Доклады Академии наук СССР 1983. Том 269, № 1

УДК 548.736

КРИСТАЛЛОГРАФИЯ

Ю.Н. САФЬЯНОВ, Н.О. ВАСИЛЬЕВА, В.П. ГОЛОВАЧЕВ, Э.А. КУЗЬМИН, академик Н.В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЛАМПРОФИЛЛИТА

Лампрофиллит — Sr-титаносиликат отнесен Н.В. Беловым [1] в группу титаносиликатных аналогов слюд — бафертисита, мурманита, астрофиллита. Модель кристаллической структуры, предложенная Вудровым [2] на основе расшифровки проекции по 174 (*h* k0) рефлексам, и химическая формула

$4 \times (Ba, Sr, K) Na(Ti, Fe) TiSi_2 (O, OH, F)_9$

не полностью согласуются между собой. Нами проведена независимая расшифровка лампрофиллита из Кольского месторождения по трехмерному экспериментальному материалу.

Для исследования отобран прозрачный монокристалл коричневой окраски призматического габитуса с размерами 0,16 × 0,31 × 0,8 мм вытянутостью вдоль с. Параметры моноклинной ячейки уточнены на монокристальном дифрактометре ДРОН-1,5: a = 19,431(3), b = 7,086(1), c = 5,392(1) Å; $\beta = 96,75(5)^{\circ}$. Систематические погасания предполагают возможными три пространственные группы: $C_2^3 = C2$, $C_s^3 = Cm$, $C_{2h}^3 = C2/m$. Интегральные интенсивности измерены на монокристальном дифрактометре ДРОН-1,5 по методу перпендикулярного пучка с неподвижным счетчиком и вращающимся кристаллом (2127 отражений, Мо K_{α} -излучение, sin $\vartheta/\lambda \leq 1,08$ Å⁻¹, графитовый монохроматор). После учета фона, LP-фактора и отбраковки слабых отражений получен массив из 1434 | *Fh kl* |². Поправка на поглощение не вводилась.

Функция Патерсона лампрофиллита содержала только один пик (u = 0, v = 50, w = 0), который мог бы соответствовать пику связки от зеркальной плоскости. Расположение всех остальных пиков функции было характерно для пространственной группы C2, поэтому расшифровка была начата в рамках этой группы. Фрагмент из трех атомов Sr, Ti, Si найден при анализе функции Патерсона по методу ромбов пиков [3].

Серия последовательных синтезов электронной плотности позволила полностью скомпоновать модель структуры, содержащей центр инверсии. Полноматричное уточнение структуры методом наименыших квадратов проведено в рамках пространственных групп C2 и C2/m. Лучший R-фактор свидетельствовал в пользу группы C2/m. Наряду с уточнением позиционных и тепловых параметров было проведено по 77 отражениям (sin $\vartheta/\lambda \leq 0.3$ Å⁻¹) два цикла уточнения кратности позиций катионов, допускающих изоморфные замещения. Позиция M₁ задавалась f-кривой рассеяния f_{Sr}, M₂ - f_{Na}, M₃ - f_{Ca}, M₄ - f_{Ti}. Окончательный R-фактор с изотропными тепловыми параметрами составил

Окончательный R-фактор с изотропными тепловыми параметрами составил R = 0,135, с анизотропными – R = 0,087. Расчеты проведены по программам комплекса "Рентген-75" [4]. Координаты базисных атомов, кратность и изотропные тепловые параметры приведены в табл. 1, межатомные расстояния – в табл. 2.

