Доклады Академии наук СССР 1962. Том 144, № З

МИНЕР АЛОГИЯ

К. К. АБРАШЕВ и академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА БАРИЛИТА BaBe, Si, 0,

Первоначальным материалом анализа послужили мелкие сростки кристаллов барилита, любезно предосгавленные в наше распоряжение проф. К. Фронделем (Гарвардский университет), и лишь в 1960 г. кристаллы этого минерала были получены от А. Г. Жабина, который совместно с Ю. П. Д. ковым впервые в СССР нашел барилит в Вишневых горах (¹).

В известном справочнике Штрунца (2) барилит BaO 2BeO 2SiO₂ = = BaBe₂Si₂O₇ отнесен к группе островных силикатов («соросиликатов). Лауэграммы и вейсенбергограммы слоевых линий вращения вокруг осей с и а подтвердили указывающуюся ранее (^{3,4}) ромбическую симметрию ба рилита; в частности, систематические погасания определили рентгеновскую группу Pn21a. Наличие сильного пьезоэффекта (превышающего эф фект у кварца) и приведший к нецентросимметрическому распределению в проекции *хи* статистический анализ (⁵) структурных факторов не позволили согласиться с ранее предположенной (3,6) голоэдрической группой D_{2b}¹⁶ = Рпта. В качестве более вероятной принята гемиморфная федоров¹ ская группа $C_{2v}^9 = Pn2_1a$.

Полученные нами параметры ячейки: a = 9,8 Å; b = 11,65 Å; c == 4.63 Å согласуются с прежними данными *. Из величины удельного веса 4,02 следует, что в ячейке содержится Z = 4 формульных едини оси c = 4,63Å. На период приходится 2 тетраэдра, и брутто-форуказанного состава.

Структура расшифрована методом тяжелого атома. Из патерсоновский проекций xy и yz определились атомы Ва, 2Si и O4; положения остальных 0 найдены из проекций электронной плотности, рассчитанной по координатач фиксированных атомов. Разностный патерсоновский синтез (проекция Д в котором должны были остаться лишь максимумы Ba — Ba, Ba - В Уточнение достигнуто из серии последовательных синтезов электронной плотности нецентросимметричных проекций xy и yz **.

В группе *Pn2₁a* нет частных положений, и структура определяется параметрами. Коэффициенты расходимости: R_{hk0}=11,4% (по 121 ненулевом) рефлексу), R_{okt} = 11,7% (по 102 ненулевым рефлексам). Те же коэффил енты без учета тяжелого Ва : $R_{hk0} = 18,4\%$, $R_{0kl} = 18,25\%$. Коэффициен R, сосчитанные по центросимметричному варианту для тех же проекща равны 28,2 и 27,6%, т. е. значительно больше, чем при нецентросимметричес распределении, несмотря на близость мотива к центросимметричному.

Вытекающая из синтезов и представленная (в паулинговских полиздел на рис.1 и 2 структура отличается от намеченной в 1942 г. Югбергом (4)

* Мы приняли установку Югберга (4), соответствующую обычному «кристаллография он ческому» аспекту группы $D_{2h}^{16} = P_{nma}$, с осью c = 4,63 Å по оси метанелочек [Be0] В первоначальной установке Аминова (3) оси a и c переставлены ($D_{2h}^{16} = Pcmn$), т. е. $m^{3/2}$ дена «инстинктивная» тенденция классической минералогии выбирать ось а норматия плоскостям плотнейшей упаковки. Следует отметить, что в аминовской установке де

минералогические описания барилита (спайность и пр.) (², ⁷). ** Синтезы осуществлены на «Стреле» в Вычислительном центре Московского уда ситета.

*** Без каких-либо доказательств, как отмечается в (8),

то осн a = 9,82 Å, как предположено Югбергом, а вдоль самой длинной b = = 11.65 Å. Атомы Ве расположены в кислородных тетраэдрах, которые нанизаны в дискретные цепочки винтовыми осями 21, параллельными ко-

Рис. 1. Кристаллическая структура барилита. Проекция xy. Si-тетраэдры (в диортогруппах Si2O7) заштрихованы. Точками выделены Ве-тетраэдры (в цепочках [BeO3], нормальных к плоскости чертежа). Крупные шары — катионы Ва на двух уровнях

кула цепочки имеет вид $[Be_2O_6] = [BeO_3]_{\infty}$, т. е. аналогична формуле проксеновых цепочек, но период короче пироксенового (4,63 против 5,1 Å), и причинах чего мы останавливаемся далее.

Диортогруппы Si $_2O_7$, нормальные к цепочкам[BeO $_3$] $_{\infty}$, совместно с последими создают трехмерный каркас из тетраэдров (рис. 1), характеризующийи крупными полостями, каждая из которых окружена 12 тетраэдрами: и Ве — Ве, позволили установить координаты двух сортов атомов Ве Нарами Si, O7 и 2 парами Ве-тетраэдров из двух цепочек [BeO3]. Эти поости напоминают полости в содалите, но последние значительно крупнее, Удучи окружены каждая 24 Si-, Al-тетраэдрами. Размерам полостей ^{Фответствует} и их заполнение: содалитовые заселены анионами Cl (r = 1, 8 Å) плюс катионы Na, в барилитовых только катионы Ba (r = 1, 38 Å). В полость содалита ведут 8 более крупных окон, в барилитовую 4 крупвих: 2 вдоль осн а, 2 вдоль с; и те и другие создают каналы. Как и в содаите, полости располагаются по (псевдо)объемноцентрированному мотиву, ы их на ячейку не 2, а 4, так как вдоль средней оси а располагаются 2 поости, связанные плоскостью скольжения xy = a. В диортогруппах Si₂O₇ расстояния Si - О не выходят из пределов 1,63 - 1,70 Å, длины ребер ¹⁰леблются от 2,63 до 2,78 Å, угол Si — О — Si составляет 141°. В Ве-тет-Si-тетраэдры соединены в дискретные диортогруппы Si₂O₇, вытянутые в 33драх центральные Ве — О равны 1,64 — 1,70 Å при ребрах О — О — от 1.59 до 2,70 Å. Ближайшие 12 расстояний Ва-О остаются в пределах ^а 2.82 до 3.34 Å.

