The aenigmatite-rhönite mineral group

THOMAS KUNZMANN*

Institut für Mineralogie, Petrologie und Geochemie
der Ludwig-Maximilians-Universität München
Priv. Doz. Dr. Thomas Kunzmann, Theresienstr. 41, D-80333 München Germany

Abstract: The aenigmatite-rhönite mineral group consists of eight minerals: Aenigmatite, rhönite, serendibite, kri novite, welshtite, dorrite, welshite and högtuavite. The general chemical formula of the minerals in this group may be written as \(\{X\}_2 [Y_6] (Z_6) O_{20} \), with \(\{X\} \) eightfold coordinated \(Na^+, Ca^{2+} \) and \(\{Y\} \) sixfold coordinated \(Mg^{2+}, Fe^{2+}, Ti^{3+}, Al^{3+}, Mn^{3+}, Cr^{3+}, Ti^{3+}, Ca^{2+}, Sb^{5+}, Nb^{5+} \) and \(\{Z\} \) fourfold coordinated \(Si^{4+}, AP^+, Fe^{3+}, Be^{2+} \) and \(B^{3+} \). There are two subgroups: a sodic group, including the minerals aenigmatite, kri novite and wilkinsonite, and a calcic group with rhönite, serendibite, dorrite, welshtite and högtuavite. The general features of the crystal structure are common to all the minerals of this group. These minerals occur in a wide range of rock types, e.g. alkaline lavas, sodium-rich intrusives, granitic gneisses, skarns, limestone-basalt contacts and meteorites, but mostly as accessories. Experimental data on stability are available only for aenigmatite and rhönite. Aenigmatite was synthesized at 700°C/1000 bars and 750ºC/1 bar by Thompson & Chisholm (1969) and Lindsley (1969). The oxygen fugacity is constrained by lower than the fayalite-quartz-magnetite = FQM buffer. Rhönite is stable from 850ºC-1000ºC/l bar to at least 5 kbar, 900 to 1100°C (Kunzmann, 1989). There is no limit on oxygen fugacity. In alkali-basaltic rocks, the stability is restricted to pressures lower than 600 bars and temperatures from 840 to 1200°C (Kunzmann, 1989). The chemistry of this group is complex, due to the flexibility of the structure. The structural formulae of 192 available analyses can be described in terms of seven substitutions: 1: \(Si^{IV} + Na^{VIII} \leq Al^{IV} + Ca^{VIII} \); 2: \(Si^{IV} + Mg^{VI} \leq Al^{IV} + Al^{IV} \); 3: \(Ti^{VI} + Mg^{VI} \leq 2Al^{IV} \); 4: \(Mg^{VI} \leq Fe^{III}^{VI} \); 5: \(Al^{IV} \leq B^{IV} \); 6: \(Si^{IV} + Be^{IV} \leq 2 Al^{IV} \); 7: \(Sb^{5+}^{VI} + 2 Mg^{VI} \leq 3 Fe^{III}^{VI} \). The theoretical number of end-members (and names) resulting from these seven substitutions is immense. A simplified nomenclature is proposed here based on three substitutions. I: \(2 Si^{IV} + 2 Na^{VIII} \leq 2 Al^{IV} + 2 Ca^{VIII} \); II: \(2 Si^{IV} + 2 (M^{III})^{VI} \leq 2 Al^{IV} + 2 (M^{III})^{VI} \); III: \(2 Ti^{IV} + 2 (M^{II})^{VI} \leq 4 (M^{III})^{VI} \). This results in a rectangular polyhedron for the aenigmatite-rhönite group, in which ten sub-volumes can be assigned to ten end-members.

Key-words: aenigmatite, rhönite, stability, chemistry, nomenclature

Introduction

The aim of this paper is to present an overview of the minerals of the aenigmatite-rhönite group, based on published data as well as results obtained by the author. The present knowledge of this mineral group is summarized in terms of history, properties, structure and occurrence. Further data on the temperature and pressure stability of rhönite, as well as the occurrence of rhönite as a low-pressure breakdown product of Ca-amphibole, are based on the author's own research. In the section on chemistry and substitutions, 192 analyses are presented which clearly demonstrate the mechanisms of substitution and the great chemical variability within this mineral group.

*email: kunzmann@petrol.min.uni-muenchen.de

0935-1221/99/0011-0743 $ 3.50
© 1999 E. Schweizerbart'sche Verlagsbuchhandlung. D-70176 Stuttgart
In addition, 93 new microprobe analyses were performed by the author on samples of different aenigmatite-rhônite species from worldwide occurrences. The proposed substitution mechanisms provide a new perspective for the classification of this mineral group. Finally, an attempt is made to give clear and unambiguous criteria for the classification for all the known minerals in this group as well as those which may be found in the future.

History

Mineralogists have been investigating the minerals of the aenigmatite-rhônite group for over 130 years. Breithaupt (1865) described aenigmatite, \(\text{Na}_2\text{Fe}^{2+}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 \), for the first time in a nepheline syenite from Tunugdliaarfik Fjord (Greenland). The mineral cossyrite (Fôrster, 1881) from a pantelleritic lava (Pantelleria, Italy) was later found to be identical with aenigmatite, so this synonym is no longer used. Rhônite, \(\text{Ca}_2(\text{Mg,Fe}^{2+})_4\text{Fe}^{3+}\text{Ti}(\text{Si}_3\text{Al}_3)\text{O}_{20}^r \), was first described in 1890 by Vogelsang as a “dark hornblende” in the volcanic rocks of the Hocheifel area (Germany). The name “rhônite” was created in 1907 by Soellner, who found the mineral in a nepheline basanite from Platz, Rhön Mountains, Germany. Over the next 90 years, a great number of investigations of this mineral group were published. New members of the group are described in the following publications: boron rhônite as serendibite by Prior & Coomaraswamy (1903), chromium, magnesium aenigmatite as krinovite by Olsen & Fuchs (1968), beryllium, antimony rhônite as welshtite by Moore (1978), titanium-free rhônite as dorrite by Cosca et al. (1988), titanium-free aenigmatite as wilkinsonite by Duggan (1990), beryllium, iron rhônite as høgtuavite by Grauch et al. (1994).