Приводимые в справочниках [5-7] результаты химического анализа лампрофиллита свидетельствуют о наличии, кроме основных элементов Sr, Na, Ti, Si, еще и Mn, Ca, Fe²⁺, Fe³⁺, Ba, K, Mg, причем их содержание в разных образцах заметно

Атом	μ	x/a	y/b	z/c	<i>B</i> _{<i>j</i>} , Å ²
M ₁ (Sr, Ba, K)	4,3 (1)	0,2841(1)	0	0,2629(3)	0,85 (4)
M_2 (Na, Ca)	2,7 (3)	0	0	0	1,22(26)
M ₃ (Na, Mn, Ca, Fe)	4,7(3)	0	0,2591 (5)	0,5	1,24 (9)
M ₄ (Ti, Fe)	2,5(2)	0	0,5	0	1,11(10)
Ti	4	0,1493 (1)	0	0,7069(6)	0,03 (4)
Si	8	0,1425(1)	0,2839(3)	0,2045 (7)	0,05 (5)
0,	8	0,0597 (3)	0,295(1)	0,172(2)	0,34 (15)
0,	8	0,1739(4)	0,189(1)	0,467 (2)	0,41 (16
0,	8	0,1741(4)	0,187(1)	0,971 (2)	0,63 (18
O ₄	4	0,1749(5)	0,5	0,217 (3)	0,35 (21
0,	4	0,0621 (7)	0	0,665 (7)	0,94 (31
0, OH, F ₆	4	0,4433 (7)	0	0,273 (3)	0,86 (30

Координаты	кратность	позиций,	изотропные	тепловы	е параметри	л лампроо	филлита
гаолица	1	1 N 1 2 2 4					

различается. Из-за отсутствия точного химического анализа исследуемого кристалла данная работа не позволяет дать точную расшифровку довольно широкой картины изоморфизма, а только наиболее вероятный вариант. Опираясь на полученные значения кратности позиций и геометрию координационных полиздров, химическую формулу лампрофиллита можно представить в виде

 $(Sr, Ba, K)_2$ (Na, Ca) (Na, Mn, Ca, Fe²⁺)₂ (Ti, Fe³⁺) Ti₂O₂ [Si₂O₇]₂ (O, OH, F)₂.

В элементарной ячейке содержится Z = 2 единицы указанного состава.

Таблица 2 Межатомные расстояния, А

М ₁ -полиэдр		М2-ок	таэдр	М ₃ -октаэдр		
$M_1 - O_2'$	2,72(2) × 2	$M_{2} - O_{5}$	2,29 (3) × 2	$M_3 - O_1$	2,24 (2) × 1	
0	$2.72(2) \times 2$	0,	$2,51(1) \times 4$	O'6	2,30(2)×1	
0.	2,80(3)	$0_{5} - 0_{1}$	3,44 (3) × 4	0,	2,32(2)×1	
0'.	2.82(3)	O,	3,35 (3) × 4	$0'_1 - 0'_6$	2,79(3) X 1	
0,	$2.83(2) \times 2$	$0, -0'_{1}$	2,79(3) × 2	$O_1 - O_6'$	3,33 (4) X 🛛	
0.	$2.85(2) \times 2$	0,"	4,18(3) × 2	$0'_{1} - 0_{5}$	3,35 (3) × 1	
0.	3.09(3)		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$0_1 - 0_5$	3,38(3) × 1	
-6	-,			$0_{5} - 0_{5}'$	2,83 (6)	
				0'6	3,56 (1) × 1	
				$O_6' - O_6''$	3,09(6)	
М,-октаэдр		Ті-полиэдр		Si-тетраэдр		
M O'	1.94 (3) × 2	Ti- O,	1,68 (3)	$Si - O_1$	1,60(1)	
0.	$2.01(1) \times 4$	0,	1,96 (2) × 2	0 ₂	1,62 (2)	
$0'_{-} 0'_{-}$	2.79 (3) × 4	0,	1,97 (2) × 2	O'3	1,62 (2)	
0.	$2.80(3) \times 4$	$0_{5} - 0_{2}$	2,86 (3) × 2	O ₄	1,65(1)	
0, -0'	2.79(3) × 2	0,	2,89(3) × 2	$0_1 - 0_2$	2,68(2)	
0,"	2.90(3) × 2	$0_{2} - 0_{3}$	2,72(3) × 2	O'3	2,69 (2)	
1		² 0'	2,67 (3)	04	2,66 (2)	
		$0_3 - 0'_3$	2,66 (3)	$O_2 - O'_3$	2,68(3)	
				04	2,59(2)	

