УДК 548.736

КРИСТАЛЛОГРАФИЯ

О. В. ЯКУБОВИЧ, М. А. СИМОНОВ, Е. Н. МАТВИЕНКО, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СИНТЕТИЧЕСКОГО КОНЕЧНОГО Fe-ЧЛЕНА РЯДА ТРИПЛИТ — ЦВИЗЕЛИТ Fe₂[PO₄]F

Кристаллы этого соединения получены в лаборатории гидротермально го синтеза Института кристаллографии АН СССР при изучении систем КF-Fe₂O₃-(NH₄)₂HPO₄-H₂O и CsF-Fe₂O₃-(NH₄)₂HPO₄-H₂O в виде прозрачных, розовых, хорошо ограненных кристаллов. Предварительное рептгенографическое исследование указало на близость синтезированных кристаллов к минералам группы триплита со сходными порошкограммами и параметрами элементарных лчеек.

При удельном весе d=4,03 г/см³ (Т. Н. Иванова, МГУ) в моноклинной ячейке с параметрами, уточпенными на автоматическом монокристальном дифрактометре РІ: a=11,999(3), b=9,890(3), c=6,489(1) Å, $\gamma=107^{\circ},72$ (2) — содержится Z=8 единиц Fe₂[PO₄]F. Формула припята на основании качественного рентгеноспектрального анализа (Г. П. Кудрявцева, МГУ) и отмеченной аналогии с минералами группы триплита, подтверждена последующим структурным исследованием, а также соответствием экспериментальной и вычисленной плотностей, $d_{в}=4,09$ г/см³.

Экспериментальный материал — 1795 независимых ненулевых отражений $(I \ge 1,96\sigma I)$ — с кристалла сферической формы зарегистрирован $(2\theta:\theta)$ -методом со скоростью сканирования 6—24 градус/мин на том же автодифрактометре (λMoK_{α} , max $\frac{\sin \theta}{\lambda} = 1,0$ Å⁻¹). Поправка на поглоще-

ние не вводилась ($\mu r=0,42$). Систематические погасания указывали на две возможные федоровские группы: I2/a и Ia.

За исходные координаты атомов при расчетах в рамках группы 12/aиспользованы координаты расшифровалной ранее структуры природного триплита из Mica Lode пегматитов Колорадо со сложным катионным составом (Mn, Fe, Mg, Ca) FPO₄ (¹). Обе октаэдрические катионные позиции в нашем синтетическом образце запяты атомами Fe. Все расчеты выполнены на специализированной вычислительной системе E-XTL «Синтекс». Уточнение этой модели структуры методом наименьших квадратов (м.н.к.) в изотропном приближении привело к фактору расходимости $R_{hhl}=5,0\%$. Атомы F, расположенные в двух наполовину занятых позициих, отстоят друг от друга на 0,34 Å.

В природном триплите распределение F по двум позициям было связапо с высоким значением температурного фактора для этого атома при помещении его в среднее положение и с более высоким значением фактора расходимости для такой модели. Уточнение м.п.к. структурной модели сиптетического соединения с атомом F в одной целиком занятой позиции привело к фактору расходимости $R_{hhl}=5,3\%$ и к изотропному температурному фактору для фтора B=1,93 Å² (против 4,2 Å² в триплите). Анизотропное уточнение этой модели структуры снизило R_{hhl} до 3,5%. Заключительные координаты базисных атомов, изотропные и анизотропные температурные факторы, а также межатомные расстояния со стандартными этклонениями приведены в табл. 1 и 2.

Fe₂[PO₄]F. Координаты базисных атомов и индивидуальные изотропные и анизотропные температурные поправки

Атом	x/ a	y/b	z/c	Bj	
$ \begin{array}{c} \mathbf{Fe_4} \\ \mathbf{Fe_2} \\ \mathbf{P} \\ \mathbf{O_1} \\ \mathbf{O_2} \\ \mathbf{O_3} \\ \mathbf{O_4} \\ \mathbf{F} \end{array} $	$\begin{array}{c} 0,19092(5)\\ 0,09267(5)\\ 0,07663(8)\\ 0,0563(2)\\ 0,9614(2)\\ 0,1709(2)\\ 0,1190(2)\\ 0,2664(2) \end{array}$	$\begin{array}{c} 0,19415(6)\\ 0,44905(6)\\ 0,38279(9)\\ 0,4763(3)\\ 0,2669(3)\\ 0,3137(3)\\ 0,4808(3)\\ 0,3727(3)\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,681 (9) 0,562 (9) 0,39 (1) 0,77 (5) 0,74 (5) 0,71 (5) 0,68 (4) 1,93 (6)	