Physical and optical properties

The habit of the triclinic rhônite crystals is tabular and most of them are twinned, while the aenigmatite crystals are columnar or needlelike. The specific gravity varies between 3.43 and 3.86, depending on the chemical composition (Table 1). On the Mohs scale of hardness, these minerals have values of between 5 and 6. The colour of rhônite, wilkinsonite, aenigmatite, dorrite, welshtite and høgtuavite is brown to black. Krinovite is emerald green and serendibite is dark blue. The size of the crystals ranges from 1 to 1000 µm. The prevailing size is 1 to 100 µm, crystals of 1000 µm are rarely found. Determination of the optical constants is difficult due to the high absorption and dispersion. In normal thin sections (30 µm) these minerals seem to be opaque and look like ilmenite, rutile, pseudobrookite or hematite. Ultra-thin sections (10 µm) were used for optical determinations (Grauch et al., 1994). The pleochroism of these minerals is very strong, with the colour depending on the mineral chemistry (Table 2). An exception is welshtite, which has no pleochroism. Indices of refraction range

Table 1. Unit cell parameters for the members of the aenigmatite-rhônite group.

<table>
<thead>
<tr>
<th>references</th>
<th>rhônite</th>
<th>wilkinsonite</th>
<th>aenigmatite</th>
<th>dorrite</th>
<th>krinovite</th>
<th>serendibite</th>
<th>welshtite</th>
<th>høgtuavite</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>10.415</td>
<td>10.365</td>
<td>10.416(2)</td>
<td>10.505(3)</td>
<td>10.22</td>
<td>10.019</td>
<td>10.167(8)</td>
<td>10.317(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.800</td>
<td>10.812(2)</td>
<td>10.839(1)</td>
<td>10.897(3)</td>
<td>10.67</td>
<td>10.393</td>
<td>10.65(1)</td>
<td>10.724(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>8.919</td>
<td>8.906(2)</td>
<td>8.930(1)</td>
<td>9.019(1)</td>
<td>9.80</td>
<td>8.630</td>
<td>8.787(2)</td>
<td>8.855(1)</td>
</tr>
<tr>
<td>α (º)</td>
<td>105.97</td>
<td>105.05(1)</td>
<td>104.86(1)</td>
<td>106.26(2)</td>
<td>105.13</td>
<td>106.36</td>
<td>106.5(8)</td>
<td>105.77(1)</td>
</tr>
<tr>
<td>β (º)</td>
<td>96.17</td>
<td>96.63(1)</td>
<td>96.77(1)</td>
<td>96.16(2)</td>
<td>96.60</td>
<td>96.06</td>
<td>96.1(8)</td>
<td>96.21(1)</td>
</tr>
<tr>
<td>γ (º)</td>
<td>124.82</td>
<td>125.20(1)</td>
<td>125.53(1)</td>
<td>124.75(2)</td>
<td>125.02</td>
<td>124.36</td>
<td>124.0(3)</td>
<td>124.77(1)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>745.9</td>
<td>741.07(2)</td>
<td>746.0(1)</td>
<td>772.5(4)</td>
<td>714.8</td>
<td>670.96</td>
<td>711(5)</td>
<td>730.4(1)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>specific gravity</td>
<td>3.4-3.65</td>
<td>3.89</td>
<td>3.74-3.86</td>
<td>3.959</td>
<td>3.38</td>
<td>3.42-3.51</td>
<td>3.77</td>
<td>3.85</td>
</tr>
<tr>
<td>space gr.</td>
<td>P1</td>
<td>P1</td>
<td>P1</td>
<td>P1 or P1</td>
<td>P1 or P1T</td>
<td>P1 or P1T</td>
<td>P1</td>
<td>P1</td>
</tr>
</tbody>
</table>

References: 1 = Deer et al. (1978); 2 = Bonnacorsi et al. (1990); 3 = Duggan (1990); 4 = Canillo et al. (1971); 5 = Cosca et al. (1988); 6 = Olsen & Fuchs (1968); 7 = Merlino (1972); 8 = Machin & Süssen (1974); 9 = Moore (1978); 10 = Grauch et al. (1994).
Table 2. Optical properties of the members of the aenigmatite-rhönite group.

<table>
<thead>
<tr>
<th>mineral</th>
<th>rhönite</th>
<th>wilkinsonite</th>
<th>aenigmatite</th>
<th>dorritle</th>
<th>krinovite</th>
<th>serendibite</th>
<th>welshite</th>
<th>hegtuvite</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>brown, black</td>
<td>black</td>
<td>black, brown</td>
<td>red brown</td>
<td>emerald green</td>
<td>dark blue</td>
<td>reddish black</td>
<td>black</td>
</tr>
<tr>
<td>reference</td>
<td>1,2,3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>6,7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>(n_\alpha)</td>
<td>brownish green</td>
<td>olive green</td>
<td>light yellow</td>
<td>reddish</td>
<td>yellowish</td>
<td>greenish blue</td>
<td>yellowish green</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>reddish brown</td>
<td></td>
<td>brown, reddish</td>
<td>orange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.790-1.808</td>
<td>1.79</td>
<td>1.790-1.810</td>
<td>1.800</td>
<td>1.712</td>
<td>1.700-1.738</td>
<td>1.81</td>
<td>1.78</td>
</tr>
<tr>
<td>(n_\beta)</td>
<td>greenish brown</td>
<td>greyish brown</td>
<td>reddish brown</td>
<td>brown</td>
<td>yellowish</td>
<td>blue-green</td>
<td>pale yellow</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>reddish brown</td>
<td></td>
<td>dark brown</td>
<td>yellowish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.800-1.815</td>
<td>1.79</td>
<td>1.805-1.826</td>
<td>1.84</td>
<td>1.725</td>
<td>1.703-1.741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_\gamma)</td>
<td>dark red brown</td>
<td>dark brown</td>
<td>dark red brown</td>
<td>brown</td>
<td>greenish</td>
<td>indigo blue</td>
<td>greenish yellow</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>black, opaque</td>
<td></td>
<td></td>
<td>greenish</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.830-1.845</td>
<td>1.90</td>
<td>1.870-1.900</td>
<td>1.86</td>
<td>1.760</td>
<td>1.706-1.743</td>
<td>1.83</td>
<td>1.82</td>
</tr>
<tr>
<td>(2V_\alpha)</td>
<td>47-66</td>
<td>< 10</td>
<td>40-45</td>
<td>90?</td>
<td>61</td>
<td>78-90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References: 1 = Deer et al. (1978); 2 = Grünhagen & Seck (1972); 3 = Grandclement (1980); 4 = Duggan (1990); 5 = Cosca et al. (1988); 6 = Olsen & Fuchs (1968); 7 = Merlino (1972); 8 = Machin & Süss (1974); 9 = Moore (1978); 10 = Grauch et al. (1994).

