are in square pyramidal coordination M3+2 that 
can be completed to monocapped prismatic by adding 
two sulfur atoms from the adjacent ribbon(s). The 
tetrahedral voids are situated in the inter-ribbon space; 
they fl ank each ribbon at its terminal portions, and are 
sandwiched between M1 and M2 coordination prisms 
of an adjacent ribbon. Lone-electron pairs in Bi (and 
Pb) are oriented away from the ribbon surfaces, into 
the inter-ribbon space.

The step-wise replacement of Bi + vacancy by Pb 
+ Cu leads in the ordered derivatives (i.e., at ambient 
temperature) to three distinct types of ribbons (Ohmasa 
& Nowacki 1970a): “bismuthinite-like” ribbons Bi4S6 
with an adjacent tetrahedral void, “krupkaite-like” 
ribbons CuPbBi3S6 with one of the two M2 sites 
containing Pb and the adjacent tetrahedral void fi lled 
by Cu, and “aikinite-like” ribbons Cu2Pb2Bi2S6 in 
which both M2 sites are occupied by Pb and both 
adjacent tetrahedral voids are fi lled by Cu (Fig. 2). 
Partial replacement of Bi2 by Pb, associated with 
partial occupancy of adjacent tetrahedra by Cu, has been 
found in several of these phases (e.g., Topa et al. 2000, 
Makovicky et al. 2001, Balić-Žunić et al. 2002). All 
these structures share a common 11.4 Å subcell, which 
is the unit cell of the underlying Bi2S3-like substructure. 
It will be of considerable importance in the derivations 
that follow. The superstructure building occurs along 
[010], yielding the 1b, 3b, 4b and 5b superstructures. 
These are invariably ordered arrangements of two out 
of the three types of ribbon mentioned above.

An alternative description, in form of structure 
intervals (modules) between adjacent planes (010) of 
fully occupied copper tetrahedra, was put forward in 
the three above-mentioned latest works as well. The 
known intervals are those from gladite (1½ bsubcell 
wide), krupkaite (1bsubcell wide) and aikinite (½ bsubcell 
wide). The more complicated, intermediate phases are 
then combinations of these modules, e.g., salzburgite is 
a sequence of two gladite-like and one krupkaite-like 
modules. This system of modules is not equivalent to 
the model of commensurate modulation described in 
this paper.

CHOICE OF SUPERSPACE GROUP

The principal aim of the current investigation was to 
fi nd and apply a single (3 + 1)-dimensional superspace 
group to as many superstructures as possible (prefer-
ably all) of the bismuthinite – aikinite series. The (3 
+ 1)-dimensional superspace groups, as introduced by 
deWolff et al. (1981), are four-dimensional symmetry 
groups in which three dimensions correspond to the 
classical three-dimensional space, and are used here to 
describe the basic (sub)structure. The fourth dimension 
is used in the current type of problems for description 
of the periodic wave-modulation of this basic structure. 
The usual approach, in reciprocal space, relates the 
vectors a*, b* and c* to the reciprocal lattice of the 
main refl ections (i.e., the Fourier transform of the basic 
unmodulated structure), whereas q is the wave-vector 
of the modulation. The corresponding Miller indices are 
usually denoted as h, k, l and m (International Tables, 
volume C). The symbol of a superspace group consists 
of three parts: (a) the space group of the basic structure 
(substructure) (International Tables, volume A), (b) the 
defi nition of the modulation vector q in terms of recip-
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FIG. 1. The crystal structure of aikinite CuPbBiS3 (Kohatsu & Wuensch 1971). Positions 
M1 are occupied by Bi, M2 by Pb, and all tetrahedral voids are occupied by Cu. Atoms 
are situated at two distinct heights, 2 Å apart.

FIG. 2. Bismuthinite-like ribbons Bi4S6, krupkaite-like ribbons CuPbBi3S6, and aikinite-like ribbons Cu2Pb2Bi2S6, from the 
crystal structures of the bismuthinite – aikinite series.

b ca

rocal-space parameters, q = �a* + �b* + �c* so that 
the bracketed values in the superspace-group symbol 
are � = (�,�,�) [in this expression, the components 

of the modulation vector, restricted by symmetry to 
a special fraction, are written explicitly, others by the 
corresponding Greek symbols �, � or �], and (c) the 
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translational parts, along the fourth dimension, of the 
symmetry operators of the space group indicated in 
part (a). Each symbol is one of the letters 0, s, t, q or h 
according to the rules described in International Tables 
volume C, e.g., s = 1/2, and t = ±1/3.