нс. 1. Лампрофиллит. Проекция кристаллической структуры. Кружками показаны атомы Sr нс. 2. Сердечник трехслойного пакета: M₂ (Na, Ca), M₃ (Na, Mn, Ca, Fe), M₄ (Ti, Fe) нс. 3. Ti, Si-анионная сетка

Основу архитектуры лампрофиллита и титаносиликатных слюд, как уже пмечалось в [1], составляют трехслойные пакеты (рис. 1), параллельные (100), по согласуется с хорошей спайностью по этой плоскости. Сплошной сердечник акета построен из октаздров трех сортов (рис. 2). На поворотную ось 2, на уровне = 0 нанизана цепочка чередующихся M₂ (Na, Ca) и M₄ (Ti, Fe) октаздров, на урове z = 1/2 — цепочка из M₃ (Na, Mn, Ca, Fe) октаздров. Сопряжение октаздров в тенке происходит по общим ребрам. Расстояния катион—анион в M₄-октаздре имеют езначительный разброс 1,94–2,01 Å и мало отличаются от суммы ионных радиусов T_i + r_0 = 2,00 Å. M₂-октаздр несколько крупнее M₃-октаздра, расстояния катион нион в M₂ составляют 2,29–2,51 Å против 2,24–2,32 Å в M₃.

Сердечник пакета с двух сторон одет в анионную Ті, Si-кольчугу, показанную на рис. 3. Два Si-тетраэдра, связанные зеркальной плоскостью, образуют диортогруппу Si₂O₇. Расстояния Si-O находятся в пределах 1,60–1,65 Å с мостиковыми Si-O = 1,65 Å, угол SiOSi составляет 135,6°.

В Ті, Si-анионной кольчуге, обнаруженной в астрофиллите, бафертисите, мурманите [1], Ті имеет обычную октаэдрическую координацию. В лампрофиллите, как и в иннэлите, Ті находится в пятерной координации – полуоктаэдре с четырьмя расстояниями Ti-O = 1,96–1,97 Å и одним существенно укороченным Ti-O₅ = 1,68 Å. Шестое расстояние Ti-O₆ = 3,98 Å, достраивающее октаэдр, не может быть включено в координацию Ti. В полуоктаэдре Ti смещен от центра ближе к основанию.

Соседние пакеты переложены слоем крупных M_1 (Sr, Ba, K)-одиннадцативершинников с расстояниями M_1 -O = 2,72-3,09 Å. Форму M_1 -полиздра можно описать следующим образом: шесть атомов кислорода, лежащих в одной плоскости, образуют шестиугольник, несколько отстоящий от катиона, по одну сторону от плоскости четырехугольник и по другую – атом O₆ завершают координацию M₁.

Горьковский исследовательский физико-технический институт Горьковского государственного университета им. Н.И. Лобачевского Поступило 11 VIII 1982

ЛИТЕРАТУРА

1. Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. 344 с. 2. Woodrow P.J. – Nature, 1964, vol. 204, № 4956, р. 375. 3. Борисов С.В., Головачев В.П., Илюхин В.В., Кузьмин Э.А. Симметрические соотношения в функции Патерсона. Теория и применение. Новосибирск: Наука, 1981. 134 с. 4. Андрианов В.А., Сафина З.Ш., Торнопольский Б.Л. Рентген – 75. Автоматизированная система программ для расшифровки структур кристаллов. Черноголовка: Наука. Отд. Ин-та химической физики, 1975. 80 с. 5. Бетехтин А.Г. Курс минералогии. М.: Госгеолтехиздат, 1956. 558 с. 6. Соловьев П.П. Справочник по минералогии. Л.: М.: Металлургиздат, 1948.516 с. 7. Поваренных А.С. Кристаллохимическая классификация минеральных видов. Киев: Наукова думка, 1966. 547 с.