from 1.7 to 1.9; available values are given for all minerals of the group in Table 2.

Structure

The general features of crystal structure are common to all minerals of this group. The aenigmatite structure was determined by Kelsey & MacKie (1964) and Merlino (1972). Rhönite was found to be isostructural with aenigmatite by Bonnacorsi et al. (1990). The structure consists of octahedral strips connected via tetrahedral chains with appendices and additional insular octahedra. The octahedral strips are three to four octahedra wide, and run parallel to the a axis or the \(c_m\) axis (the suffix m denotes axes referred to the pseudomonoclinic cell, which is used for simplicity in the structural description and oriented parallel to the \((011)\) plane or \((100)_{cm}\). The tetrahedral chains are pyroxene-like and also run parallel to the a (or \(c_m\)) axis. There are six different tetrahedral positions \(T(1) - T(6)\), seven octahedral \(M(1) - M(7)\) and two eightfold coordinated positions \(M(8) - M(9)\) (Fig. 1). The \(M(8)\) and \(M(9)\) sites are occu-

Fig. 1. The rhönite structure according to Bonnacorsi et al. (1990) seen along \(a_m\): (a) octahedral strips \(M(3) - M(7)\) with eightfold \(M(8)\) and \(M(9)\) polyhedra. (b) tetrahedral chain \(T(1)-T(6)\) with appendices and additional insular octahedra \(M(1)-M(2)\).
pied by sodium in aenigmatite, wilkinsonite and krinovite and by calcium in rhönite, dorrite, serendibite, welshite and høgtuavite. Titanium and ferrous iron prefer M(7) sites. Ferric iron and magnesium are concentrated in M(5) to M(6) sites. M(1) to M(4) are occupied with magnesium, ferrous iron and aluminium. The tetrahedral sites show a statistical distribution of silicon, aluminium and beryllium in welshite and høgtuavite, but contain boron in serendibite. Table 1 gives the unit cell parameters for all known minerals of the group.

Occurrence and paragenesis

The minerals of the aenigmatite-rhönite group occur in a wide range of rock types, mostly as accessories. Aenigmatites have been found all over the world in sodium-rich plutonic rocks such as nepheline syenites and foyaites, but rarely in alkali granites. In alkalic lavas (phonolites, trachytes, comendites, peralkaline rhyolites) phenocrysts of aenigmatite crystallize in the groundmass. Aenigmatites occur in parageneses with aegirine-augite, hedenbergite, fayalite, as well as alkali feldspar, nepheline, ilmenite and titan-ilmenite. Wilkinsonite occurs in the trachyte from Warrumbungle volcano, NSW, Australia, and is associated with anorthoclase, clinopyroxene, sodalite and analcite (Duggan, 1990). Rhönite crystallizes under magmatic, pneumatolytic and metamorphic conditions as well as in meteorites (Allende meteorite; Fuchs, 1971). The occurrence of rhönite in magmatic rocks is restricted to two possibilities:

1: As a phenocryst in the groundmass in undersaturated alkali basalts. Paragenesis: Ti-augite, olivine, nepheline, plagioclase, titanomagnetite and Ti-Ca-amphibole

2: As product from the breakdown of titanium-rich Ca-amphibole. Paragenesis: Ti-augite, olivine, plagioclase, titanomagnetite + nepheline.

The occurrence of rhönite in alkali basalt is often overlooked in thin sections. Rhönite appears opaque in normal thin sections (30 µm) and resembles ilmenite, rutile, pseudobrookite or hematite. Nearly half of the 450 basalt samples in the Hocheifel area (West-Germany), for example, have rhönite either as phenocrysts or as a breakdown product of amphibole.

Rhönites crystallized under pneumatolytic conditions (e.g. Nickenicher Sattel, Eifel, Germany) occur with pyroxene, amphibole, biotite, nepheline, hematite, pseudobrookite and spinel. The rhönite in an oxidized alkali gabbro (Johnston & Stout, 1984) coexists with ferrosalite, oligoclase, kennedyite, magesioferrite and kaersutite. Rhönites in a limestone-basalt contact (Réunion Island, Havette et al., 1982) occur with fassaite, melilite and magnetite. In the Allende meteorite, rhönite occurs in a paragenesis with wollastonite, andradite, grossular, perovskite, spinel and gehlenite. Dorrite has only been found in a para-lava from River Basin, Wyoming by Cosca et al. (1988), in assemblages with magnetite, clinopyroxene, plagioclase, wollastonite, nepheline and melilites. Krinovite was found by Olsen & Fuchs (1968) within graphite nodules in octahedrite iron meteorites from Cañon Diablo, Wichita County (USA). Welshte is found in manganeese iron mines in Långban, Värmland, Sweden, in an antimony-bearing skarn associated with other antimony minerals. Serendibite was found at Gangapitiya, Ceylon, in a contact zone between limestone and granulite, associated with diopside, scapolite, apatite, spinel and plagioclase (Machin & Süssen, 1974). Høgtuavite was discovered in granitic gneisses of metamorphic origin in Nordland County, Norway, by Grauch et al. (1994). This mineral coexists with quartz, feldspar, biotite, phenakite, zircon, fluorite, calcite, chlorite and magnetite.

