2791

Structure and Stability of Carboxylate Complexes. Part I. The Crystal and Molecular Structures of Copper(II) Glycollate, DL-Lactate, 2-Hydroxy-2-methylpropionate, Methoxyacetate, and Phenoxyacetate

By C. K. Prout,* R. A. Armstrong, J. R. Carruthers, J. G. Forrest, P. Murray-Rust, and F. J. C. Rossotti,* Chemical Crystallography Laboratory and Inorganic Chemistry Laboratory, South Parks Road, Oxford

The crystal structures of bis(glycollato)copper(II), aquobis-(DL-lactato)copper(II) hemihydrate, diaquobis-(2-hydroxy-2-methylpropionato)copper(II), diaquobis(methoxyacetato)copper(II), and diaquobis(phenoxyacetato)copper(II) have been determined by three-dimensional X-ray structure analysis. All the complexes contain trans-chelate rings, which, apart from the bow-shaped lactate, are coplanar. The copper ions are in elongated tetragonally distorted octahedral environments with two exceptions: in the lactate, copper ions are in a nearly square-pyramidal five-co-ordinate environment; in the methoxyacetate, the octahedron is compressed. Details of the structures may be rationalised in terms of Jahn-Teller distortions and hydrogen-bonding.

Most bis(monocarboxylato)copper(II) complexes in which the ligand is unequivocally unidentate have low magnetic moments (~ 1.45 B.M. at room temperature) in the solid state and in some non-aqueous solvents,¹ and may be assumed to have dimeric or polymeric structures. However, in aqueous solution the complexes are mononuclear,² up to a total copper ion concentration of at least 0.1M. The known crystal structures of aminocarboxylatocopper(II) complexes ³ indicate that 2- and 3-aminocarboxylates are invariably bidentate ligands in the solid state. The high thermodynamic stability and hydration ⁴ of these copper complexes give little reason to doubt that they are also chelates in aqueous solution. However, for 2- and 3-hydroxy, -alkoxy-, and -aryloxy-carboxylates the situation is less clear. No crystallographic information was available when the present programme was initiated. Copper 2-substituted complexes of the carboxylates $R^{1}R^{2}C(OR^{3})CO_{2}^{-}$ have magnetic moments⁵ of about 1.9 B.M. and are therefore monomeric, though not necessarily chelates. However, complexes of the analogous 3-substituted ligands have low magnetic moments,⁵ indicative of the dimeric copper acetate structure.⁶ Systematic studies of differential proton relaxation⁷ in bound ligands indicate that 2- and 3-hydroxycarboxylates and 2-alkoxycarboxylates form chelates with copper(II) in aqueous solution, but that the 3-alkoxycarboxylates are unidentate ligands. Infrared data in heavy-water solution,⁸ and thermodynamic data 2 are consistent with these deductions. There is a fine balance between the different structures of the complex and between the different functions of the ligand, and we have set out to investigate the structures of hydroxy- and alkoxy-carboxylates in the solid state. In aqueous solution, there is a good linear free-energy relationship² of the form

$$\log \beta_1 = a \log {}^{\mathrm{H}}K_1 + b \tag{1}$$

¹ M. Kato, H. B. Jonassen, and J. C. Fanning, Chem. Rev., 1964, **64**, 99.

447.

between the equilibrium constants for the reactions

and

$$H^+ + A^- \Longrightarrow HA = HA$$

 $Cu^{2+} + A^- \Longrightarrow CuA^+ \beta_1$

with unequivocally unidentate ligands. In this paper we report the crystal structures of a series of complexes (phenoxyacetate, methoxyacetate, glycollate, lactate, and 2-hydroxy-2-methylpropionate) which are increasingly stabilised ² in aqueous solution in terms of equation Diaquobis(methoxyacetato)copper(II) (1).dihydrate and bis(glycollato)copper(II) have been the subject of a preliminary communication.⁹

RESULTS

All five structures were determined by three-dimensional X-ray techniques (see Experimental). In each compound the copper atom is surrounded by six oxygen atoms at the corners of a tetragonally distorted octahedron. However, in the lactate one of the copper-oxygen contacts is so long that it probably should not be regarded as a bond. The carboxylate ligands O2C·C·OR form two trans-five-membered chelate rings with the metal atom, and lie more or less in an equatorial plane of the co-ordination octahedron. The co-ordination sphere may be completed by two aquoligands (phenoxyacetate, methoxyacetate, 2-hydroxy-2-methylpropionate), two carboxyl oxygen atoms of neighbouring complexes (glycollate), or one aquo-ligand and one (carboxy-oxygen) lactate. In all crystals the complexes are bound together by a complex series of intermolecular hydrogen-bonds.

