STEFANO MERLINO[§]

Dipartimento di Scienze della Terra, Via S. Maria 53, University of Pisa, 56100 Pisa, Italy

MARCELLO MELLINI

Dipartimento di Scienze della Terra, Via Laterina 8, University of Siena, 53100 Siena, Italy

INTRODUCTION

In their paper entitled "Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario", Chakhmouradian et al. (2008) presented chemical, crystallographic and structural data on what they claimed is a new mineral species in the cuspidine group. All the phases in this group are built up of "octahedral" walls four columns wide, and disilicate groups. Merlino & Perchiazzi (1988) derived ten distinct structural types, which result from the different ways to connect disilicate groups and "octahedral" walls, and present different unit-cell parameters and space-group symmetries. "Marianoite", with chemical composition Na_{1,930}Ca_{3,996}Mn_{0.042}Nb_{0.967}Zr_{0.889}Ti_{0.094}Fe_{0.080} $Mg_{0.028}Hf_{0.006}Ta_{0.003}(Si_{3.965}O_{14})(O_{2.927}F_{1.073})$, belongs to structural type 8 in that modular classification, together with wöhlerite. The chemical, crystallographic (Table 1) and structural data point to very close relationships between them, more precisely an actual identity, in our view, with no need for the introduction of a new, redundant species. The structural study of wöhlerite was carried out on a crystal from Brevig, Norway (Mellini & Merlino 1979), with data collected with a Philips PW 1100 automatic diffractometer [graphite monochromatized MoK α radiation; θ -2 θ scan, scan width 2.00°, scan speed 0.08° s⁻¹, from 2 to 30° in θ ; absorption correction by the method of North et al. (1968)]. The structural study on "marianoite" was carried on crystal from Prairie Lake with data collected on a Bruker PLATFORM three-circle goniometer equipped with a 1K SMART CCD detector [monochromatized MoKa radiation; frame width of 0.3° in ω ; acquisition time of 30 seconds per frame; data collected in the interval 3 to 69.25° in 2 θ). During the refinement, account was taken of {100} twinning (fractional contributions of the twin components: 0.357 and 0.643)]. The cation distributions in the "octahedral" walls is represented in Figure 1. The atomic positions are denoted in different ways in the papers by Chakhmouradian *et al.* (2008) and Mellini & Merlino (1979). In Table 2, we compare the notations given in the two papers for corresponding atomic positions.

The only substantial differences are not in the data obtained through the X-ray-diffraction study but only in the crystal-chemical interpretation of the results by Mellini & Merlino (1979) on one hand and Chakhmouradian *et al.* (2008) on the other; the different interpretations may be easily appreciated by looking at the ideal crystal-chemical formulas presented by the two groups of authors, with attention to the cations in brackets:

wöhlerite (Mellini & Merlino 1979) $Na_2Ca_4[Zr(Nb_{0.8}Ti_{0.2})](Si_2O_7)_2(O_{2.8}F_{1.2})$

"marianoite" (Chakhmouradian *et al.* 2008) Na₂Ca₄[Nb,Zr]₂ (Si₂O₇)₂(O,F)₄

TABLE 1. CELL PARAMETERS AND RESULTS OF THE STRUCTURE REFINEMENTS FOR WÖHLERITE AND "MARIANOITE"

	wöhlerite	"marianoite"
space group a (Å) b (Å) c (Å) β (°) Unique reflections Final R, [Fo > 4 σ (Fo)] Residual peaks (e·Å ⁻³)	P2, 10.823(3) 10.244(3) 7.290(2) 109.00(4) 2343 0.019 no peak larger than 0.03	<i>P</i> 2, 10.8459(19) 10.2260(14) 7.2727(10) 109.332(3) 5905 0.0465 +2.17, -1.94

[§] E-mail address: merlino@dst.unipi.it

In particular, according to Mellini & Merlino (1979), zirconium and niobium (plus minor titanium) are well ordered at distinct sites, whereas according to Chakhmouradian et al. (2008), zirconium and niobium are randomly distributed on the two sites. Notwithstanding the similar, nearly identical, scattering power of zirconium and niobium, Mellini & Merlino (1979) maintained that the ordered distribution of Zr and Nb + Ti atoms between the two smallest sites in the "octahedral" walls may be reliably established on the basis of a) average bond-distances involving the two sites, b) different site-distortion, c) different thermal parameters for the atoms at the two sites. The arguments of Mellini & Merlino (1979) were rejected by Chakhmouradian et al. (2008), who maintained that the partitioning of Nb and Zr between the two smallest octahedrally coordinated sites cannot be determined unambiguously and that the mineral has to be treated as containing a "composite site" made up of the two crystallographic sites we are discussing, with Zr, Nb (and Ti) randomly distributed between them. Following this approach, wöhlerite would contain zirconium dominant at both sites, whereas "marianoite" would contain niobium dominant at both sites, and consequently deserve the status of a new mineral species.