Stability

Experimental data for stability are available only for aenigmatite and rhönite. Ernst (1962) synthesized a titanium-free "aenigmatite" (now dorrite) during his experimental studies of the stability of riebeckite and riebeckite-arfvedsonite solid solutions. The titanium-free aenigmatite had a rather limited stability field in terms of temperature (650-800°C), pressure (< 900 bars) and oxygen fugacity (lower than that produced by a fayalite-quartz-magnetite = FQM buffer). Thompson & Chisholm (1969) successfully synthesized hydrothermal aenigmatite \(\text{Na}_2\text{Fe}^{2+}_3\text{TiSi}_6\text{O}_{20} \) at 700°C and 1000 bars. The oxygen fugacity was controlled by means of an iron-wüstite = IW buffer. Lindsley (1969) confirmed the results of Thompson & Chisholm and synthesized aenigmatite at 750°C/500 bars/FQM buffer. In an experiment using 750°C/500 bars/NNO (nickel/nickel oxide) buffer, however, aenigmatite broke down completely to the more oxidized assemblage acmite + Ti-magnetite + quartz. These results suggested that the stability of aenigmatite is restricted to low oxygen fugacities.
Boivin (1980) crystallized rhönite at 1 bar under NNO and IW buffer from basanite and kaersutite compositions at 1170°C. Grandclement (1980) synthesized rhönite at 1, 500 and 1000 bars, 950-1280°C with no oxygen fugacity control. Beckett (1986) synthesized Ti3+-bearing rhönite at very low oxygen fugacities (log fO2 = 10-18-10-19) at 1233-1319°C. These rhönites have a composition similar to rhönites in the Allende meteorite. A complete discussion of the stability of synthetic and natural rhönite is given in Kunzmann (1989). A detailed discussion of the stability of rhönites in undersaturated alkali basalts is in preparation by the author. The main results are as follows: rhönite is stable from 850 - 1000°C/1 bar up to at least 5 kbar, 900 to 1100°C. There is no limit on the oxygen fugacity. Kunzmann (1989, unpublished data) synthesized rhönite on the hematite/magnetite HM, NNO, FQM, IQF buffer and under atmospheric conditions. In alkali basaltic rocks the crystallization of rhönite was experimentally determined by Kunzmann (1989). The stability is restricted to pressures below 600 bars, and temperatures from 840 to 1200°C. The normative ne/(ne+ab+or+lc) in the alkali basalts must be above 0.18 and the Mg/(Mg+Fe) ratio greater than 0.46. Due to these conditions, the occurrence of rhönite is restricted to primary undersaturated alkali basalts like nepheline basalts, olivine nephelinites or nephelinites.

Rhönite also occurs by the breakdown of titanium-rich Ca-amphiboles below 500 bars and 1060°C. The breakdown assemblage is rhönite+ ol+cpx+sp+plag+mt (Kunzmann et al., 1986).

Chemistry and substitutions

The general chemical formula of the minerals of the group may be written as:

\[
\{X_2\} \{Y_6\} \{Z_6\} \text{O}_{20}
\]

\(X = \text{Na}^+, \text{Ca}^{2+}\) in eightfold coordination

\(Y = \text{Mg}^{2+}, \text{Fe}^{2+}, \text{Fe}^{3+}, \text{Ti}^{4+}, \text{Al}^{3+}, \text{Mn}^{2+}, \text{Cr}^{3+}, \text{Ti}^{3+}, \text{Ca}^{2+}, \text{Sb}^{5+}, \text{Nb}^{5+}, \text{As}^{5+}\) in sixfold coordination

\(Z = \text{Si}^{4+}, \text{Al}^{3+}, \text{Fe}^{3+}, \text{Be}^{2+}, \text{B}^{3+}\) in fourfold coordination

In Table 3, all members of the aenigmatite-rhönite group are listed with their ideal chemical formula. The determination of the real end-members for a classification of this group is difficult, because of their great chemical variability. For a better understanding, the cation distribution for 192 analyses (analyses available in the literature and 93 new analyses from the author) is calculated on the basis of 14 cations and 20 oxygens with the computer program RHOCALC. Kunzmann (unpublished, available from the author by request on a floppy disk, including the 192 analyses). The structural formula is calculated according to the following rules. The six cations in the tetrahedrally coordinated position Z are filled up in order of preference Si > (Be, B) > Al > Fe3+. Surplus Al and Fe3+ plus Ti4+, Mg, Fe2+, Mn, Nb, As, Sb, Cr, Ti3+ and Ca are placed in the six octahedral Y sites. The two eightfold X positions are filled with Na and Ca, and if necessary, surplus Fe2+. The ferric/ferrous ratio is determined by charge balance on the basis of 14 cations. The distribution and preference of the elements in this formula are well substantiated by the structural analysis of rhönite (Bonnacorsi et al., 1990) and aenigmatite (Canillo et al., 1971).