Diaquobis(phenoxyacetato)copper(11).—There are two crystallographically different units of the above composition in the crystal. One is located about copper atoms at inversion centres, and the other about copper atoms in general positions (Figure 1). Both units have approximately the same orientation in the crystal, and very similar geometries. Their best planes are parallel to within 1°.

² F. J. C. Rossotti, J. D. E. Carson, J. J. Clark, K. D. Dillon,

<sup>D. L. Martin, and V. Moxham, unpublished work.
³ H. C. Freeman, 'The Biochemistry of Copper,' ed. P. Aisen,
W. Blumberg, and J. Peisach, Academic Press, New York, 1966,
p. 77; Adv. Protein Chem., 1967, 22, 257.
⁴ F. J. C. Rossotti and H. Sunshine, Chem. Comm., 1968,</sup>

⁵ C. Lea, F. J. C. Rossotti, and D. H. Schärer, unpublished work.

⁶ J. N. van Niekerk and F. R. L. Schoening, *Acta Cryst.*, 1953, 6, 227; G. A. Barclay and C. H. L. Kennard, *J. Chem. Soc.*, 1961, 5244; F. Hanic, D. Stempelova, and K. Hanicova, *Acta Cryst.*, 1964, **17**, 633; B. H. O'Connor and E. N. Maslen, *ibid.*, 1966, **20**,

<sup>824.
&</sup>lt;sup>7</sup> K. D. Dillon and F. J. C. Rossotti, *Chem. Comm.*, 1966, 768.
⁸ F. J. C. Rossotti and A. Willson, unpublished work.
⁹ J. G. Forrest, C. K. Prout, and F. J. C. Rossotti, *Chem.*

Each copper atom is co-ordinated to six oxygen atoms: two phenoxy-oxygen atoms at $2\cdot 46$ — $2\cdot 50$, two carboxyoxygen atoms at $1\cdot 94$ — $1\cdot 95$, and two aquo-ligands at $1\cdot 97$ — $1\cdot 99$ Å. The copper atoms have therefore the elongated tetragonal distortion of the co-ordination octahedron generally observed. The four-fold axis is through a pair of bonds in the chelate ring, as also occurs in copper croconate.¹⁰ In the centrosymmetric molecule, the angle The configuration at the phenoxy-oxygen atom is approximately trigonal-planar. The plane of the phenyl groups in the three independent phenoxyacetate residues are inclined to the planes of the chelate rings (Figure 3). The angles of inclination are $8\frac{1}{2}^{\circ}$ for the phenyl group at O(3), 6° for that at O(13), and 9° for that at O(23). In the complex, at a general position in the unit-cell the directions of tilt of the benzene rings are such that the near inversion

FIGURE 1 Diaquobis(phenoxyacetato)copper(II): (a) Projection of the structure along [010]; the molecules are hydrogen-bonded to give sheets parallel to [010]; (b) one of the sheets projected along [001]

O(1)CuO(3) of 73.6° in the chelate ring is, within experimental error, the same as the corresponding angles O(11)CuO(13) 74.3° and O(21)CuO(23) 75.1° in the other complex. However, in the latter complex the external angles O(13)CuO(21) 110.1° and O(11)CuO(23) 100.5° are different, a feature reflected by the differing behaviour of O(12) and O(22) with respect to intermolecular hydrogenbonding. In both types of complex the aquo-ligands lie, to a very good approximation, along the perpendiculars to the chelate ring planes at the copper atom. Interatomic distances and interbond angles are summarized in Figure 2.