Gladite, a three-fold superstructure, was taken as a 
point of departure. The choice of the supergroup was 
based on the symmetry of the diffraction pattern and 
the observed systematic extinctions. The symmetry of 
the substructure is Pmcn. In terms of the complete, 33 
Å gladite lattice, the refl ections are Q = HA* + KB* + 
LC*. Rewritten in terms of a 1b subcell plus satellites, 
Q = ha* + kb* + lc* + mq, where q = B* = b*/3. Thus 
the main (i.e., subcell) refl ections have K = 3k, and the 
satellites become K = 3k + m for m = 1 or –1. The fi rst 
condition for refl ection following from the presence of 
a c glide plane along B in a form H0L: L = 2n affects 
only refl ections for which K = 3k + m = 0, and therefore 
it is equivalent in the superspace description to h0l0: 
l = 2n. The second condition for refl ection for HK0: 
H + K = 2n (i.e., the n glide plane), turns into hk0m: 
h+3k+m = 2n in the superspace description, which can 
be simplifi ed to h + k + m = 2n.

The refl ection conditions as derived above lead to 
the superspace group Pmcn (0�0)00s. The value of � 
for the three-fold structure is equal 1/3. The letter s 
in the part (c) of the symbol of the superspace group 
means that the glide mirror n along c has the translation 
component along “internal”, i.e., the fourth direction 
equal to 1/2.

In the following, we shall show how the matrix 
form of all symmetry operators can be derived from 
the superspace group-symbol and how they can be 
used to derive four-dimensional refl ection conditions. 
The general symmetry-operator is represented by 4 � 
4 rotation matrix combined with a four-dimensional 
translation vector.
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In this matrix, RE, RM and RI are, respectively, 3 � 3 
external, 1 � 3 mixed and 1 � 1 internal part of the 
rotation matrix, and tE and tI are, respectively, external 
and internal translation vectors. “External” refers in the 
jargon of modulation crystallography to the physical 
three-dimensional space, whereas “internal” refers to 
the additional, fourth coordinate (also referred to as 
the “complementary” or “perpendicular” space). From 
the way the superspace was introduced, it follows also 
that the right upper part of the rotation matrix is identi-
cally equal to zero, and that the remaining parts of the 
rotation matrix are related by the equation q = RE - RI 
• q = RM. The RM part is equal to zero for our case [for 

more details, see deWolff et al. (1981)], and thus all the 
rotation matrices are reduced to two blocks composed 
of RE, RI. The external rotation-matrix and translation 
vectors can be determined from the three-dimensional 
space-group symbol, part (a) as for three-dimensional 
space groups. The internal rotation part is equal to +1 
if RE transforms the q vector into itself, and –1 if it 
transforms this vector to –q. The internal translation part 
tI is derived from part (c), as mentioned above.

In (3 + 1)-dimensional space, the fi rst operation, m, 
has the rotational matrix RE and the translation vector 
tE as follows:
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The value of 1 for the (1 � 1) RI of the 4 � 4 Rm 
matrix suggests that m does not reverse the sense of the 
modulation vector q (see above).

For the c glide plane,
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The RI value is –1 in this case (c reverses the sense 
of the q vector). The parameter x cannot be directly 
derived from the symbol, and it will be deduced from 
the combination of other symmetry elements later.

The transformation matrix of the n glide plane is
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We combine it with m in order to defi ne the two-fold 
rotation operation m � n = 2 , which we further combine 
with inversion in order to obtain 2 � 1̄ = c. This allows 
us to conclude that the parameter x is equal to ½.

For the reflections invariant with respect to the 
rotation part of the operator in question, the translation 
vectors can be used to derive refl ection conditions by 
means of the scalar product H • t = integer. Thus,
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i.e., for (h0l0): l = 2n only because of the c glide plane, 
and
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i.e., for (hk0m): h + k + m = 2n because of the n glide 
plane, as already derived above. Analogous schemes are 
valid for the fi ve-fold superstructure.

