иготрофной сфагиовой ^{тар} личества пыльцы кар^{ли}. зкое падение кривей пыр кривей Ulmus, отмечения Европейского континени, такт. Радисуглеродиме да нины и на болоте Антеко s произошие одновремень Алиматическая обусловик атами определений пыльца моных лесов на Урале пр. ерофитного пида U. сапр vis Pall. n U. Scahra 🔌

88; 3960 ± 130 n Mo-3%; лиготрофной залежи, Сфф равичном горязонте.

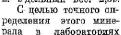
Поступило 2 VIII 1903

др., Геохимин, № 40 (156), рил СССР в голоцене, М., 166, погия верхного наейстоцена с авская, Бюлл комиссии х отинский, ДАН, 198, 21

Доклады Академии наук СССР 1966. Tom 171, № 5

удк 549.6

МИНЕРАЛОГИЯ


В. И. КУДРЯШОВА

ТУНГУСИТ — НОВЫЙ МИНЕРАЛ ИЗ ГРУШНЫ ВОДНЫХ СИЛИКАТОВ КАЛЬЦИЯ

(Представлено академиком Н. В. Беловым 26 VIII 1966)

В покровах шаровых дав на правом берегу р. Нижней Тунгуски, в 2 км выше пос. Тура среди комплекса цеолитов, кальциевых гидросиликатов, кальцита, минеранов кремнезема отмечается широкое распространение зененого хлоритоподобного минерала. Чешуйки его размером до 0,5 см образуют корочки радиально-лучистого строения на степках миндалин и гисэд (рис. 1). Центральные части последних выполнены анальцимом, апофиллитом, кварцем, кальцитом и другими минералами. Чешуйки имсют травино-веленый цвет с сероватым оттенком в крупных сростках: реже встречаются более блед-

но окрашенные агрегаты вилоть до зеленовато-белого. Характерно, что слабо окрашенные разности отмечаются главным образом во внешних частях корочек, обращонных к центру пустот, Апрегаты чешуек при надавливании игной распадаются на тончайшие дисточки со слабым перламутровым блеском. Чешуйки гибкие, хлоритоподобные, Твердость низкая, около Удельный вес. 2,59.

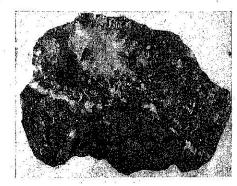


Рис. 1. Пнездо анальцима с оторочной из хлоритопо-добного тунгусита в шаровых лавах Нижней Тунгуски, пос. Тура. 4/5 нат. вел.

рала в дабораториях несторождений, петрографии, минералогии и геохимии АН СССР (ИГЕМ) был проведен ряд аналитических исследований. Первые же результаты показали, что это повый минерал. Для контроля анализы повторялись на разных пробах. Результаты оказались биизкими; это позволяет быть уверенным в окончательной идентификации ми-

Для нового минерала предлагается название Тунгусит (tungusite) по названию р. Нижней Тунгуски.

Микроскопическое изучение показало, что тунгусит образует крупночешуйчатые радиально-пучистые агрегаты (рис. 2) желтовато-зеленого цвета со слабым илеохроизмом. Удлинение положительное, угасание прямое. Двупреломление порядка 0,015—0,020. Имерсионным методом измерен только один из показателей преломления N_0 (или $N_g=N_m$), равный $1,568 \pm 0,002$. В базисных разрезах при коноскопии отчетливо определяется отрицательный оптический знак и нулевое значение угла 2V. Сингония не выяснена.

Химический анализ (табл. 1), выполненный аналитиком П. Н. Ниссембаум, определяет состав минерала как водный кальциево-железистый силикат. Для сравнения приводится более ранний анализ этого минерала из коллекции 1950 г. (аналитик О. П. Острогорская), близкий первому.

Табляца 1 Химические анализы тунгусита и гиролита с р. Нижней Тунгуски (%)

Компопент	Тунгусцт			Pupo-
	1957 r.	1950 r.	сред- нее	лит (°)
SIO ₂ Al ₂ O ₃ Fe ₂ O ₄ FeO MnO MgO CaO Na ₂ O K ₂ O	47,56 2,90 1,91 11,69 1,33 0,84 24,33 1,61	45,07 2,97 1,71 11,36 1,44 1,31 26,11 2,21 He onp, 1,45	46,31 2,93 1,81 11,52 1,38 1,07 25,22 1,91	62,97 1,01 0,04 — 0,12 32,90 0,47 —
Н _• О+ Сумма	7,40	100,00	6,89	100,04

В основу пересчета был положен кремнекислородный радикал [Si₆O₁₈]∞, установленный в слюдонодобных Са-гидросиликатах (4). Предварительные пересчеты химического анализа показали, что если исключить все железо и пересчитать оставпиеся компоненты на 100%, то результат будет близок анализу гиролита (2). Однако пересчеты на формулу гиролита не дали положительного результата. Очевидно, в данном минерале двухвалентное железо занимает самостоятельное положение в виде [Fe(OH)2] между кальциевыми слоями гиролитового типа, подобно бруситовым слоям [Mg(OH)2]. Формула минерала в этом случае должна выглядеть следующим образом: $n[\text{Fe}(\text{OH})_2]\text{Ca}_4\text{Si}_6\text{O}_{45}(\text{OH})_2 \cdot n\text{H}_2\text{O}.$