centre is preserved. As the phenyl group turns out of plane, the carbon atom adjacent to the carbonyl group in the chelate ring is pushed up to 0.15 Å out of the plane in the same direction. Angular distortions at the phenoxyoxygen and the phenyl ring carbon attached to it are consistent with overcrowding. Each water molecule forms two hydrogen-bonds to oxygen atoms of a carboxyl group. Hydrogen bonds O(4)O(2) of 2.67, O(12)O(24) of 2.70, and O(14)O(22) of 2.71 Å hold the molecules together in chains

¹⁰ M. D. Glick, G. L. Downs, and L. F. Dahl, *Inorg. Chem.*, 1964, **3**, 1712.

parallel to b. The chains are linked to form sheets by the hydrogen-bonds O(4)O(21) of 2.87, O(14)O(1) of 2.84, and O(24)O(12) of 2.72 Å (Figure 1). These three hydrogenbonds are coplanar with the carboxy-group at which they are formed. In contrast to the other structures described, there are two hydrogen-bonds to carboxy-oxygen atoms which are bound to the metal atoms. For each of these bonds the contacts to the neighbouring non-chelating atoms

FIGURE 2 Diaquobis(phenoxyacetato)copper(II): interatomic distances and angles (a) in the centrosymmetric molecule about Cu(1); (b) in the molecule containing Cu(2)

[O(2)O(14) 3.01; O(4)O(22) 3.08 Å] suggests that these may be examples of bifurcated hydrogen-bonds. The arrangement of hydrogen-bonds at O(12) is more typical of the behaviour of the non-chelating carboxy-oxygen atom in the compounds described here.

FIGURE 3 Diaquobis(phenoxyacetato)copper(II): molecules (a) about Cu(1), and (b) about Cu(2) projected parallel and perpendicular to the least-squares best planes through the atoms of their chelate rings. The transformation matrices from the orthogonal axes a, b, and c^* to the axes X'Y'Z' and X''Y''Z'' are

0.502	-0.754	-0.425	and	0.519	-0.749	-0.412
-0.653	-0.008	-0.757		-0.644	-0.026	-0.764
0.567	0.657	-0.497		0.561	0.662	-0.496

Diaquobis(methoxyacetato)copper(II).—The crystals are built up from units of this composition located about copper atoms at inversion centres (Figure 4). The co-ordination is

J. Chem. Soc. (A), 1968

superficially similar to that of the phenoxyacetate but there are interesting differences in the Cu–O contact distances (Figure 5). The co-ordination octahedron has two methoxy-oxygen atoms at $2 \cdot 13$, and two carboxy-oxygen

FIGURE 4 Diaquobis(methoxyacetato)copper(II): projection of the structure along [010]. Molecules with copper atoms at y co-ordinates of 0 and 1 are represented by open and full lines respectively

FIGURE 5 Diaquobis(methoxyacetato)copper(II): interatomic distances and angles

atoms at 1.93 Å in the chelate rings, and is completed by two aquo-ligands at 2.16 Å. The tetragonal distortion therefore takes on the unusual compressed form of four longer and two shorter bonds. The angle O(3)CuO(1)within the ring is 79.9° , and the water molecules lie very near to the perpendicular to the chelate ring plane at the copper atom. The atoms forming the two chelate rings have a maximum deviation of 0.027 and a mean deviation of 0.018 Å from their least-squares best plane. The methyl carbon C(3) is 0.29 Å above the plane and the oxygen O(2) 0.08 Å above it. As in the phenoxyacetate, the oxygen O(3) is nearly coplanar with C(2), C(3), and Cu, and the angle C(3)O(3)C(2) of 114.5° is greater than the expected angle (109°) at an ether oxygen. The bonded distance O(1)C(1) within the chelate ring is unexpectedly shorter than C(1)O(2), but this is without statistical significance. However, a similar short bond is found in bis-(methoxyacetato)nickel(11) dihydrate.¹¹ Other bonds have

FIGURE 6 Bis(glycollato)copper(II): projection of the structure along [010]. Molecules with copper atoms at y co-ordinates of 0, 1, and 2 are represented by dotted, open, and full lines respectively. Weak Cu-O(2) bonds join molecules at the same y co-ordinates to form sheets perpendicular to [010], and hydrogen-bonds between O(2) and O(3) join the molecules to form sheets perpendicular to [110]

the expected lengths. The carboxyl oxygen O(2) not involved in co-ordination is hydrogen-bonded to two water molecules O(4) of neighbouring complexes (Figure 4). One of these water molecules is in the plane of O(2), C(1), O(1), and the hydrogen-bond 2.80 Å long is approximately parallel to the C(1)C(2) vector. The contact distance O(4)O(1) at 3.46 Å is too long to suggest any tendency to form a bifurcated hydrogen-bond. The second hydrogenbond 2.79 Å long is also very close to the chelate ring plane, and approximately parallel to the bond C(1)O(1). Each water molecule O(4) has three near neighbours, the two