In this derivation, we ignored the fact that for these 
commensurate structures, any refl ection (h,k,l,m) can 
be alternatively understood as all refl ections fulfi lling 
the condition (h,k + n,l,m – 3n) for the three-fold 
superstructure (i.e., a fi rst-order satellite of one main 
refl ection overlaps with the second-order satellite of 
the adjacent main refl ection, etc.) and the condition 

(h,k + n,l,m – 5n) for the fi ve-fold superstructure. All 
these refl ections obey the same condition for refl ection, 
(hk0m): h + k + m = 2n. For the four-fold superstructure 
(i.e., salzburgite), the above rules give problems; refl ec-
tions (h,k + n,l,m – 4n) lead to a different parity for the 
refl ection conditions where n is even and where n is odd. 
The diffraction spot should thus be present according to 
the fi rst (even) representation, and it should be absent 
according to the second (odd) representation. The 
symmetry element that leads to such an inconsistency 
cannot be present in the superstructure.

The superspace approach to modulated structures 
leads to translational symmetry in (3 + 1)-dimensional 
direct space. The unit cell is now (3 + 1)-dimensional, 
and the atom parameters are described by modula-
tion functions defi ned within this unit cell and not by 
discrete values as it was in the three-dimensional space. 
The real three-dimensional structure can be derived 
as a section through (3 + 1)-dimensional superspace 
perpendicular to the x4 axis (Fig. 3a). There are an 
infi nite number of such sections, each characterized by 
the value of x4 at the intersection of the hyperplane with 
the x4 axis. The coordinate t that fulfi lls the following 
condition (see Fig. 3a), x4 = q • r + t, remains constant 
for all points of the selected section. On the other hand, 
the coordinate x4 is generally different for different 
modulated positions of the same modulated atom. In our 
case (paarite and gladite), the three-dimensional struc-
ture is represented as the section t = 0, and therefore 
the coordinate x4 is equal to x2/n = Y, the coordinate in 
the n-fold supercell.

For the incommensurate case, all sections will yield 
a generally identical non-periodic structure, only with 
the origin shifted differently in each case. Moreover, 
in this case, every point of the modulation function has 
real meaning and is realized in the three-dimensional 
non-periodic structure. For commensurate cases, only 
a fi nite number of sections (e.g., three sections for the 
three-fold structure) are realized and have real meaning 
(Fig. 3a).

In the subset x2 – x4 of superspace (Fig. 3b), the 
action of n can be shown as a pair of points (x1, x2, x3, x4) 
and (x1 + ½, x2 + ½, x3 + ½, x4 + ½). In Figure 3b, these 
points fall onto two out of the three (or, alternatively, 
fi ve) occupied lattice-lines t of the x2 – x4 section of the 
four-dimensional lattice. This situation is valid for all 
odd-multiple superstructures, but not for even-multiple 
ones, typifi ed in our study by salzburgite. In these, the 
second point falls half-way between the lattice levels 
t obtained in the x2 – x4 section; the relevant element 
of symmetry, however, does not operate outside the t 
sections realized. This is also the reason why it cannot 
be present as a symmetry element in the even-multiple 
supercell. From Figure 3b, it also is clear that the situ-
ation in the x2 – x4 section is independent of the choice 
of the fi rst section t0; it holds for all sets t0, t0 + 1/3, and 
t0 + 2/3 (or the corresponding fourths or fi fths).
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FIG. 3a. Subset x2 – x4 of the superspace for � = ¹̸3 (a three-
fold superstructure). Symbols: ai are axes of the superspace 
cell, xi are atom coordinates in superspace, q the modula-
tion vector. The tI levels represent the single physical-space 
level cut out of superspace over the three subcells involved 
and condensed into the fi rst, fundamental cell. The three 
positions of the atom from the same string of atoms can be 
seen as the three consecutive intersections of the t levels 
with the modulation function in this cell.