 $T = \exp\left[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}h^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)\right]$

Атом	B_{11}	B_{22}	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Fe ₁ Fe ₂ P O ₁ O ₂ O ₃ O ₄ F	0,65(2) 0,72(2) 0,37(2) 1,05(9) 0,71(8) 0,66(8) 0,95(8) 1,29(9)	0,50(1) 0,58(2) 0,45(2) 1,05(9) 0,59(8) 1,05(9) 0,70(8) 2,30(11)	$\left \begin{array}{c} 0,82(2)\\ 0,45(2)\\ 0,40(3)\\ 0,55(9)\\ 0,93(9)\\ 0,81(9)\\ 0,45(8)\\ 1,92(12)\end{array}\right $	$\left[\begin{array}{c} 0,24(1)\\ 0,25(1)\\ 0,18(2)\\ 0,73(7)\\ 0,08(7)\\ 0,68(7)\\ 0,26(7)\\0,39(8)\end{array}\right]$	$ \begin{bmatrix} 0,24(1) \\0,07(1) \\ 0,00(2) \\0,03(7) \\0,23(7) \\ 0,16(7) \\ 0,04(7) \\ 0,21(9) \end{bmatrix} $	$ \begin{vmatrix} 0,06(1) \\ -0,08(1) \\ 0,00(2) \\ -0,24(7) \\ 0,07(7) \\ 0,18(7) \\ 0,13(7) \\ -1,23(10) \end{vmatrix} $

Fe₂ [PO₄]F. Межатомные расстояния, Å

Таблица 2

Fe -октаэдры						Р-тетраәд р			
$ \begin{array}{c} Fe_1 - O_2 \\ O_3 \\ O_4 \\ F \\ F' \end{array} $	2,154 (3) 2,119 (3) 2,098(3) 2,052(3) 2,036 (3) 2,635(3)	$\begin{array}{c} O_{3}-O_{2} \\ O_{3} \\ F \\ O_{4} \\ F-O_{3} \\ O_{2} \\ O_{4}-O_{2} \\ O_{4}-O_{2} \\ O_{5} \\ F'-O_{4} \\ O_{2} \\ F \\ \end{array}$	2,975(4) 2,615(4) 2,995(4) 3,763(4) 3,206(4) 2,672(4) 2,979(4) 3,153(4) 2,684(4) 3,874(4) 3,268(4) 2,710(4)	Fe ₂ -O ₁ O ₁ O ₂ O ₄ F' F	2,110(3) 2,134(3) 2,050(3) 2,118(3) 2,037(3) 2,424(3)	$\begin{array}{c} O_4 - F' \\ F \\ O_2 \\ O_1 \\ O_1 - F' \\ F \\ O_1 \\ O_2 \\ F' - F \\ O_1' \\ O_2 - O_1 \\ F \end{array}$	2,684(4) 3,139(4) 3,313(4) 3,004(4) 2,976(4) 3,608(4) 2,651(4) 2,975(4) 2,664(4) 3,315(4) 3,418(4) 2,672(4)	$\begin{array}{c} P - O_{1} \\ O_{2} \\ O_{3} \\ O_{1} - O_{2} \\ O_{4} \\ O_{3} \\ O_{4} - O_{3} \\ O_{2} \\ O_{3} - O_{2} \end{array}$	1,537(3) 1,539(3) 1,533(3) 1,553(3) 2,513(4) 2,513(4) 2,534(4) 2,514(4) 2,514(4)
Среднее	2,182		3,074		2,1455	1	3,035	P-0 0-0	1,541 2,516 s