 11 C. K. Prout, F. J. C. Rossotti, and C. Walker, unpublished work.

hydrogen-bond oxygen atoms O(2) of two other complexes and the copper atom in its own complex, forming a shallow pyramid. There are no other intermolecular interactions other than van der Waals contacts.

FIGURE 7 Bis(glycollato)copper(II): interatomic distances and angles

Bis(glycollato)copper(II).—Here also, the copper atoms at inversion centres are co-ordinated to two glycollate ligands forming coplanar chelate rings (Figure 6). The copper to hydroxy-oxygen contact CuO(3) is 1.93 and the copper carboxy-oxygen CuO(1) 1.91 Å, with the angle O(1)CuO(3) 83.4° (Figure 7). The copper atom and the atoms of both chelate rings are coplanar within experimental error. The maximum and mean deviations from the least-squares best plane are 0.013 and 0.008 Å respectively. The co-ordination octahedron is completed by the two carboxy-oxygens O(2)of two neighbouring complexes so that the $Cu \cdots O(2)$ vectors, 2.54 Å long, are perpendicular to the plane of the copper chelate containing the copper atom. In addition, each oxygen atom O(2) forms a remarkably short intermolecular hydrogen-bond 2.57 Å long to the hydroxy-group O(3) of a second neighbouring complex. This hydrogenbond is coplanar with the chelate ring associated with O(2), and is approximately parallel to the C(1)C(2) bond of that ring. If the hydrogen-bond is linear, then O(3) has a trigonal-planar configuration. The CuO(2) contact rises 1.86 Å above the O(2)C(1)O(1)O(3)' plane but is in a very similar direction to that of the second hydrogen-bond to the carboxy-oxygen in the methoxyacetate structure.

Aquobis-(DL-lactato)copper(II) Hemihydrate.—The crystals are formed from aquobis(lactato)copper(II) groups with the copper atom in general positions in the space-group A2, and isolated water molecules O(5) at general positions in the unit cell. These water molecules are located in channels parallel to c. There is space for each site to be occupied by water. In the crystal used for the X-ray analysis there were approximately half as many water molecules as sites. Analytical results and density measurements indicate that the amount of water varies with the age and previous handling of the crystals.

The copper co-ordination sphere has two crystallographically independent chelate rings, one formed from a D-lactate and the other from an L-lactate ligand. The absolute configuration has not been determined. The methyl groups on the 2-carbon atoms appear on opposite sides of the chelate rings (Figure 8). The co-ordination sphere is completed by a water molecule O(4) 2.30 Å from the copper at the apex of an approximately tetragonal prism (Figure 9). The copper atom is 0.15 Å above the best basal plane of the prism taken through the ring oxygen atoms (Figure 10). The oxygen atoms O(1) and O(11)are 0.05 Å above the plane, and the hydroxy-oxygen atoms O(3) and O(13) are 0.05 Å below the plane. The chelate rings as a whole are bent away from the water molecule O(4) in a bow shape. The individual rings are far less planar than those found in the methoxyacetate and glycollate complexes. In the ring containing O(1) the maximum

FIGURE 8 Aquobis-(DL-lacto)copper(II) hemihydrate: projection of the structure along [001]. The short contacts Cu-O(2) and O(4)-O(12) are shown by discontinuous dotted lines when they are to molecules at heights other than those drawn. The water molecule O(5), shown as a broken circle, has an occupation number of about 0.5

deviation from the best plane is 0.082 and the mean deviation 0.055 Å. For the ring containing O(11) the corresponding values are 0.070 and 0.046 Å. The aquobis-(lactato)copper(11) complexes are joined by hydrogen-bonds