Если катионы Ca, Na, (Mn) объединить в группу A и Fe^{2+} , Mg, Fe^{3+} , (Mn), Al в группу B, общая формула тунгусита будет $A_4B_2Si_6O_{15}(OH)_6$. Пересчет анализа тунгусита (среднее из двух определений) приводит к формуле (табл. 2): (Ca_{3,46}Na_{0,48}Mn_{0,06})_{4,90}($Fe_{1,25}^{2+}Mg_{0,21}Mn_{0,08}Fe_{0,17}^{3+}$. $Al_{0,37}$)_{2,06}($Si_{5,94}Al_{0,06}$)_{6,00}O₁₅(OH)₆ или Ca₄Fe₂²⁺Si₆O₁₅(OH)₆, т. е.

 $2[\operatorname{Fe}(OH)_2] \cdot \operatorname{Ca_4Si_6O_{15}}(OH)_2.$

Спектральным анализом в минерале установлены примесь

Sn, Ga, V, Sr, Ba.

Рентгенометрический анализ минерала методом порошка выполнен в 1957 г. С. И. Берхин (ИГЕМ). Полученная порошкограмма не нашла себе аналога ни в одном из справочников. На ней отмечаются следующие значения межплоскостных расстояний (в скобках интенсивности линий): 5,52 (1 размытая); 4,65 (1 р.); 4,17(8); 3,579(6 p.); 3,12(8); 3,009(8); 2,788(2); 2,629(2); 2,500(1 m.); 2,385 (1 m.); 2,069 (1); 2,017 (1); 1,904(2 m.); 1,867(1); 1,818(10); 1,570(3); 1,471(1). 1,605(3);Следует отметить возможную ме-

Таблица 2
Пересчет химического анализа тунгусита (среднее из'2 анализов) из района Нижней Тунгуски (пос. Тура)

Компонент	Содерж., вес. %	Молеку- лярные колич.	Атомные колич. кислорода	Атомные колич. катионов	Атомные отпош. катиомов и 21 ат. Кислорода
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O H ₃ O H ₄ O+	46,31 2,93 1,81 11,52 1,38 1,07 25,22 1,91 1,03 6,89	0,771 0,028 0,011 0,160 0,019 0,027 0,450 0,031 	1,542 0,084 0,033 0,160 0,019 0,027 0,450 0,031	0,771 0,056 0,022 0,460 0,040 0,040 0,027 0,450 0,062 — 0,112 0,768	5,9367 0,4312 0,1694 1,2320 0,1463 0,2079 3,4650 0,4774 0,8824 5,8982
Сумма	100,07		2,729		

Расчетный коэффициент 21 : 2,73=7,69~7,7

ханическую примесь кальцита. Однако сопоставление ее с порошкограммами некоторых гидросиликатов — гиролита $\binom{2}{12}$ и тахеренита $\binom{15}{12}$ показывает близость ряда наиболее интенсивных линий.

Рис. 2. Чешуйки тунгусита в проходящем свете. Прозрачный шлиф. $20 \times$

В то же время порошкограмма тунгусита не имеет ничего общего с рентгенометрическими данными для хлоритов, в частности клинохлора и пнабантита (5).

Дифференциальная кривая нагревания и кривая потери веса минерала (рис. 3) сходны с кривыми гиролита. Первая слабая эндотермическая реакция происходит при температуре ~ 100° (для гиролита характерен резкий пек 150—250°). Вторая, двустушенчатая эндотермическая реакция наблю-

дается в интервале 730—800°. Отмечаются две экзотермические реакции. Первая выражена весьма характерно: она представляет собой пологий подъем и спуск в интервале температур от 400 до 550° с максимумом при 320°. Эта реакция обусловлена, вероятно, окислением закисного железа, преобладающего в составе минерала. Второй экзотермический эффект при температуре около 880° отвечает, очевидно, появлению повой кристаллической фазы. Общая

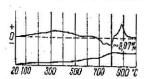


Рис. 3. Кривые дифферендиально-термического ападиза и потери веса тунгусита

нотеря всса по кривой составляет 9,97% (по химическому анализу содержание воды 7,92%). Таким образом, анализ свойств описанного минерала определенно указывает на то, что это новый минеральный вид. Сопоставление его с другими минералами совершенно исключает связь с хлоритами, несмотря на их внешнее сходство. По всем данным, минерал относится к группе кальциевых гидросиликатов, хотя и отличается присутствием закисного железа.

Тесная генетическая связь изученного минерала с цеолитами, анальцимом, гиролитом, кальцитом и др. позволяет считать его также низкотемпературным гидротермальным образованием. В данной ассоциации тунгусит выделялся одним из первых, образуя корочки на стенках миндалин и гнезд.