Table 3. Structural formulae for all known members of the aenigmatite-rhönite group.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aenigmatite</td>
<td>Na2</td>
<td>Fe2+3Ti4+</td>
</tr>
<tr>
<td>wilkinsonite</td>
<td>Na2</td>
<td>Fe2+CFe6+</td>
</tr>
<tr>
<td>krinovite</td>
<td>Na2</td>
<td>Mg3Cr2</td>
</tr>
<tr>
<td>rhönite</td>
<td>Ca2</td>
<td>(Mg,Fe2+4Fe3+3-2Ti4+)</td>
</tr>
<tr>
<td>dorrite</td>
<td>Ca2</td>
<td>Mg2Fe3+4</td>
</tr>
<tr>
<td>serendibite</td>
<td>Ca2</td>
<td>Mg6Al3</td>
</tr>
<tr>
<td>welshite</td>
<td>Ca2</td>
<td>Mg6Fe3+3Sb6+</td>
</tr>
<tr>
<td>hagtuavite</td>
<td>(Ca,Na)2</td>
<td>(Fe2+,Fe3+,Ti,Mg,Sn,Mn)6</td>
</tr>
<tr>
<td>synthetic</td>
<td>Ca2</td>
<td>Mg6Ti3+2Ti2+4</td>
</tr>
</tbody>
</table>

* name not recommended by IMA.
Fig. 2. Distribution of the major elements in histograms referring to the structural formula $[X_2]^{VI} [Y_6]^{VI} (Z_0)^{IV} O_{20}$ for $Z = Si, Al, Fe^{3+}; Y = Mg, Fe^{3+}, Fe^{2+}, Ti^{4+}$ and $X = Ca, Na, Fe^{2+}$.

Fig. 2 shows the distribution of the major elements in histograms referring to the structural formula. Fourfold coordinated cations: silicon ranges from 1.85-6.08 cations per formula unit (pfu), with a gap between 4 and 5 pfu. The behaviour of aluminium is similar, from 0-4.09 pfu with a hiatus near 0.5-2 pfu. This gap may be a solvus related to the substitution $2Na + 2Si \approx 2Ca + 2Al$. Therefore there is a gap for the eightfold coordinated cations sodium (0.5-1.5 pfu) and calcium (0.5-1.5 pfu). Only a few analyses show more than 0.5 Fe^{3+} in tetrahedral coordination, while 4-8 % B_2O_3 was found in the serendibite analyses (Machin & Süss, 1974). Welshite (Moore, 1978) has a BeO content of 4.0 % and høgtuavite contains 2.65 % BeO.

The distribution of the six cations in octahedral positions is complex in this mineral group. There are magnesium-free minerals (e.g. aenigmatite) and a maximum of up to 3.78 Mg pfu in rhönite. Ferrous iron ranges from 0 to 4.8 pfu and ferric iron from 0 to 4.06 pfu. Titanium (4+) varies from 0 to 1.38 pfu. Titanium (3+) was only found in the Allende meteorite rhönite, in the synthesized
rhönite of Beckett (1986) and in “baikovite” (Rudneva & Malysheva, 1961). Bonnacorsi et al. (1990) show that Ti$^{4+}$ and Ti$^{3+}$ are restricted to octahedral coordination. Manganese is rare (0-0.53 pfu). Chromium as a major element is only found in krinovite from the iron meteorite from Cañon Diablo, USA. Vanadium contents range up to 1 % V$_2$O$_5$. Niobium (max. 3.7 % Nb$_2$O$_5$) and zirconium (max. 0.57 % ZrO$_2$) were found in wilksinosites by Duggan (1990). Welshte analyses (Moore, 1978) show a content of 4.0 % BeO with 3.6 % As$_2$O$_3$ and 24.8 % Sb$_2$O$_5$. In the mineral høgtuavite, 0.53 % SnO$_2$ was found by Grauch et al. (1994). Only a few samples were analysed for H$_2$O, with a maximum content of 0.61 OH- pfu (Grünhagen & Seck, 1972). The K$_2$O content is not greater than 0.2 wt% in all reliable analyses.

For a classification of this group, it is necessary to elucidate the substitution mechanisms. Using aenigmatite {Na$_2$} [Fe$^{2+}$,Ti$_{1+}$] (Si$_6$) O$_{20}$ as a starting point, we need seven substitutions to describe quantitatively the composition of the 192 mineral analyses of the group (Kunzmann et al., 1986; Burt, 1994).

1: 2 SiIV + 2 NaVIII
2: 2 SiIV + 2 (Mg,Fe$^{2+}$)$_{VI}$
3: 2 TiVI + 2 (Mg,Fe$^{2+}$)$_{VI}$
4: 4 MgVI
5: 1.5 AlIV
6: 2 SiIV + 2 BeIV
7: 2 SiIV + 2 CaIII

with minor substitutions of As$^{5+}$, Sb$^{5+}$, Nb$^{5+}$, Sn$^{4+}$, Zr$^{4+}$ and Ti$^{3+}$ in the octahedral site. The first substitution describes the exchange between the sodium-rich minerals (e.g. aenigmatite) and the calcium-rich minerals (e.g. rhônites). Substitutions 3 and 4 only interact with octahedrally coordinated cations. The substitution 2 is basically identical to substitution 3, Z$^{3+}$ + Z$^{2+}$ ≈ Z$^{3+}$ + Z$^{3+}$, but the former involves exchanges of tetrahedral and octahedrally coordinated cations, whereas, in the latter, there is only an exchange between octahedrally coordinated cations. Substitutions 5, 6 and 7 are needed for the very rare minerals serendibite, høgtuavite and welshte. For the explanation of the OH- content in some analyses (max. 0.61 pfu, Grünhagen & Seck, 1972) there may be an eighth substitution Fe$^{2+}$ + (OH-) ≈ Fe$^{3+}$ + O$^{2-}$ + 1/2H$_2$O.