FIGURE 9 The aquobis-(DL-lactato)copper(II) molecule: interatomic distances and angles

to form ribbons parallel to c, and these ligands are associated in pairs by a weak interaction of the copper atoms and the non-chelating carboxy-oxygen atom O(2) at a separation of $2 \cdot 9$ Å (Figure 11). This oxygen atom O(2) forms one hydrogen-bond to the hydroxy-oxygen O(3) of a neighbouring complex, as well as the short contact to the copper atom in a complex related to that containing O(2) by rotation about a two-fold screw axis. The oxygen atom O(12) is

FIGURE 10 The aquobis-(DL-lactato)copper(II) molecules projected parallel and perpendicular to the least-squares best plane through O(1), O(3), O(11), and O(13). The transformation matrix from the orthogonal axes a, b^* , and c to the axes X', Y', and Z' is

0.179	0.175	0.968
0.791	0.560	-0.247
-0.586	0.810	-0.038

J. Chem. Soc. (A), 1968

involved in two hydrogen-bonds. One is to the hydroxygroup O(13) in another complex (Figure 11). The other is to the water molecules O(4) of a neighbouring complex and joins the double ribbons of complexes to form sheets (Figure 8). The hydrogen-bonds about O(12) are very similar to those about O(2) in the methoxyacetate. If it is assumed that the hydrogen-bonds are linear, the hydroxyoxygen atoms O(3) and O(13) have a planar configuration.

FIGURE 11 Aquobis-(DL-lactato)copper(II) hemihydrate: the double ribbon formation projected along [010]

FIGURE 12 Diaquobis-(2-hydroxy-2-methylpropionato)copper(II): projection of the structure along [010]

Diaquobis-(2-hydroxy-2-methylpropionato)copper(II).— This structure is the least well determined. In the isolated complex the copper atom appears to lie at a point of symmetry 2/m in a unit cell of space-group C2/m. The atoms of the chelate rings lie in the mirror plane (Figure 12). The co-ordination of the copper is distorted octahedral with the copper-water contact CuO(4) $2\cdot56$, copper-hydroxygroup CuO(3) $2\cdot01$, and the copper-carboxy-oxygen CuO(1) 1.89 Å (Figure 13). The chelate rings and the copper atom are necessarily coplanar, but difference maps indicate a remarkably high anisotropic thermal motion along the O(4)CuO(4)' vector. This appears better explained as a statistical distribution of copper atoms about the mirror plane (see Experimental) than as true anisotropic thermal

FIGURE 13 Diaquobis-(2-hydroxy-2-methylpropionato)copper(II): interatomic distances and angles

FIGURE 14 Diaquobis-(2-hydroxy-2-methylpropionato)copper-(II): projection of the structure along [100] showing the hydrogen-bonded ribbons

motion, and may represent a tendency to form a copper lactate-like structure. The structures of other modifications derived from the original triclinic twinned crystal may yield further information on this point. The complexes are joined together to form ribbons (Figure 14) by hydrogenbonding of the hydroxy-group O(3) to O(2) of another molecule in the mirror plane, and the sheets are held together by hydrogen-bonding through the water molecules. DISCUSSION

The only other example of a hydroxycarboxylatocopper(II) structure in the literature appears to be that of the diaquobis(salicylato)-dihydrate.¹² The salicylate ligands, which may be regarded as 3-hydroxycarboxylates, are unidentate and bound to the copper ion through the carboxy-groups with Cu-O bonds of 1.91 Å. Chelation by the hydroxy-group is prevented by strong intramolecular hydrogen-bonding to the carboxylate oxygen unattached to copper. The copper ions are also coordinated to two aquo-ligands at a Cu-O distance of 1.95 Å, and form an asymmetric $[Cu(OH_2)_2]_n$ chain with longer Cu-O contacts of 2.8 Å. The interatomic distances in this compound have been calculated from a revised set of atomic parameters obtained from the data in the literature 12 by four cycles of least-squares refinement.