Крайнее сходство тунгусита с хлоритом не вызывало у исследователей сомнений в определении. Зеленые листочки хлорита, встречающиеся совместно с анальцимом, апофилиитом и кальцитом в миндалинах эффузивных траннов из тех же самых мест по Нижней Тунгуске, из которых автор брал образцы с целью получения детальной характеристики хлоритоподобного минерала, определялись ранее на основе только оптических свойств (положительное удлинение, слабый илеохроизм, N_m 1,608, оптически отрицательный с 2V около 0°) как железистый клинохлор (3). Все исследователи подчеркивали широкое распространению «хлорита» как обычного минерала заполнения миндалин в эффузивных траппах (3 , 9). Неоднократно «хлорит» упоминается среди основных минералов, сопутствующих исландскому шпату в шаровых лавах нижнетунгусских месторождений (4 , 7).

Подобный зеленый «хлорит» широко распространен и в других аналогичных нижнетунгусским давам базадьтовых провинциях земного шара. Слюдоподобный зеленый минерал из миндалин базальтов Грант-Каунти штата Орегон, как показало микроскопическое изучение, обладает веленовато-желтым цветом, слабым плеохроизмом, положительным удлинением, высоким двупреномлением, показателем преломления 1,590-1,600. Оптически оприцательный одноосный минерал определялся как хлорит, близкий диабантиту или делесситу (11). Неопределенный хлорит упоминается в тесной связи с цеолитами, кальциевыми гидросиликатами и кальцитом в миндалинах базальтовых дав плато Антрим, Ирландия (16). А в месторожденин Тейгаргори в восточной части Исландии делессит отмечается в тесной ассоциации с морденитом, гейнандитом и кварцем (10). Совместно с итилолитом и дафиитом делессит встречается в миндалинах измененных базальтов Бразилии (13). Однако авторы указывают, что оптические свойства делессита (показатель преломления 1,560, двуссный отрицательный, $2V=\pm 30^{\circ}$) и рентгенометрические данные (в статье не приводятся) не

отвечают эталонной характеристике делессита. Вместе с анальцимом, филлипситом и кальцитом «хлорит, вероятно, отвечающий делесситу», наблюдается в миндалекаменном базальте в окрестностях Соутески в области Чешского массива (¹⁴). Обычно для так называемых хлоритов приводятся (и то не во всех случаях) только оптические характеристики, и ни в одной из работ нет ни химических, ни рентгенометрических и термических данных.

Очевидно, столь широкое распространение в базальтовых породах в ассоциации с цеолитами, кальциевыми гидросиликатами, кальцитом и другими мивкотемпературными минералами хлоритоподобного минерала, определенного для Нижней Тунгуски как тунгусит (а не клинохлор), выдвигает необходимость проверить с этой точки зрения данные о наличии хлоритов в этих парагенезисах. Однако следует учесть, что одних оптических данных недостаточно для идентификации тунгусита — необходимы химические и рентгеновские анализы.

Образцы тунгусита переданы в Минералогический музей АН СССР.

Всесоюзный институт научной и технической информации

Поступело 25 III 1966

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Я. Киевленко, Тр. Н.-и. инст. пьсзооптич минер. смры, 3, в. 1 (1959).

² В. И. Кудряшова, ДАН, 123, № 3 (1958).

³ А. И. Лебедев, Тр. Инст. гсол. наук АН СССР, в. 161 (1955).

⁴ Х. С. Мамедов, Н. В. Велов, ДАН, 121, № 4 (1958).

⁵ В. И. Михеев, Рептгенометрический опредслитель минералов, 1957.

⁶ З. М. Протодьякопова. Сборн. Вопр. минералогии и геохимии, «Наука», 1964.

⁷ А. В. Скропышев, Матер. по геол. нерудн. полевп. ископ. Сибиры. в. 1, Иркустк, 1945.

⁸ В. С. Соболев, Тр. Аркич. н.-и. инст., 43 (1936).

⁹ В. В. Ткаченко, А. Ф. Михайлов, Б. И. Тест, Тр. Гори-геол. упр. Главсевморпуте, 1944.

¹⁰ J. Вачег, R. Hřichová, Sborn. Vysoké školy chem.-techol. praze Mineral., 6 (1962).

¹¹ Не wett, Shanno, Gonyer, Proc. U. S. Nat. Mus., 73, Art. 16 (1928).

¹² А. L. Маскеу, F. W. Тауlог, Min. Mag., 30, № 220 (1953).

¹³ R. R. Ribeiro, W. G. R. Camargo, Anais Acad. brasil. ciênc., 33, № 1 (1964).

¹⁴ К. Тиčек, Sborn, Národn. musea Praze B, 18, № 5 (1962).

¹⁵ J. M. Sweet, Min. Mag., 32, № 253 (1961).

¹⁶ G. P. L. Walker, J. Geol., 68, № 5 (1960).