FIG. 3b. Action of the n-glide plane of the superspace group 
Pmcn(0�0)00s in the superspace subset x2 – x4. Note the 
compatibility with t lines (cuts) from Figure 3a.
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However, not all symmetry elements of the supercell 
group are compatible with a free choice of the t0 value. 
As a consequence, by selecting specifi c t0 values, we 
can in general obtain different space-groups for the 
supercell. For example, the c glide plane from the super-
space symbol yields equivalent points (x1, x2, x3, x4) and 
(x1, –x2 + ½, x3 + ½, –x4 + ½). For the odd-multiple 
superstructures (� = 1/q , q being an odd integer), the 
c glide plane is valid only for t0 = n/q, or also for t0 = 
1/(2q) + n/q (see Fig. 4a for the three-fold case, with 
the permissible t0 values equal to 0, 1/6, 1/3, 3/6, 2/3, 

and 5/6). The t sections falling outside these values 
yield supercell groups without c. The same holds for 
the inversion center. Therefore, in the case of the odd-
multiple superstructure, we can obtain either Pmcn or 
Pm21n, the latter one with a loss of both c and 1̄. For 
the even-multiple superstructures (� = 1/q), q being an 
even integer), the glide plane n is not acceptable, as 
shown above, and the glide plane c and the inversion 
center are no longer coexisting in the same t0 sections. 
Thus the sections with general values of t0 yield Pm, 

FIG. 4a. Action (x1, –x2 + ½, x3 + ½, 
x4 + ½) of the c glide plane of the 
superspace group Pmcn(0�0)00s 
in the x2 – x4 section of gladite 
(a three-fold superstructure) in 
which it “simulates” a symmetry 
centrum at (¼, ¼), etc. Atom 
“strings” describe the modulation 
of atom positions in the x2 – x4 
section of superspace (compare 
with Fig. 10a).

FIG. 4b. The centrosymmetric 
superspace group Pmcn(0�0)00s 
used for the description of the 
Pmc21 structure of salzburgite 
(a four-fold superstructure). 
Note a shift of t0 by 1/16, the 
real t0 + n/4 levels (dashed) and 
imaginary t0 + n/8 levels (stip-
pled), as well as the real (black) 
and imaginary (void) atoms on 
selected strings.
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those with t0 = n/q and t0 = 1/(2q) + n/q give P21/m, 
whereas those at t0 = 1/(4q) + n/q and t0 = 3/(4q) + n/q 
give Pmc21, the space group observed in salzburgite, 
for which t0 = 1/16 + n/4 or 3/16 + n/4.

The full analysis of the superspace group Pmcn 
(0�0)00s for all possible rational modulation vectors 
� = p/q leads to the supercell space-groups presented 
in Table 1.

Further application for odd-multiple superstructures 
is straightforward: atom parameters are obtained as 
points of intersection of t levels with the modulation 
function. It is not so for even-multiple superstructures. 
For the four-fold superstructure of salzburgite, t0 had 
to be moved to 1/16 in order to preserve the c-glide 
planes, which in the x2 – x4 section “look“ like centers 
of symmetry at (¼, ¼) (compare with the transforma-
tion matrix of the c-glide plane above) (Fig. 4b). In 
the case of the Pmc21 structure, we are sampling the 
centrosymmetric system of modulation functions of the 
superspace group Pmcn(0�0)00s by a t subset of levels 
with the initial t0 value shifted against the origin of the 
superspace group. As a consequence, the atoms (points 
of intersection) on the t0 + n/4 levels invert for Pmc21 
(Fig. 4b) by the action of the original internal operator 
of the superspace group into atoms on the imaginary, 
t0 + 1/8, 3/8,… levels. In order to describe these atom 
positions by a single modulation-function, analogous to 
that used for odd-multiple cases, we place a half of the 
atoms onto the 1/8, 3/8, etc. levels and bring them onto 
the 1/4 etc. levels by the action of the superspace center 
of inversion (and vice versa for the other half). This is 
done by increasing the number of waves used for each 
parameter to the mean value + seven harmonic functions 
(three pairs of trigonometric functions plus one sine 
function without its cosine counterpart). In this way, we 
keep the centrosymmetric superspace-group also for the 
case of an even-multiple superstructure.

Krupkaite has only a basic 11 Å cell with the space 
group Pm21n. Therefore, it cannot be described as a 
basic non-modulated structure with b = 11.2 Å, which 
has an inversion center. It follows from the table of all 
possible space-groups as presented in Table 1 that the 
modulation vector equals q = 2/1b* = 2b* (p = 2, q = 
1) with t0 = ¼ would fulfi ll the symmetry requirement. 