In Tables 1 and 2 the formally equivalent bond lengths and bond angles for the compounds reported here and for diaquobis(salicylato)copper(II) dihydrate are collected together. For all compounds each independent measurement of a particular bond is given. The mean values are the simple arithmetic means, and the standard deviations of the mean values were computed from the formula

$$\sigma_{\rm m} = [\Sigma_i (d - d_i)^2 / n(n-1)]^{\frac{1}{2}}$$

where d_i is the *i*th of *n* measurements for which *d* is the mean value. In parentheses are the standard deviations of individual bond lengths and angles (for bond lengths $\sigma_i \times 10^2$) calculated from the standard deviations of atomic parameters in Table 3 and neglecting the covariances. Tables 1 and 2 are in the same form as the analogous Tables for copper-2-aminocarboxylates and copper peptides given by Freeman.³

The copper to carboxy-oxygen bond lengths represent a spread about a mean of 1.92 Å, which is somewhat shorter than the corresponding mean length of 1.97 Å found in the aminocarboxylate and peptide complexes³ and in the copper carboxylate dimers.⁶ The mean Cu-OR bond length is longer (2.16 Å), but the spread is much bigger, and the lengths increase in the order R = H < Me < Ph. The mean of the Cu-OH₂ bond lengths is also 2.16 Å, but again the spread is significantly larger than for the Cu-OOC bond lengths. As the bond length Cu-OR increases, so the Cu-OH₂ bond length decreases. It is noteworthy that the short Cu-OH₂ contact of 1.97 Å in the phenoxyacetate is equal to the mean short Cu-OH₂ contact in the hydroxycarboxylates. Similarly, the longer Cu-OH₂ contacts approximate to the longer Cu-OR contacts.

In the three diaquobiscarboxylate complexes, the CuO_6 co-ordination polyhedra all have symmetry D_{2h} , but may be considered to approximate to D_{4h} . In the 2-hydroxy-2-methylpropionate, the four-fold axis lies along the copper-water vector, and there are four short and two long bonds. In the methoxyacetate, the four-fold axis is along the copper to carboxylate oxygen bond,

¹² F. Hanic and J. Michalov, Acta Cryst., 1959, 13, 299.

J. Chem. Soc. (A), 1968

and there are four long and two short contacts. In the phenoxyacetate, the four-fold axis is along the copper to phenoxy-oxygen bond, and there are four short and two long contacts. These tetragonal distortions may be attributed to the Jahn-Teller effect, provided that the oxygen atoms around the central copper atom neither have different radii nor have markedly different intrinsic donor powers due to their different chemical environments. We find 11 that diaquobis(methoxyacetato)nickel(II), which is isomorphous with the copper complex, has three nearly equal independent pairs of Ni-O bonds (of which the Ni-OMe bond is the shortest at 1.99 Å).

form, a later ¹⁸ MO treatment predicts a difference of about 0.2 Å between the shorter and longer Cu-F bonds, but is unable to define the direction of the distortion, which appears to be very sensitive to the amount of covalency in the bonds.¹⁹ In the present CuO₆ polyhedra, the three pairs of oxygen donors are nearly, but not quite, equivalent. The free energies² and enthalpies 20 of the copper complexes in solution indicate that the strengths of the bonds from Cu to CO₂⁻, OH, OMe, and OPh differ remarkably little from the strength of the copper-water bonds, but decrease in that order, which is also the order of increasing bond lengths. It

TABLE 1	L
---------	---

Collected bond lengths in the complexes (in Å) with standard deviations ($\times 10^2$) in parentheses