Вокруг катионов Fe расположены пять ближайших анионов (4 O и F): 2,036–2,154 Å при ребрах O–O(F)=2,615–3,763 Å вокруг Fe₁ и 2,037– 2,134 Å при O–O(F)=2,651–3,418 Å вокруг Fe₂. При включении в координационную сферу Fe шестого лиганда на расстоянии Fe₁–F=2,635 и Fe₂—F=2,424 Å полиэдры вокруг Fe становятся сильно искаженными октаэдрами, но в работе (²) по структуре чисто магниевого представителя группы вагнерита часть этих полиэдров характеризуется как пятивершинники (тригональные бипирамиды). Атомы P одного сорта расположены в изолированных тетраэдрах с расстояниями P–O=1,536–1,553, O–O=2,488–2,536 Å. В структуре $Fe_2[PO_4]F$ выделяются бесконечные вдоль *а* цепочки из объединенных через общие ребра октаэдров Fe_2 со звеньями на двух уровнях — парами Fe_2 -октаэдров. Соседние в направлении *b* цепочки со стержнями на уровнях О и 1/2 связаны между собой сдвоенными цепочками из октаэдров Fe_4 и тетраэдров P, протягивающимися в том же направлении на тех же уровнях по *c* (рис. 1). Разнородные октаэдры Fe_2 и Fe_4 в слое, иараллельном плоскости (001) (рис. 1, 2), также связаны через общие

Рис. 1. Fe₂[PO₄]F, проекция *xy*. Расположенные на двух уровнях по с слои построены из чередующихся цепочек из одних Fe₂-октаэдров и смешанных лент из октаэдров Fe₂ и тетраэдров Р

Рис. 2. Фрагмент структуры Fe₂[PO₄]F. Вырезки из слоев, параллельных плоскости (001) в проекции xz

ребра, у тетраэдров Р три общие вершины с октаэдрами Fe одного слоя и одна с октаэдрами Fe₂ слоя на другом уровне.

Октаэдры Fe₁, связанные через общие ребра, образуют бесконечные вдоль с цепочки со стержнями на уровнях ¹/₄ и ³/₄ по b (рис. 3). Рассматриваемую структуру можно описать как состоящую из протягивающихся в двух взаимно перпендикулярных направлениях цепочек двух типов: из октаэдров Fe₂ (параллельно a) и октаэдров Fe₁ (параллельно c). Полученный каркас («штабель») укрепляют изолированные тетраэдры P, связанные 4 вершинами с Fe-октаэдрами. В структуре чисто магниевого представителя группы триплита — цвизелита, а именно, в вагнерите (²) с удвоенным параметром с число сортов атомов Mg увеличивается до 8, и половина полиэдров определяется как тригональные бипирамиды, т. е. координационное число Mg фиксируется в вагнерите также равным 5. На атоме F в вагнерите сходится не 4Mg, а только 3, что улучшает соответствующий баланс валентности: вместо $4 \cdot {}^2/{}_6 = 1,33$ имеем ${}^2/{}_5 + 2 \cdot {}^2/{}_6 = 1,07$.

Рис. 3. Фрагмент структуры $Fe_2[PO_4]F$. Цепочки из Fe_1 -октаэдров на уровнях y=1/4 и 3/4 и пересекающие их в периендикулярном направлении цепочки из октаэдров Fe_2

Вполне аналогична вагнериту структура Zn-триплоидита, где позиции Zn и Fe четко разделены: Zn — в тригональной бипирамиде, Fe в октаэдре (³).

Авторы благодарят А. Н. Иващенко и О. К. Мельникова за помощь в получении монокристаллов, Е. П. Железина и Ю. К. Егорова-Тисменко за участие в получении экспериментального материала и оформлении работы.

Московский государственный университет им. М. В. Ломопосова

Поступило 19 X 1977

ЛИТЕРАТУРА

¹ L. Waldrop, Zs. Kristallogr., B. 130, 1 (1969). ² A. Coda, G. Ginsuppetti, C. Tadeni, Atti Accad. Naz. Lincei. Rendiconti, Ser. 8, v. 43, Fasc. 3—4 (1967). ³ П. А. Сандомирский, М. А. Симонов, Н. В. Белов, ЦАН, т. 220, № 1, 89 (1975).