КРИСТАЛЛОГРАФИЯ

ю. д. кондрашев и н. н. федорова

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СоНО₂

(Представлено академиком Д. В. Наливкиным 12 XI 1953)

Известна способность двухвалентного кобальта легко окисляться в гидроокиси до трехвалентного состояния. Это происходит, например, в процессе сушки обычной розовой модификации гидроокиси при 100° и сопровождается изменением цвета до темнокоричневого. Рентгенограмма полученного продукта совершенно отлична от рентгенограммы β -Co (OH)₂ и очень близка к рентгенограмме минерала стейниерита (¹) с идеальным составом Co₂O₃·H₂O. Поэтому можно считать, что в результате такого окисления образуется гидроокись трехвалентного кобальта CoHO₃*.

В настоящей работе приводятся результаты исследования кристаллической структуры этого вещества. Препарат в виде темнокоричневого дисперсного порошка получался окислением влажной Co(OH)₂ на воздухе при 100°. Для улучшения сформированности решетки он подвергался кипячению в воде в течение 50 час. Степень окисления кобальта по анализу соответствовала формуле CoO_{1,489}. Плотность порошка, определявшаяся пикнометрически в бензоле, была найдена равной 4,72 г/см³.

Съемка порошкограмм производилась в камере ВРС с диаметром кассеты 143,2 мм на излучение Nika. Межплоскостные расстояния и интенсивности линий определялись по снимку образца с NaCl в качестве эталона. Наличие внутреннего стандарта позволяло после фотометрирования и измерения площадей пиков произвести исправление на адсорбционный фактор и одновременно учесть влияние условий проявления и фотометрирования (²). Таким образом, получались значения экспериментальных интенсивностей линий. При расчете относительных интенсивностей использовались атомные амплитуды с поправкой на ионизацию, принималась во внимание также дисперсионная поправка для кобальта, равная 2,6.

При индицировании порошкограммы мы, приняв октаэдрическую координацию кобальта и зная приблизительные размеры полиэдров, руководствовались представлениями о плотных упаковках, развитыми Н. В. Беловым (³), т. е. стремились найти прежде всего тип упаковки анионов и затем мотив расположения катионов, определяющие в конечном счете вид рентгенограммы. Сопоставление с известными структурами гидроокисей MeHO₂ не привело к успеху, индицирование оказалось возможным лишь при предположении шестислойной слоистой упаковки с гексагональной элементарной ячейкой.

^{*} Следует указать, что в таблицах Ханавалта и др. (⁵) для Со(ОН)₂ приведены данные порошкограммы СоНО₂.

Из порошкограммы были определены следующие размеры этой ячейки: $a = 2,849 \pm 0,001$ kX, $c = 13,130 \pm 0,005$ kX. Индексы подчиняются условно ромбоэдричности, параметры ромбоэдрической ячейки: $a = 4,676 \pm 0,002 \, \text{kX}, x = 35^{\circ} 28' 30'' \pm 30''$. Рентгенографическая плотность 4,92 г/см³, число молекул в ячейке (гексагональной) 2,87, т. е. 3.

Таблица 1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$101 \\ 009 \\ 333 \\ 1,459 \\ 1,459 \\ 1,459 \\ 14 \\ 10$	
110 $01\overline{1}$ $1,424$ $1,424$ 125 100	
108 332 (1,368) 1,366 43 34	
113 120 1,354 1,354 132 90	
201 $14\overline{1}$ $1,229$ $1,228$ 13 12	
$\overline{2}02$ 002 1,212 1,212 55 49	
116 231 $1,194$ $1,194$ 14 20	
1.010 334 $1,159$ $1,159$ $C0$ 60	
204 220 $ 1,155$ (0) 15	
205 113 1,117 1,116 59 63	
10.0.12 444 1.094 1.094 1074 10 10	
207 331 4034 1034 1034 31 45	
119 342 $1,019$ $1,019$ 22 34	
$\overline{2}08$ 224 0,9854 0,9862 18 20	
$\overline{1.0.13}$ 445 - 0,9347 (0) 14	
121 $02\overline{1}$ $(0,9304)$ $0,9302$ 25 18	
$\overline{122}$ $1\overline{12}$ $0,9229$ $0,9223$ 81 60	
2.010 442 0,8986 0,8990 36	
124 130 — 0,8970 57 20	
125 203 0,8790 0,8788 80	
1.0.14 554 - 0.8766 100 19	
10.0.13 0.00 -0.8670 0.8677 10 74	
$\frac{1}{2}0.44$ 335 0,0070 0,0077 0.0 6	

Межплоскостные расстояния и интенсивности линий СоНО,

Результаты индицирования и экспериментальные и вычисленные межплоскостные расстояния приведены в табл. 1.