Considerations for classification

The aenigmatite-rhônite group currently consists of eight minerals: rhônite, aenigmatite, wilkinsonite, krinovite, dorrite, serendibite, welshte and høgtuavite. Three of them are new minerals discovered in the last nine years: dorrite (1988), wilkinsonite (1990) and høgtuavite (1994). The theoretical number of end-members with the seven substitutions (including As$^{5+}$, Sb$^{5+}$, Nb$^{5+}$, Sn$^{4+}$, Zr$^{4+}$ and Ti$^{3+}$) is immense. To reduce the number of potential new mineral names, we propose a classification based on the tetrahedral sites containing just Si and Al (aenigmatite, rhônite, dorrite and wilkinsonite).

The first step is the calculation of the structural formula from chemical analysis on the basis of 14 cations and 20 oxygens (e.g. computer program RHOCALC). For a three-dimensional classification of the aenigmatite-rhônite group, we have to reduce the seven substitutions to three, with the following simplifications in the fourfold, sixfold and eightfold coordinations.

eightfold coordinated cations {X}: Na = Na; Ca = Ca (plus Fe$^{2+}$ if necessary from calculation).

sixfold (octahedral) cations {Y}: M$^{2+}$ = Fe$^{2+}$ + Mg + Mn; M$^{3+}$ = Fe$^{3+}$ + Cr$^{3+}$ + Ti$^{3+}$ (plus Al if necessary from calculation); Ti = Ti$^{4+}$ (plus traces of Sn$^{4+}$ and Zr$^{4+}$). If pentavalent cations exist in the octahedral sites (e.g. Sb$^{5+}$, Nb$^{5+}$, As$^{5+}$), they should be “replaced” by substitution number seven: Sb$^{5+}$ + 2 MgVI ≈ 3 FeIII + 2 M$^{2+}$ ≈ 3 M$^{3+}$.

tfourfold (tetrahedral) cations (Z): Si = Si; Al = Al + B$^{4+}$ (plus Fe$^{2+}$ if necessary from calculation).

If beryllium is found, it should be “replaced” by substitution number 6: 2 SiIV + 2 BeIV ≈ 4AlIV.

Using these simplifications, we obtain three substitutions instead of seven, as substitutions number 4 to 7 can be omitted.

$$I: 2 \text{Si}^{IV} + 2 \text{Na}^{VIII} \approx 2 \text{Al}^{IV} + 2 \text{Ca}^{III}$$

$$II: 2 \text{Si}^{IV} + 2 (\text{M}^{2+})^{VI} \approx 2 \text{Al}^{IV} + 2 (\text{M}^{3+})^{VI}$$

$$III: 2 \text{Ti}^{IV} + 2 (\text{M}^{2+})^{VI} \approx 4 (\text{M}^{3+})^{VI}$$

If we apply these three substitutions to the ideal end-members aenigmatite \{Na$_2$\} [M$^{2+}$,Ti$_{3-5}$] (Si$_6$) O$_{20}$, we obtain a rectangular polyhedron (Fig.3) with ten end-members. In this polyhedron, the three axes x, y, z correspond to the three substitutions I, II, III and we obtain ten end-members instead of eight, because the substitution Ti$^{4+}$ + M$^{2+}$ ≈ 2M$^{3+}$ is found only in rhônite {Ca$_2$} [M$^{2+}$,Ti$_{3-5}$] (Si$_6$Al$_2$) O$_{20}$, but twice in dorrite {Ca$_2$} [M$^{2+}$,M$^{3+}$] (Si$_2$Al$_4$) O$_{20}$. In Table 4, the ten theoretical end-members are shown along with their names (see below) as well as their occurrences in nature or in experimental syntheses.
The aenigmatite-rhônite mineral group

For classification, the polyhedron (Fig. 3) can be divided into ten sub-volumes corresponding to the ten theoretical end-members. The boundaries are set, whenever possible, to the 50 % rule (IMA) for solid solution boundaries between composition-
al volumes defined by end-members. First, we can divide the polyhedron into two subgroups depending on the Na or the Ca content pfu (see Fig. 4).

1: The aenigmatite subgroup with 1 < Na ≤ 2 pfu
2: The rhônite subgroup with 0 ≤ Na ≤ 1 pfu

This boundary (50 % rule) corresponds to the substitution number I 1 Si + 1 Na ≤ 1 Al + 1 Ca. Both of the subgroups can be divided into five sub-volumes, depending on the Ti and Si content pfu. Two boundaries at Ti 0.5 pfu and Ti 1.5 pfu corresponding substitution number III (M^{2+} + Ti ≤ 2M^{3+})

Table 4. The proposed ten theoretical end-members of the aenigmatite-rhônite group.

<table>
<thead>
<tr>
<th>End-members</th>
<th>Names</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Na}_2</td>
<td>[M^{2+}5 Ti] (Si_6) O{20}</td>
<td>aenigmatite</td>
</tr>
<tr>
<td>{Na}_2</td>
<td>[M^{3+}5 Ti] (Si_6 Al_2) O{20}</td>
<td>not yet found</td>
</tr>
<tr>
<td>{Na}_2</td>
<td>[M^{3+}_3 M^{3+}2 Ti] (Si_4 Al_2) O{20}</td>
<td>not yet found</td>
</tr>
<tr>
<td>{Na}_2</td>
<td>[M^{3+}_4 M^{3+}2 Ti] (Si_4 Al_2) O{20}</td>
<td>not yet found</td>
</tr>
<tr>
<td>{Na}_2</td>
<td>[M^{3+}4 Ti] (Si_4 Al_2) O{20}</td>
<td>not yet found</td>
</tr>
<tr>
<td>{Ca}_2</td>
<td>[M^{2+}5 Ti] (Si_4 Al_2) O{20}</td>
<td>rhônite</td>
</tr>
<tr>
<td>{Ca}_2</td>
<td>[M^{2+}_3 M^{2+}2 Ti] (Si_4 Al_4) O{20}</td>
<td>no name, (baikovite)</td>
</tr>
<tr>
<td>{Ca}_2</td>
<td>[M^{2+}_4 M^{2+}2 Ti] (Si_4 Al_4) O{20}</td>
<td>hagtuavite; serendibite</td>
</tr>
<tr>
<td>{Ca}_2</td>
<td>[M^{2+}4 Ti] (Si_4 Al_4) O{20}</td>
<td>no name, (baikovite)</td>
</tr>
<tr>
<td>{Ca}_2</td>
<td>[M^{2+}4 Ti] (Si_4 Al_4) O{20}</td>
<td>synthetic</td>
</tr>
</tbody>
</table>