DISCUSSION

In the following, we shall confirm our interpretation, presenting more detailed evidence for it and pointing out the flaws in the critical remarks by Chakhmouradian *et al.* (2008). As the substantial differences between our interpretation and that by Chakhmouradian *et al.* (2008) lies in the different partitioning of Nb⁵⁺ and Zr⁴⁺ cations, we shall first of all present the bond distances, their average values, as well as the site distortion (measured by δ , the difference between the largest and shortest bond-distances) at the *M*1 and *M*2 sites, together with the corresponding values in two typical zirconium and niobium minerals of the cuspidine group, låvenite (Mellini 1981) and niocalite (Mellini 1982), respectively.

On the basis of the data presented in Table 3, we proceed to compare the agreement of the experimental results with the suggested partitioning.

Bond distances

The "effective ionic radii" of Nb⁵⁺, Ti⁴⁺ and Zr⁴⁺ in coordination VI (Shannon & Prewitt 1969, Shannon 1976) are: 0.64, 0.605, 0.72 Å, and the ionic radius of ^{IV}O²⁻ is 1.378 Å (Shannon & Prewitt 1969) [Chakhmouradian *et al.* (2008) have carried on their calculation erroneously assuming an "effective ionic radius" for the O²⁻ anion of 1.365 Å, corresponding to the ionic radius of ^{III}O²⁻; actually, the oxygen anions are in fourfold coordination, the only exception being O8 (O5 in wöhlerite)].

Assuming the cationic distribution proposed by Mellini & Merlino (1979) [Zr at M2 and (Nb_{0.8}Ti_{0.2}) at M1] and applying their indication also in the case of "marianoite" [Zr at M2 and Nb at M1], the calculated average bond-distances (in Å) are:

	wöh	lerite	"marianoite"			
	calc.	obs.	calc.	obs.		
M1–O	2.011	2.033	2.018	2.031		
М2-О	2.098	2.084	2.098	2.080		

The discrepancies between calculated and observed values are -0.022 and 0.014 for *M*1 and *M*2, respectively, in wöhlerite ($\Sigma \Delta^2 = 0.68 \times 10^{-3}$) and -0.013 and 0.018 for *M*1 and *M*2, respectively, in "marianoite" ($\Sigma \Delta^2 = 0.49 \times 10^{-3}$).

By assuming a disordered distribution of the cations between the two sites, we obtain:

	wöhl	lerite	"marianoite"			
	calc.	obs.	calc.	obs.		
M1–O	2.055	2.033	2.058	2.031		
М2-О	2.055	2.084	2.058	2.080		

The discrepancies between calculated and observed values are 0.022 and -0.029 for *M*1 and *M*2, respectively, in wöhlerite ($\Sigma\Delta^2 = 1.33 \times 10^{-3}$); 0.027 and -0.022 Å for *M*1 and *M*2, respectively, in "marianoite" ($\Sigma\Delta^2 = 1.21 \times 10^{-3}$).

Thus the crystal-chemical interpretation by Mellini & Merlino (1979) is still to be preferred with respect to that by Chakhmouradian *et al.* (2008). The critical remarks by those authors cannot alter this conclusion. Moreover, we may use their arguments about the occupancy of site M1 in wöhlerite, obviously assuming the