	Organic ligand					>							
	◄	C	0 ₂	>	-		- C-O-R		>			'Axial ' bonds	
Compound	C=O	C-0	Cu-O	00	С-О	Me-O	Ph-O	он…о	Cu-O	$0 \cdots 0$	C-C	Cu-OH ₂	Cu-O
(a) Diaquobis(phenoxyacetato)copper(11)	$1 \cdot 26(2)$ $1 \cdot 26(2)$ $1 \cdot 24(2)$	$1 \cdot 28(2)$ $1 \cdot 29(2)$ $1 \cdot 27(2)$	1.94(1) 1.94(1) 1.94(1)	$2 \cdot 21(2)$ $2 \cdot 21(2)$ $2 \cdot 18(2)$	$1 \cdot 43(2)$ $1 \cdot 42(2)$ $1 \cdot 44(2)$		$1 \cdot 39(2)$ $1 \cdot 38(2)$ $1 \cdot 39(2)$		2.50(1) 2.44(1) 2.50(1)	$2 \cdot 84(3)$ $2 \cdot 79(3)$ $2 \cdot 76(3)$	1.52(2) 1.51(2) 1.54(2)	1.97(1) 1.98(1) 1.99(1)	
 (b) Diaquobis(methoxyacetato(copper(II) (c) Bis(glycollato)copper(II) (d) Aquobis-(bL-lactato)copper(II) hemihydrate (e) Diaquobis(2-bydroxy-2-methylpropionato). 	$1 \cdot 28(2)$ $1 \cdot 24(2)$ $1 \cdot 23(3)$ $1 \cdot 26(3)$ $1 \cdot 24(4)$	$1 \cdot 24(2)$ $1 \cdot 27(2)$ $1 \cdot 25(3)$ $1 \cdot 24(3)$ $1 \cdot 32(4)$	1.93(1) 1.91(1) 1.93(2) 1.93(2) 1.89(2)	$2 \cdot 23(2)$ $2 \cdot 22(2)$ $2 \cdot 19(3)$ $2 \cdot 19(3)$ $2 \cdot 26(4)$	1.44(2) 1.43(2) 1.40(4) 1.40(4) 1.45(4)	1·47(2)		2.57(2) 2.67(3) 2.62(3) 2.68(3)	$2 \cdot 13(1)$ $1 \cdot 93(1)$ $1 \cdot 97(2)$ $1 \cdot 97(2)$ $2 \cdot 01(2)$	$2 \cdot 61(2)$ $2 \cdot 57(2)$ $2 \cdot 54(3)$ $2 \cdot 56(3)$ $2 \cdot 58(3)$	$1 \cdot 42(2)$ $1 \cdot 53(2)$ $1 \cdot 53(4)$ $1 \cdot 59(4)$ $1 \cdot 61(4)$	2.16(1) 2.30(2) 2.56(3)	2·54(1) 2·90(2)
copper(11) (f) Diaquobis(salicylato)copper(11) dihydrate	1.27	1.02(1)	1.91	2 20(1) 2·22	[1·32]	_	-		1.95 Cu-OH ₂) —	[1.43]	[2.80]	-
Mean Standard deviation of the mean Range Number in sample	$1.254 \\ 0.006 \\ 1.23 \\ 1.28 \\ 9$	$1.271 \\ 0.009 \\ 1.24 \\ 1.32 \\ 9$	$1.924 \\ 0.006 \\ 1.89 \\ 1.94 \\ 9$	$2 \cdot 212$ $0 \cdot 008$ $2 \cdot 18 $	$1.426 \\ 0.007 \\ 1.40 $	1·47 1·47 1	$1.39 \\ 0.003 \\ 1.38 \\ 1.39 \\ 3$	$2.64 \\ 0.026 \\ 2.57 \\ 2.68 \\ 4$	$2.160 \\ 0.084 \\ 1.93 \\ 2.50 \\ 9$	2.656 0.042 2.54 2.84 8	1·545 0·013 1·51— 1·61 9	$2.160 \\ 0.096 \\ 1.97 \\ 2.80 \\ 7$	2.72 2.54 2.90 2

TABLE 2

Collected bond angles in the complexes (in degrees) with standard deviations in parentheses