This limiting case is similar to that for salzburgite, but 
it is more complicated. The situation is presented in 
Figure 5, where the refi ned modulation-curves of all 
cations are presented. The fi gure is similar to those for 
gladite, paarite and salzburgite, but here we had to draw 
three superspace cells to see all intersections through 
the selected hyperplane (t0 = ¼). Let us concentrate on 
the two central modulation-curves (black and yellow 
in Fig. 5), which represent the modulation of the M2 
(Pb,Bi) position. Both curves are related by an inversion 
center (the large open circles) in the four-dimensional 
superspace. The real atomic positions in the three-
dimensional structure are the intersections of these 
curves with the hyperplane. It is clearly visible that 
these sites are not symmetrically related by an inversion 
center, the intersection with the yellow curve has a y 
coordinate close to ½, but the second one is consider-
ably shifted from y = ½. This fully corresponds to the 
fact that the three-dimensional structure is non-centro-
symmetric. The intersection of the yellow curve with 
the hyperplane is related through the inversion center 
in the superspace to a point on the black curve as indi-
cated by the arrow. This point lies on the section t0 = 
¾, and the inversion operation results in two points of 
the independent modulation-curve being realized in the 
three-dimensional structure. This allowed us to use an 
average position and one harmonic wave to describe the 
structure as a modulated one. Figure 13 (see below) also 
shows that the main features of the unifi ed description 
are the same for all compounds of the system, including 
the special case of krupkaite.

DETERMINATION OF THE STRUCTURE 
IN FOUR DIMENSIONS

The values of observed structure-factors were taken 
from the studies by Topa et al. (2000), Makovicky et 
al. (2001), and Balić-Žunić et al. (2002), where all 
the experimental details are to be found. Fundamental 
experimental values are quoted in Table 2. Starting 
parameters of the atoms were also obtained from these 
works. For each atom species (i.e., an entire string of 
atoms, such as M1, M2, S1, etc., as defi ned above), 
these parameters were averaged over all the subcells 
of each individual structure to be refi ned. Refi nements 
converged smoothly, and no problems in the refi nements 
were observed. Copper atoms were left out in the initial 
cycle, and found later by inspection of the difference-
Fourier maps in 3 + 1 dimensions. The behavior of Cu 
was described in the present study by crenel functions 
(Petříček et al. 1995), with the length (number of inter-
sections of the crenel function on x4 with the sampling 
t levels) adjusted during the study to fi t the observed 
situation (these are the fi nite strings in Figs. 4a, b).

The positional parameters and anisotropic displace-
ment parameters were refi ned by means of modulation 
functions. Full occupancy was assumed for all atoms 
refi ned. Only in the second part of the present study, for 
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the structures in which partial Cu occupancy of certain 
sites was observed (Topa et al. 2000, Balić-Žunić et al. 
2002), the Cu occupancy of such sites was refi ned by an 
additional crenel function with a refi nable occupancy-
factor. The atoms Pb and Bi in the central, M2, sites of 
ribbons were not distinguished because of their very 
close atomic number; they were refi ned as Bi.

All refi nements were started with the fi rst harmonic 
only; it was also all what was needed for the descrip-
tion of the three-fold superstructure. For the fi ve-fold 
superstructure, one more harmonic is required, whereas 
the situation for the four-fold superstructure has already 
been described. Refi nement of modulated structures 
proceeds by refi ning the coeffi cients of a Fourier series, 
which, for the positional parameters, is

r r u ux n nx n nxave
x y

n

4 4 42 2( ) = + ( ) + ( )⎡⎣ ⎤⎦sin cosπ π
==

∞

∑
1

where n is the order of the harmonic. An example of 
the y-component displacement waves for Pb,Bi in the 
fi ve-fold structure of paarite is shown in Figure 6. In 
the fi nal step, we refi ned also the modulation waves 
of anisotropic displacement parameters of all atoms 
except copper to account for differences in coordina-
tion induced by the strong positional modulation. The 
resulting coefficients, and the equivalent isotropic 
displacement parameters as well as weighing functions 
and goodness-of-fi t parameters, are indicated in Table 3. 
Anisotropic displacement parameters are in Table 4 
(deposited). These being commensurate cases, structure 

factors were calculated using discrete t sections and not 
the entire modulation-waves, as is necessary for the 
incommensurate cases.