Fig. 4. The aenigmatite- and rhönite-subgroup polyhedra, including the positions of the eight minerals aenigmatite, wilkinsonite, krinovite, rhönite, dorrite, serendibite, welshite and högtuavite. Both subgroup polyhedra can be divided into five sub-volumes, corresponding to the ten end-members.

and one boundary at 3 M$^{3+}$ pfu (50 % rule IMA) corresponding to substitution number II (Si + M$^{2+}$ = Al + M$^{3+}$). Each of the ten sub-volumes includes one of the ten end-members in Fig. 3. The limits of the sub-volumes correspond to existing minerals, e.g. at the locality where rhönite was first found (Platzer Kuppe, Rhön, Germany; Soellner, 1907) the mineral can still be called rhönite. These restrictions are applied to all the limits of the sub-volumes.

The three-dimensional position of all analyses in the polyhedron (Fig. 3) can be definitively fixed with two projections.

1: A projection on to the base of the polyhedron: Na pfu - Ti$^{4+}$ pfu (Differentiation aenigmatite-rhönite subgroup). In Fig. 5, all mineral analyses are plotted in this way. The x-axis corresponds to 0 ≤ Ti ≤ 2 pfu and the y-axis to 0 ≤ Na ≤ 2 pfu. All samples with Na > 1 pfu belong to the aenigmatite subgroup and those with Na ≤ 1 pfu to the rhönite subgroup. The mineral analyses of the aenigmatite subgroup are restricted to a small field whereas in the rhönite subgroup they are widely scattered.

2: Two projections to the sides of the polyhedron: Si minus Na pfu - Ti$^{4+}$ pfu. One projection for the aenigmatite subgroup (Fig. 6) and one for the rhönite subgroup (Fig. 7).

The x-axis corresponds to the Ti pfu in the mineral: 0 ≤ Ti ≤ 2. The y-axis is in this projection corresponds to the Si pfu minus Na pfu (2 ≤ Si minus Na ≤ 4 pfu). The compositions of all available analyses (192) are plotted in both projections. The five aenigmatite subgroup areas: Na > 1 and

I: 0 ≤ Ti < 0.5
and 2 ≤ (Si - Na) < 3 not yet found
II: 0 ≤ Ti < 0.5
and 3 ≤ (Si - Na) ≤ 4 wilkinsonite, krinovite
III: 0.5 ≤ Ti < 1.5
and 2 ≤ (Si - Na) < 3 not yet found
IV: 0.5 ≤ Ti < 1.5
and 3 ≤ (Si - Na) ≤ 4 aenigmatite
V: 1.5 ≤ Ti ≤ 2
and 2 ≤ (Si - Na) < 3 not yet found

In the aenigmatite subgroup, all mineral analyses are located in the upper part of the diagram, the aenigmatite and the wilkinsonite field. Krinovite and wilkinsonite analyses are situated in the same field. In krinovite (found in the iron meteorite
from Cañon Diablo, USA) chromium predominates at M$^{3+}$ and magnesium at M$^{2+}$, whereas in wilkinsonite Fe$^{3+}$ predominates at M$^{3+}$ and Fe$^{2+}$ at M$^{2+}$. I recommend to name all analyses in this sub-volume wilkinsonite and name new minerals found in this subgroup wilkinsonite with addition of a relevant chemical prefix if the chemical deviation at the M$^{2+}$ or M$^{3+}$ position is more than 1 formula unit. In this case we have to rename krinovite as chromio-magnesio-wilkinsonite. The analyses in the aenigmatite sub-volume show solid solution toward wilkinsonite. At the time of writing, there are no natural samples for the other three fields.

The five rhônite subgroup 5 areas: Na ≤ 1 and

I: 0 ≤ Ti < 0.5
and 2 ≤ (Si - Na) ≤ 3 dorrite, welshite
II: 0 ≤ Ti < 0.5
and 3 ≤ (Si - Na) ≤ 4 høgtuavite, serendibite
III: 0.5 ≤ Ti < 1.5
and 2 ≤ (Si - Na) < 3 no name
IV: 0.5 ≤ Ti < 1.5
and 3 ≤ (Si - Na) ≤ 4 rhônite
V: 1.5 ≤ Ti ≤ 2
and 2 ≤ (Si - Na) < 3 no name, only synthetic