TABLE 2. NOTATIONS FOR CORRESPONDING ATOMIC POSITIONS IN "MARIANOITE" AND WÖHLERITE

"Morionoito"	0-1	~	- 2	0.02			Nat		NaO	0:4		0:0	0.1	2	0:4		я	140
Wöhlerite	Ca1 Ca2	C	az a3	Ca3 Ca4	C	Ca1	Na1 Na2		Naz Na1	Si1		Si2 Si1	Si	5 1	Si4 Si3	N	b	Zr
"Marianoite"	01	02	O3	04	05	06	07	08	09	O10	011	012	O13	014	O15	O16	017	F
Wöhlerite	02	07	04	O3	01	09	O6	05	011	08	O10	013	O18	017	012	O16	014	F15

correct radius for the O^{2–} anion, to definitively validate our cation distribution. In fact, they maintain that "if the proportion of Ti at this site is fixed at 20%, the average M1-O distance of 2.033 Å requires that the remainder be made up of 50% Zr and 30% Nb" (Chakhmouradian *et al.* 2008). Actually, if the proportion of Ti at the M1site is fixed at 20%, the average M1-O distance of 2.033 Å requires that the remainder be made up of 53% Nb and 27% Zr.

The conclusion by Chakhmouradian *et al.* (2008) that "clearly, this result is at variance with the interpretation of Mellini & Merlino (1979) that the M1 site is populated predominantly by Nb" may be fully reversed; merely on the basis of their argument, we may conclude that the M1 site in wöhlerite is predominantly populated by Nb.

Site distortion

The *M*1 and *M*2 sites are substantially different with regards to the distortion of polyhedra, which we may simply indicate as the difference δ between the longest and the shortest distances in the polyhedron. The values for the *M*1 site in wöhlerite and "marianoite", 0.418 and 0.441 Å respectively, compare with the value found for the Nb site in niocalite (0.372 Å). Clearly lower values have been found for the *M*2 site in wöhlerite and "marianoite", 0.115 and 0.105 Å, respectively, which compare with the values found at other sites presenting a dominant Zr occupancy in minerals of the cuspidine family: the Zr site in låvenite (with some substitution by Nb): $\delta = 0.214$ Å (Mellini 1981); the Zr site in hjortdahlite I: δ

TABLE 3. BOND DISTANCES AND SITE DISTORTION AT THE *M*1 AND *M*2 SITES OF WÖHLERITE AND "MARIANOITE", AS WELL AS AT THE N5 AND Zr SITES OF NIOCALITE AND LÄVENITE, RESPECTIVELY

	wöhlerite	"marianoite"	Nb site in niocalite
M1 average δ	1.842 Å 1.864 1.995 2.097 2.141 2.260 2.033 0.418	1.828 Å 1.835 1.987 2.111 2.154 2.269 2.031 0.441	1.884 A 1.943 1.950 2.126 2.131 2.256 2.048 0.372
	wöhlerite	"marianoite"	Zr site in låvenite
M2 average δ	2.046Å 2.056 2.075 2.077 2.088 2.161 2.084 0.115	2.055Å 2.055 2.068 2.070 2.074 2.160 2.080 0.105	2.010Å 2.029 2.035 2.069 2.129 2.224 2.083 0.214

= 0.176 Å (Merlino & Perchiazzi 1985), in hiortdahlite II: δ = 0.092 Å (Merlino & Perchiazzi 1987), and in burpalite, δ = 0.035 Å (Merlino *et al.* 1990).

Admittedly, we may find niobium compounds with smaller distortions at the Nb site and zirconium compounds with larger distortions at Zr site, and we agree with Chakhmouradian *et al.* (2008) that the distortion is controlled also by "electrostatic forces exerted by ions outside the nearest coordination sphere". It is exactly for this reason that we compare the behavior of Nb and Zr in the same class of compounds, presenting the same or a very similar structural arrangement. In all the minerals of the cuspidine group, the Zr sites present a definitely smaller distortion with respect to the Nb site in niocalite.

Bond-valence balance

Figure 1 shows that the regular alternation of Nb5+ and Na⁺ in the second "octahedral" column and Zr⁴⁺ and Ca²⁺ in the fourth column are the most appropriate to assure local equilibrium of charges. However, a reliable test to establish the actual distribution of cations at M1 and M2 sites requires a bond-valence calculation. Table 4 compares the results of bond-valence-balance calculations for the ordered (Nb at M1 and Zr at M2) and disordered (Nb_{0.5}Zr_{0.5} at both sites) distributions for "marianoite" (at left), as well as for the ordered $(Nb_{0.8}Ti_{0.2} \text{ at } M1 \text{ and } Zr \text{ at } M2)$ and the disordered $(Nb_{0.4}Ti_{0.1}Zr_{0.5} at both sites)$ distributions for wöhlerite. The comparison is made only for the anions involved in M1-O and M2-O bonds, as the other anions are not affected by the cationic distributions in M1 and M2sites. The calculations have been made on the basis of the bond-valence parameters given by Brese & O'Keeffe (1991).