Рис. 1. Сечение электронной плотности по направлению (111)

координаты кислорода — ххх, ххх. Параметр х определялся построением линейного сечения F-ряда по пространственной диагонали ромбоэдрической ячейки (знаки всех струк-230

Из возможных в данном случае трех пространственных групп: D_{3}^{7} — R32, C_{3v}^{5} — R3m и D_{3d}^{5} = — R $\overline{3}m$ была выбрана голоэдрическая группа D_{3d}^5 , так как наличие лишь однократного (для кобальта) и двухкратного (для кислорода) положений приводит во всех случаях к комплексу D_{3d}. Координаты кобальта в ромбоэдрической установке - 000,

турных амплитуд в данном случае были заданы положением иона кобальта). На сечении кроме максимума в начале координат, соответствующего кобальту, выявляется четкий кислородный максимум, координата которого дает величину параметра x = 0.41 (см. рис. 1). Рассчитанные исходя из этого значения величины $F_{\text{теор}}^2 p$ хорошо совпадают с экспериментальными данными (табл. 1). Для удобства сравнения в значения $F_{\text{эксп}}^2 p$ внесена температурная поправка, принятая в первом приближении равной температурной поправке для NaCl.

Из табл. 1 видно, что в некоторых случаях имеет место наложение линий. Повторное построение сечения *F*-ряда с учетом этого обстоятельства не привело к заметному изменению величины параметра *x*.

Значение параметра 0.41 приводит к структуре. состоящей из слоев заполненных октаэдров, чередующихся со слоями незаполненных тригональных призм, и принадлежащей, таким образом, к типу NaHF₂ (см. рис. 2). Формально структура CoHO₂ близка к исходной структуре Со (ОН) 2, отличаясь от последней лишь небольшим сдвигом слоев заполненных октаэдров, чем и объясняется, вероятно, легкость ее получения в довольно хорошо сформированном виде при сравнительно низкой температуре. Причиной этого сдвига и превращения незаполненных оэтаэдров и тетраэдров в призмы является, так же как и в структуре NaHF₂, существование водородных связей между ионами О-2 и ОН-1, приводящее к появлению почти симметричной группы ОН2-3 (вертикальные ребра призм).

Расстояния между ионами в структуре равны: Оп-Оп 2,85 Å; О1-Оп 2,63 Å; О1-Оп 2,36 Å; Со - О 1,94 Å.

Обращает на себя внимание малая величина расстояния между ионами, связанными водородной связью. Это значение (2,36 Å) заметно меньше найденного в структуре NH₄H₂PO₄ минимального расстояния для водородной связи 2,49 Å (⁴). В связи

с этим находится и малый объем на одну молекулу CoHO₂ (30,8 Å³ в сравнении с \sim 34 Å³ для MnHO₂ и \sim 36 Å³ для FeHO₂).

Найденная структура является первым представителем структур с трехгранными призмами для класса гидроокисей MeHO₂ и подтверждает сильное влияние водородной связи на строение последних.

Выражаем благодарность Н. А. Марасанову за предоставление в наше распоряжение образца СоНО₂.

Научно-исследовательский аккумуляторный институт

Поступило 30 VI 1953

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ S. R. B. Cooke, D. I. Doan, Am. Mineral., **20**, 274 (1935). ² Я. С. Уманский, С. С. Хидекель, ЖФХ, **15**, 983 (1941). ³ Н. В. Белов, Структура ионных кристаллов и металлических фаз, изд. АН СССР, 1947. ⁴ R. Ueda, X-Rays, **5**, 21 (1948). ⁵ J. D. Hanawalt, H. W. Rinn, Z. K. Frevel, Ind. Eng. Chem., Anal. Ed., **10**, 457 (1938).

Рис. 2. Структура СоНО₂