The original dorrite (Cosca et al., 1988) and welshite (Moore, 1978) compositions plot in the same field with the postulated end-member \[\text{Ca}_2 \] [M$^{2+}$M$^{3+}$] (Si$_2$Al$_2$) O$_{20}$. Dorrite is rich in magnesium at M$^{2+}$ and Fe$^{3+}$ at M$^{3+}$, whereas welshite is rich in magnesium at M$^{2+}$, Fe$^{3+}$ at M$^{3+}$, antimony at M$^{5+}$ and Be$^{2+}$ on T. Most analyses in this sub-volume (see Fig. 7) are from “rhônites” crystalized under pneumatolytic conditions in alkalic lavas (e.g. Nickenicher Sattel and Bellerberg, Eifel, Germany). I recommend to name all analyses in this sub-volume dorrite and rename welshite as beryllio-antimono-dorrite, because there are one antimony per formula unit in sixfold coordination and two Be$^{2+}$ in fourfold coordination. New minerals found in this subgroup should be named dorrite with addition of a relevant chemical prefix if the chemical deviation at the M$^{2+}$, M$^{3+}$ or T position is more than 1 formula unit. The høgtuavite-serendibite field needs more explanation. The original analysis of høgtuavite with its structural formula \{Ca$_{1.63}$Na$_{0.43}$\} [Fe$^{2+}$Fe$^{3+}$Ti$_{0.30}$Mg$_{0.09}$Sn$_{0.03}$Mn$_{0.03}$] (Si$_{4.60}$Be$_{0.92}$Al$_{0.45}$) O$_{20}$ is given by Grauch et al. (1994) and has been reanalysed (original sample) in the present study with consent. Burt (1994) reduces this composition to a confusing ideal structural formula \{Ca$_2$\} [Fe$^{2+}$Ti$_1$] (Si$_8$Be$_1$) O$_{20}$ for høgtuavite. In this ideal formula all M$^{3+}$ is neglected and the titanium increases from 0.3 pfu to 1.0 pfu. The fol-
following procedure is proposed here for høgtuavite: first, simplification to \(\{Ca^{1.63}\text{Na}_{0.43}\} [M^{2+}3.54M^{3+}2.08 Ti_{0.30}] (Si_{4.60}Be_{0.92}Al_{0.45}) O_{20} \) and then replacement of beryllium with substitution 6 to \(\{Ca^{1.63} \text{Na}_{0.43}\} [M^{2+}3.54M^{3+}2.08 Ti_{0.30}] (Si_{3.68}Al_{2.29}) O_{20} \). If we now use substitutions 1, 2 and 3 (as shown above) we obtain the ideal formula \(\{Ca^{2.06}\} [M^{2+3.96}M^{3+}1.96](Si_{3.97}Al_{2.00}) O_{20} \). The projection of the original formula (Grauch et al., 1994) in the aenigmatite-rhonite polyhedron is shown in Fig. 7. The nearest end-member in this figure for høgtuavite is \(\{Ca^{2}\} [M^{2+}M^{3+}2] (Si_{4}Al_{2}) O_{20} \). The ideal formula of serendibite is given by Burt (1994) as \(\{Ca^{2}\} [Mg_{3}Al_{3}](Si_{3}Al_{3}B_{1.5}) O_{20} \). The simplifications proposed here result in the formula \(\{Ca^{2}\} [Mg_{3}Al_{3}](Si_{3}Al_{3}) O_{20} \) which is exactly on the boundary between two sub-volumes. The original composition of serendibite from Prior & Coomaraswamy (1903) plots slightly above this boundary (see Fig. 7). Therefore the analyses of høgtuavite and serendibite appear in the same sub-volume. I recommend the name høgtuavite for this sub-volume and to use the name serendibite for all boron-minerals in this group if more than one boron pfu is replaced at the fourfold position. The mineral name makarochkinite (Yakubovich et al., 1990) is not recommended by IMA, the chemical composition being very similar to høgtuavite.

The ideal formula for rhônite \(\{Ca^{2}\} [M^{2+}3Ti] (Si_{4}Al_{4}) O_{20} \) reproduces the original analysis of rhônite from the type locality at Platz, Rhôn Mountains, Germany by Soellner (1907). All analyses (worldwide) in this sub-volume are from phenocryst rhônites in basalts (see Fig. 7). For this sub-volume I recommend the name rhônite. The ideal formula \(\{Ca^{2}\} [M^{2+3}M^{3+}2] (Si_{2}Al_{4}) O_{20} \) has no name, but there are many analyses plotting in this sub-volume (the name "baikovite" for this sub-volume is not recommended by IMA). These analyses are from "rhônites" in basalts worldwide (Kunzmann, 1989), from basalt-limestone contact (Havette et al., 1982), from an oxidized alkali gabbro (Johnston & Stout, 1984) and as breakdown products of titanium-rich calcium-amphiboles (Kunzmann, 1989; Kunzmann & Huckenholz, 1990a). I recommend a new name for this unnamed...
The aenigmatite-rhönite mineral group

Fig. 7. The five sub-volumes of the rhönite subgroup in projections onto the sides of the polyhedron of Fig. 3: (Si minus Na) pfu - Ti4+ pfu. The x-axis corresponds to the Ti pfu in the mineral: 0 ≤ Ti ≤ 2. The y-axis in this projection corresponds to the Si pfu minus Na pfu (2 ≤ (Si minus Na) ≤ 4 pfu). The compositions of all 192 analyses are plotted. The original analysis.

sub-volume. For the sub-volume with the ideal formula \(\{\text{Ca}_2\} [\text{M}^{2+4}\text{Ti}_2] (\text{Si}_2\text{Al}_4) \text{O}_{20} \), no analysis is found in the literature, but this composition has been synthesized by Kunzmann (1989). For new minerals found in this group I recommend a classification in one of the ten associated sub-volumes. If more than one cation pfu (at the six- or fourfold coordination positions) is replaced by another cation, I recommend the addition of a relevant chemical prefix such as chromio-magnesio-wilkinsonite.

Acknowledgements: I thank all my colleagues for their constructive remarks and for editorial support. Special thanks are due to Mrs. and Mr. Rondorf for many of the samples from the Eifel area, Germany. The financial support of Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Cosca, M.A., Rouse, R.C., Essene, E.J. (1988): Dorrite \(\text{Ca}_2 (\text{Mg}_{2+4}\text{Fe}^{3+}) (\text{Al}_2\text{Si}_2) \text{O}_{20} \), a new member of the aenigmatite group from pyrometamorphic meltrock. Am. Mineral., 73, 1440-1448.

Moore, P.B. (1978): Welshite, Ca$_2$Mg$_4$Fe$^{3+}$Sb$_5+$O$_{22}$[Si$_4$Be$_2$O$_8$], a new member of the aenigmatite group. *Min. Mag.*, **42**, 129-132.

Received 8 December 1997
Modified version received 3 June 1998
Accepted 29 March 1999