The bond-valence-balance calculations also unambiguously point to an ordered distribution of the cations in the two smallest octahedra of the structural arrangements of wöhlerite and "marianoite".

Thermal parameters

Finally, the behavior of the equivalent thermal parameters at the M1 and M2 sites in wöhlerite and "marianoite" is not as irrelevant in supporting our model of distribution as assumed by Chakhmouradian *et al.* (2008). In Figure 2, we present a plot of the equivalent thermal parameters for the Ca (Ca1, Ca2, Ca3, Ca4), Zr and Nb sites in wöhlerite as a function of the average distance in each polyhedron, as well as a similar plot for "marianoite". As expected, the equivalent thermal parameters regularly increase with increasing average bond-distance, with the marked exception of the equivalent thermal parameter for Nb, in keeping with our assumption of a 20% replacement of Nb by Ti at that site ["Ti⁴⁺ exhibits a smaller off-centre displacement; … we can expect a high equivalent thermal parameter for

FIG. 1. Cation distribution in the "octahedral" walls of "marianoite". All the cationic environments are represented as octahedra, although Ca2 is seven-coordinated, and Ca4, Na1, Na2 are eight-coordinated.

the Nb site" (Mellini & Merlino 1979)]. The absence of such deviation from the plot for the point corresponding to the *M*1 site in "marianoite" ($B_{eq} = 0.53$ for *M*1, average bond-distance 2.031 Å; $B_{eq} = 0.73$ for *M*2, average bond-distance 2.080 Å) confirms the absence of relevant cation-mixing at the *M*1 and *M*2 sites, in accordance with our model of ordered distribution of Nb at *M*1 and Zr at *M*2.

CONCLUSION

It is evident that we may rephrase a concluding sentence by Chakhmouradian *et al.* (2008) as follows: "From the above discussion, it is clear that the partitioning of Nb and Zr between the two smallest octahedrally coordinated sites in wöhlerite and "marianoite" can be determined unambiguously." In fact, a given cation is characterized not only by its electron-density maximum, but also by its radius, its charge and its peculiar crystal-chemical behavior. Consequently, not only the X-ray-scattering power, but also the bond distances, the bond-valence balance, and the site distortion are experimental lines of evidence to be taken into due account. All those lines of evidence concurrently

FIG. 2. Plot of B_{eq} versus the average bond-distances for cationic sites in wöhlerite and "marianoite".

TABLE 4. BOND-VALENCE-BALANCE CALCULATIONS
FOR M1 AND M2 SITES IN MARIANOITE, AND Nb AND Zr SITES
IN WÖHLERITE, FOR ORDERED AND DISORDERED
DISTRIBUTIONS OF CATIONS

	"N	/larianoi		\	Wöhlerite			
anion	O.D.	I.V.	D.D.	anion	O.D.	I.V.	D.D.	
O5 O4 O3 O7 O10 O6 O11 O12 O17 O16	1.893 2.047 1.993 1.894 1.986 1.957 2.049 2.017 1.941 1.946 2.150	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1.907 2.066 2.014 1.870 1.966 1.939 2.025 1.992 1.946 1.991 2.195	01 03 04 05 06 08 09 010 010 013 014 016	1.876 2.000 1.986 1.893 1.990 1.946 2.006 2.004 1.893 1.800 2.088	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1.900 2.032 2.023 1.855 1.953 1.918 1.968 1.964 1.898 1.867 2.159	
$\Sigma\Delta^2$	0.059		0.077	$\Sigma\Delta^2$	0.049		0.084	

O.D.: ordered distribution, I.V.: ideal value, D.D.: disordered distribution. * As explained by Mellini & Merlino (1979), the occupancy of this anionic site is assumed to be $(O_{\circ,8}F_{\circ,2})$.

support, in the present case, our assumptions about cation partitioning in wöhlerite and "marianoite".