For all atoms situated on pure (i.e., tI = 0) mirror 
planes, no superspace modulation exists in the 
x1 – x4 section. Modulation waves in the x2 – x4 and 
x3 – x4 sections show displacements u2(x4) and u3(x4), 
respectively, of M1 and M2 atoms [Bi and (Bi,Pb), in 
this order], copper and the three distinct S sites. Inter-
cepts of the respective modulation-functions with the 
consecutive t levels are the only signifi cant loci of these 
functions and represent consecutive atoms in the given 
string, subcell after subcell.

RESULTS OF THE REFINEMENTS

Results of all refi nements are the coeffi cients of 
an vorthogonalized harmonic function summarized in 
Table 3. The curve expressing the y coordinate of the 
M2 site in gladite, salzburgite and paarite as a function 
of x4 is given in Figures 7a–c, superimposed on the 
Fourier map of the internal space x2 – x4. The essential 
unity of these displacements in the three superstructures 
becomes evident from these fi gures if the intersections 
of the y coordinate curves with the t levels are exam-
ined. Their full understanding requires comparison with 
the real structures (Figs. 8a–c) in which the respective 

FIG. 5. Application of the superspace group Pmcn(0�0)00s 
for the description of the Pm21n structure of krupkaite. 
The x2 – x4 section of superspace is illustrated, with the 
real t0 = ¼ levels interleaved by imaginary t0 = ¾ levels. 
Inversion centers of the superspace group are indicated by 
large void circles; real atoms are black, imaginary are void. 
Two central modulation curves, black and yellow, describe 
the modulation of M2 (Pb,Bi) position.
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initial atoms and the strings of atoms generated from 
them by “modulation” are indicated.

The central M2 sites occupied by Pb have negative 
�y and �z values, those occupied by Bi have positive 
values. Whereas the �y increments are nearly identical 
for all Pb and for all Bi positions, respectively, the �z 
increment lacks this symmetry. The “fi rst” Bi-occupied 
position after the Pb position(s) belongs to a bismuthi-
nite-like ribbon and has a somewhat smaller �z than 
those in the following krupkaite-like ribbons (Fig. 9).

The �y increments of M1 atoms in gladite are 
smallest for the Bi positions adjacent, on the same 

ribbon side, to M2, but largest for the Bi1 atoms next 
to Cu-occupied tetrahedra. Those in the Bi4S6 ribbon 
have an intermediate �y value. This is nearly true for 
paarite, although the scheme for the fi rst-mentioned 
confi guration is ambiguous (Fig. 9).

The y coordinate of Cu in the three structures is 
illustrated in Figures 10a–c on a background of the 
relevant positions of the Fourier map. The length of the 
non-zero part of the crenel function has been adjusted 
manually to cover all Cu positions in accordance with 
the structure. The alternative would have been sets of 
harmonic functions similar to those for M2.
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The full meaning of these data emerges from Figures 
11–12, in which displacements �y and �z of all atoms 
in the fundamental 11 Å cell can be traced. Again, their 
interpretation is intimately connected with Figures 8a–c 
of the full structure. For the sake of understanding these 
fi gures, it has to be stressed again that, in the sections 
x2 – x4 and x3 – x4, the x2 (x3) axis represents the y (z) 
coordinate in the fundamental 11 Å cell, whereas x4 
indicates the full modulation-period (which is equal to 
three fundamental-cell lengths for gladite). Atoms lie on 
the intersection of their modulation curves [yave + �y] 
and [zave + �z], respectively, with the t levels, which in 
upward succession indicate the successive “subcells” of 
the modulated structure. For the x2 – x4 section, these 

FIG. 6. Two component waves and the fi nal �y displacement 
wave (black) for M2 (Pb, Bi) in the fi ve-fold structure of 
paarite. Only the points on levels t = 0 + n/5 express real 
displacements of atoms.