В структуре барилита, как и в ряде других расшифрованных бериллие-ध्वर минералав (бромелит, хризоберилл, бертрандит) хорошо выражена чотнейшая двуслойная (гексагональная) упаковка, в которую здесь вме-^{сте}санионами О входят также крупные Ва. Налицо (7 + 1) 4 = 32 плот-³⁰ упакованных сферы; разбивающиеся на 4 × 4 × 2. Нанбольший ^{вернод b} определяется 4 расстояниями О—О, период a = 9.8 Å — это 4 асоты треугольника, короткий c = 4.63 Å — 2 высоты тетраэдра. Коор-

2 JAH, T. 144, N 3

динационные полиэдры вокруг Ва — «гексагональные кубооктаэдры» () с к. ч. 12 наслаиваются один на другой в колонки вдоль оси 4,63 Å (рис. 2, В плотнейшей упаковке пироксенов цепочки тянутся параллелыю

высотам треугольников, в плоскости из слоев плотнейшей упаковки, в барилите цепочки нор-

Рис. 2. Вытянутые вдоль оси с цепочки из Ве-тетраэдров и колонки из «гексагональных куссоктаэдров» вокруг крупных катионов Ва на двух уровнях

В отличие от каркасов из Si — Al-тетраэдров в барилите на 3 атомах О (из 7), а именно на всех О в цепочках...-О — Ве — О — Ве — О — ... сходится для баланса валентностей не 2, а 3 тетраэдра: 2Be + 1Si. В кож пенсации прочих О принимают участие катионы Ва.

Voor TRATIL STOVOT

т	2	б	n	tŦ	17	а	- 1
1	а	υ	41	£1	ц	а	- 1

вытекают из двуслойной

плотнейшей упаковки.

мальны

к плоскостям упаковки, что придает им несколько необычный вид (рис. 2).

Как хорошо выдержан принцип плотнейшей упаковки, показывает табл. 1, в которой параллельно с найденными координатами указываются и те, которые

Пординаты атомов											
	Идеа	льные (Pnt	na)	Найденные (Pn2ıa)							
	x,'a	y/b	z/c	x/a	y/b	z/c					
$\begin{array}{c} Ba\\ Si_1\\ Si_2\\ O_1\\ O_2\\ O_3\\ O_4\\ O_5\\ O_6\\ O_7\\ \end{array}$	$\begin{array}{c} 0,166\\ -0,083\\ -0,083\\ 0,083\\ -0,083\\ 0,166\\ -0,166\\ -0,083\\ -0,166\\ 0,083\\ -0,166\\ 0,083\end{array}$	0,75 0,875 0,875 0,875 0,875 0,875 0,875 0,00 0,75 0,125 0,00 0,125	$\begin{array}{c} 0,25\\ -0,125\\ 0,125\\ 0,750\\ 0,25\\ 0,25\\ 0,25\\ 0,75\\ 0,25\\ 0,75\\ 0$	$\begin{array}{c} 0,142\\ -0,096\\ 0,10\\ 0,073\\ 0,087\\ 0,181\\ -0,13\\ -0,07\\ -0,185\\ 0,09\\ \end{array}$	$\begin{array}{c} 0,75\\ 0,88\\ 0,125\\ 0,897\\ 0,885\\ 0,03\\ 0,75\\ 0,110\\ -0,025\\ 0,115\\ \end{array}$	$\begin{array}{c} 0,25\\-0,25\\+0,25\\0,72\\0,130\\0,452\\0,690\\0,210\\0,595\\0,874\end{array}$					
Be ₁ Be ₂	0,166 -0,166	0,00	0,415	-0,175 -0,170	0,001	0,15					

Колонки из Ва-полиэдров + цепочки из Ве-тетраэдров в том же направлении делают барилит оптически положительным. Спайность (010), парал лельная плоскости, в которой лежат оси групп Si₂O₇ и оси цепочек [BeO₃]. вполне естественна. Символ другой спайности (210) подтверждает факт, что на период а приходятся 2 Ва-кубооктаэдра, а не 1.

Фронделю И Выражаем большую благодарность проф. Клиффорду А. Г. Жабину за любезно предоставленные образцы редкого барилите. а также В. В. Илюхину за ценную помощь в расшифровке.

Поступило 22 II 1962

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Г. Жабин, М. Е. Казакова, ДАН, 134, № 2 (1960). ² Н. Strunz. Mineralogische Tabellen, 1957. ³ G. Aminoff, Geol. fören. För. Stockholm, 45, 197(19^{C3)}. ⁴ E. R. Ygberg, Geol. fören. För. Stockholm, 134, 394 (1941). ⁶ G. A. Sim. Ata crystallogr., 11, 123 (1958). ⁶. J. C. Smith, Am. Mineral., 41, 512 (1^{G6)}. ⁷ A. Г. Бетехтин, Минералогия, 1951. ⁸ Structure Reports, 9, 1955. P. ^{253.} ⁹ Н. В. Белов, Структура ионных кристадлов и металлических фаз, М., 1947.

638