We are obviously aware that some limited substitution of Nb by Zr at the *M*1 site and of Zr by Nb at the *M*2 site is not only possible but also probable, but to a degree so as to keep Nb and Zr dominant at the *M*1 and *M*2 sites, respectively. In fact, in wöhlerite, the best agreement between calculated and observed bond-lengths may be obtained by assuming minor substitutions of Zr at the *M*1 site and of Nb at the *M*2 site: *M*1 (Nb_{0.6}Ti_{0.2}Zr_{0.2}) 2.027 Å (calc.), 2.033 Å (obs.); *M*2 (Zr_{0.8}Nb_{0.2}) 2.082 Å (calc.), 2.084 Å (obs.). Similar substitutions in "marianoite" result in the following calculated bond-distances: *M*1 (Nb_{0.8}Zr_{0.2}) 2.034 Å (calc.), 2.031 Å (obs.); *M*2 (Zr_{0.8}Nb_{0.2}) 2.082 Å (calc.), 2.080 Å (obs.).

On the other hand, it would be sufficient to have only a slight excess of Nb (for example 55% Nb) at site M1 to definitely rule out the possibility of Nb dominance at both M1 and M2 sites, which is the necessary condition for the definition of "marianoite" as a new mineral species.

It appears surprising that whereas they claim to proceed to a nomenclatural simplification, Chakhmouradian *et al.* (2008) start this claimed simplification by introducing an unnecessary new mineral name. Moreover, it is particularly disappointing that they criticize our work without any serious experimental evidence and relying only on groundless arguments.

The potential presently offered by synchrotron radiation sources allow one to distinguish isoelectronic cations through studies of anomalous scattering with X-ray radiation of appropriate wavelength. In the present case, the maximum difference in the scattering power of Zr and Nb is obtained at a wavelength λ of 0.6890 Å ($\Delta f' \approx -8.0$ for Zr; $\Delta f' \approx -2.3$ for Nb). The difference in the scattering power of the two cations should be sufficient to lead to an accurate "direct" refinement of occupancies at the *M*1 and *M*2 sites.

If Chakhmouradian *et al.* (2008) do need such additional proof to be convinced of the prevalent occupation of M1 and M2 sites by niobium and zirconium, respectively, we suggest that they carry out such an experiment, which, in our view, they should have undertaken before proceeding to the discreditation of our work.

Our final suggestion is addressed to the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association. Whenever the proposal of a new mineral is based on the discreditation of a preceding study, it would be proper to ask the authors of that study for comments and remarks. Fortunately, both authors in the present case are still alive, and they would have been glad to help the Commission in reaching its decision.

References

- BRESE, N.E. & O'KEEFFE, M. (1991): Bond-valence parameters for solids. Acta Crystallogr. B47, 192-197.
- CHAKHMOURADIAN, A.R., MITCHELL, R.H., BURNS, P.C., MIKHAILOVA, Y. & REGUIR, E.P. (2008): Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario. *Can. Mineral.* 46, 1023-1032.
- MELLINI, M. (1981): Refinement of the crystal structure of låvenite. *Tschermaks Mineral. Petrogr. Mitt.* 28, 99-112.
- MELLINI, M. (1982): Niocalite revised: twinning and crystal structure. *Tschermaks Mineral. Petrogr. Mitt.* 30, 249-266.
- MELLINI, M. & MERLINO, S. (1979): Refinement of the crystal structure of wöhlerite. *Tschermaks Mineral. Petrogr. Mitt.* 26, 109-123.
- MERLINO, S. & PERCHIAZZI, N. (1985): The crystal structure of hiortdahlite I. *Tschermaks Mineral. Petrogr. Mitt.* 34, 297-310.
- MERLINO, S. & PERCHIAZZI, N. (1987): The crystal structure of hiortdahlite II. *Mineral. Petrol.* 37, 25-35.
- MERLINO, S. & PERCHIAZZI, N. (1988): Modular mineralogy in the cuspidine group of minerals. *Can. Mineral.* 26, 933-943.
- MERLINO, S., PERCHIAZZI, N., KHOMYAKOV, A.P., PUSHCHA-ROVSKII, D.Y., KULIKOVA, I.M. & KUZMIN, V.I. (1990): Burpalite, a new mineral from Burpalinskii massif, North Transbajkal, USSR: its crystal structure and OD character. *Eur. J. Mineral.* 2, 177-185.
- NORTH, A.C.T., PHILLIPS, D.C. & MATHEWS, F.S. (1968): A semi-empirical method of absorption correction. Acta Crystallogr. A24, 351-359.
- SHANNON, R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751-767.
- SHANNON, R.D. & PREWITT, C.T. (1969): Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925-946.

Received January 23, 2009.