FIG. 7a–c. The y coordinate curves for “Pb” (i.e., M2) atom 
string in the crystal structures of gladite, salzburgite and 
paarite, plotted on the background of Fourier maps of the 
internal space x2 – x4.

b

c

a
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FIG. 8. The crystal structures of (a) gladite, (b) salzburgite and (c) paarite, with the cation strings parallel to b indicated by 
labeling. Atoms of sulfur are shown in yellow, and atoms of copper, in green.

t levels are obvious; however, for the x3 – x4 section, 
they move (“sweep the fi eld”) upward as the value of 
x4 increases. To use the example of gladite, the fi rst t 
level moves with the increasing x4 value from 0.0 to 
0.33, the second t level follows the x4 value from 0.33 
to 0.66, and the third one from 0.66 to 1.00. Thus we 
must estimate the x2 coordinate of the atom fi rst (e.g., 
by reading it off Fig. 11) in order to evaluate its x3 (or 
�z) coordinate. Let us not forget the starting phase-shift 
t0 = 1/16 for salzburgite.

Figures 11a and 12a for gladite are easiest to inter-
pret. The (Pb,Bi) M2 curves in Figure 11a show �y 
values for the Bi4S6 ribbon (at t = 1/3) to be larger than 
those for the Cu2Pb2Bi2S6 ribbon. This is a result of 
larger lateral asymmetry in the bond scheme of Bi(2)S5 
pyramids in comparison with the Pb(2) pyramids. The 
same explanation holds for the movements of S2. The 
Bi1 curves around the 1/3 and 2/3 levels show a larger 
�y difference for Cu-free ribbon contacts than for the 
Cu-populated ones. The two Bi1 atoms illustrated 
belong to two distinct intermeshed ribbons, and the 

latter trend indicates a deeper insertion of these ribbons 
into each other’s interspaces.

The x3 – x4 plot reveals a sinusoidal movement of 
the z coordinate for all large cations. Modulations of 
the (Pb,Bi)2 positions are parallel for all four (Pb,Bi)2 
strings in the supercell (Fig. 12a); that for Bi1 shows 
a decrease in the difference of z coordinates for pure 
Bi4S6 ribbons. The Bi1 curves that are adjacent in the 
x3 – x4 plot belong to Bi1 atoms at the opposite ends 
of the same ribbon. Thus, their �z gap can be taken 
as a measure of ribbon rotation about its central 21 
axis. The Bi4S6 ribbons in gladite are therefore closer 
to parallelism with the [010] direction, whereas the 
Cu2Pb2Bi2S6 ribbons are more rotated, toward the Cu 
atoms attached to them (Fig. 8a).

Owing to the smaller degree of rotation of the 
Bi4S6 ribbons and a more pronounced rotation of two 
consecutive Cu2Pb2Bi2S6 ribbons that are hinged onto 
the former ones via Cu-free contacts (Fig. 8a) and 
mutually via Cu-containing contacts, sinusoidal shifts 
of (especially) the central (Pb,Bi)2 atoms, –�z for the 

b ca
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fi rst subcell (t = 1/3), and +�z for the third subcell (t = 
2/3), are generated. This kind of information can also be 
derived from discretely refi ned structures, but it requires 
a more laborious analysis.

The plots x2 – x4 and x3 – x4 of salzburgite (a four-
fold superstructure) show the same features (Figs. 11b 
and 12b). Their “stiff” appearance is connected with 
the presence of a single Bi4S6 ribbon in any one [010] 
sequence of four ribbons; this ribbon shows lesser 
rotation. The “stiff” �y curves for Bi1 again are more 
distant from each other in Cu-free intervals, and closer 
in the intervening Cu-containing intervals.

Paarite (Figs. 11c, 12c) contains only one Bi4S6 
ribbon in a [010] string of fi ve distinct ribbons. It has 
a pair of Cu-containing ribbon contacts interspersed 
between three Cu-free contacts. Thus, �y of the 
(Pb,Bi)2 curve lies between those of salzburgite and 
gladite, whereas the Bi1 curve is straight for x4 from 
0.0 to 0.4, and for its symmetry-equivalent, and shows 
constriction of the Bi1 – Bi1 curve interspace in the 
Cu-containing parts; the same explanation as for salz-
burgite applies. The x3 – x4 diagram shows sinusoidal 

trends that are nearly identical with those in gladite; an 
additional –�z shift of Pb is observed in the fi rst subcell, 
indicating its position in the trigonal prismatic site of 
the inter-ribbon space. The interspace of Bi1–Bi1 curves 
again expresses lesser rotation of the Bi4S6 ribbon in 
respect to the krupkaite-like ribbons.

The x2 – x4 diagram of oversubstituted gladite is 
virtually identical with that for stoichiometric gladite. 
The refi ned, partly occupied, position of Cu2 is shifted 
slightly in the y coordinate against the fully occupied 
Cu1 positions (Fig. 13). Positional shifts for other 
cations, connected with the vacancy of the Cu2 posi-
tions in the previous structures, are slightly smaller in 
this case, owing to only partial vacancies at Cu2 sites.

Table 5 shows the fractional coordinates of atoms 
derived from the superspace refi nement of the gladite 
structure, compared to those refi ned as discrete atoms in 
the 33 Å supercell under the same conditions of refi ne-
ment. These coordinates are almost identical, which 
refl ects the fact that both descriptions are equivalent 
where the highest possible number of modulation 
waves is used. Table 6 shows the selected interatomic 

FIG. 9. Curves of �y and �z for M2 (Pb, Bi) and M1 (Bi) positions in (a, b) gladite and (c, d) paarite. Green curve: �z, red 
curve: �y. The interpretation of t levels for �y and �z, respectively, is explained in the text.
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cation–anion distances in gladite, obtained by the modu-
lated structure approach.

EPILOGUE

Our results show the great versatility and univer-
sality of the superspace approach developed for 
modulated structures. Properly applied, it is capable of 
describing not only modulations over several basic cells, 
but also the modulations with several modulation-waves 
inside one basic cell. It should be stressed, however, 
that amenability of a family of related structures to the 
superspace refi nement as commensurately modulated 
structures does not automatically turn them into typical 
modulated structures. In the commensurately modulated 
description, we fi t continuous sinusoidal functions to a 

FIG. 10. The �y coordinate curves for the string of Cu atoms 
in stoichiometric gladite, salzburgite and paarite, on the 
background of Fourier maps in the internal space x2 – x4.b

ca
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set of discrete values at discrete, periodically repeating 
sites. A modulated nature of the structure is obvious in 
the situations where we deal with “lock-in” members of 
a series of incommensurately modulated structures. It is 
not the case where such a reference frame is missing, 
as in the present instance.

The structures treated in this paper can be, and also 
were, refi ned using discrete atoms and three-dimen-
sional space-groups instead of modulated strings of 
atoms and a superspace group. Structural descriptions of 
this family were given in terms of two coexisting types 
of M4S6 ribbons arranged into ordered patterns (Ohmasa 
& Nowacki 1970a) as well as in modular terms, refer-
ring to the planes of tetrahedra fully occupied by Cu 
atoms and to the width of the copper-free intervals 
(moduli) between them (Topa et al. 2000, Makovicky 
et al. 2001, Ferraris et al. 2004). The present descrip-
tion, as commensurately modulated structures, besides 

giving an alternative method of structure refi nement, 
adds one more approach to these structure descrip-
tions, revealing especially the global adjustments of the 
structure framework. The atom-coordinate curves are 
not as easy to interpret as the interatomic distances but, 
properly analyzed, they refl ect the overall positional (or 
displacement, occupancy) trends, which remain usually 
submerged in localized descriptions.

The structures of the aikinite–bismuthinite series 
are not typical modulated structures, such as those of 

FIG. 11. The x2 – x4 sections of superspace for (a) gladite, 
(b) salzburgite, and (c) paarite, indicating y coordinates for 
all strings of atoms in each structure illustrated in Figures 
8a–c. The t levels show atom loci in each string and for 
each consecutive subcell. Black curves: M2 strings, green 
curves: M1 strings, red intervals: Cu.
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Na2CO3 (deJong & Tuinstra 1979, Hogervorst et al. 
1979, Zubkova et al. 2002, Dušek et al. 2003), for 
example. At best, they can be classifi ed as interface-
modulated structures (Amelinckx 1979), where the 
interfaces modulating the basic structure are the (010) 
planes with tetrahedra occupied by Cu, and the Pb sites 
adjacent to these. It means that these structures are a 
boundary case, eminently suitable also for the afore-
mentioned alternative, modular approach. Still, owing 
to the introduction of the crenel function, the present 
series was successfully treated as a modulated structure 
by a superspace approach.
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