			co	s	>			C~(о-r —		>
Compound	0-Cu-0	Cu-O-C	0-C=0	0-C-C	O=C-C	C-C-OR	с-он…о	C-O-R	Cu-O-C	Cu-O-R C	u-OH···O
(a) Diaquobis(phenoxyacetato)copper(11)	73.6(0.3)	124.6(0.9)	120.9(1.2)	121.5(1.2)	117.6(1.2)	110.2(1.1)	_	117.0(1.0)	$106 \cdot 2(0 \cdot 7)$	$135 \cdot 3(0 \cdot 8)$	
	75.1(0.3)	123.6(0.9)	$121 \cdot 4(1 \cdot 2)$	$121 \cdot 3(1 \cdot 2)$	$117 \cdot 3(1 \cdot 2)$	110.6(1.2)		$117 \cdot 4(1 \cdot 0)$	$107 \cdot 3(0 \cdot 7)$	$134 \cdot 6(0 \cdot 7)$	
	74-3(0-3)	$124 \cdot 0(0 \cdot 9)$	$122 \cdot 4(1 \cdot 2)$	$121 \cdot 1(1 \cdot 2)$	$116 \cdot 4(1 \cdot 2)$	$110 \cdot 1(1 \cdot 1)$		$118 \cdot 3(1 \cdot 0)$	106.0(0.7)	$134 \cdot 3(0 \cdot 7)$	
(b) Diaquobis(methoxyacetato)copper(11)	79.9(0.4)	119.0(0.9)	124.7(1.2)	$121 \cdot 2(1 \cdot 2)$	114.0(1.3)	$107 \cdot 1(1 \cdot 1)$		114.5(1.1)	112.7(0.8)	130.4(0.9)	
(c) Bis(glycollato)copper(II)	83.4(0.4)	116.0(0.9)	$124 \cdot 6(1 \cdot 3)$	$118 \cdot 3(1 \cdot 2)$	117.0(1.2)	106.7(1.1)	114.6(1.2)		115.5(0.8)		128.9(0.9)
(d) Aquobis-(DL-lactato)copper(II) hemi-	$82 \cdot 2(0 \cdot 4)$	116.8(1.5)	$124 \cdot 6(2 \cdot 2)$	$117 \cdot 3(2 \cdot 1)$	117.9(2.2)	$106 \cdot 3(2 \cdot 2)$	101.7(2.0)		115.9(1.5)		138.0(1.9)
hydrate	81.0(0.7)	$116 \cdot 8(1 \cdot 5)$	$122 \cdot 4(2 \cdot 2)$	118.7(2.2)	$118 \cdot 9(2 \cdot 2)$	106.6(2.2)	$104 \cdot 4(2 \cdot 0)$		115.7(1.6)		139.4(1.9)
 (e) Diaquobis-(2-hydroxy-2-methylpropionato)- copper(11) 	82.7(0.8)	118-3(1-7)	$124 \cdot 1(2 \cdot 8)$	117.9(2.5)	$118 \cdot 1(2 \cdot 2)$	$103 \cdot 4(2 \cdot 2)$	$104 \cdot 3(2 \cdot 8)$		117.8(1.8)		138-3(1-8)
(f) Diaquobis(salicylato)copper(11) dihydrate	[88.5]	121.8	121.4	121.2	117.4	-					
Mean	79.0	120.1	122.9	119.9	117.1	107.6	111.	5	112.1	1	34.9
Standard deviation of the mean	1.4°	1.1	0.5	0.5	0.5	0.9	2.	4	1.6		1.3
Range	73.6-	116.0-	120.9	117.3 -	114.0	$103 \cdot 4$	101.	7	106.0	15	28.9
	82.7	124-6	124.6	121.5	118.7	110.6	11	.8.3	117.8		139.4
Number in sample	8	9	9	9	9	8	8		8		8

Accordingly, the tetragonal distortions do appear to be primarily due to the metal ion rather than to the ligands.

It is widely believed that the CuF_6 polyhedron shows compressed tetragonal distortion in KCuF₃ and K₂CuF₄. However, the earlier report ¹³ of four long and two short Cu-F bonds in KCuF₃ appears to have been erroneous.¹⁴ Similarly, the original structure ¹⁵ of K₂CuF₄ has been questioned.¹⁶ Our diaquobis(methoxyacetato)copper(II) complex appears to be a rare example of the compressed tetragonal distortion. Although Liehr and Ballhausen's electrostatic model 17 for CuF₆ suggested that the compressed octahedron is more stable than the elongated ¹³ A. J. Edwards and R. D. Peacock, J. Chem. Soc., 1959,

4126. ¹⁴ A. Okazaki and Y. Suemune, J. Phys. Soc. Japan, 1961,

¹⁶ K. Knox, J. Chem. Phys., 1959, **30**, 991.
 ¹⁶ K. Oelkrug, Z. phys. Chem. (Leipzig), 1967, **56**, 325; D. Babel, Structure and Bonding, 1967, **3**, 1.

appears that the four-fold axis lies along the two bonds that differ most in strength from the remaining four, *i.e.*, along the weak Cu-OH₂ bonds in the 2-hydroxy-2-methylpropionate, and along the weak Cu-OPh bonds in the phenoxyacetate, but along the strong Cu-OOC bonds in the methoxyacetate.

In accommodating the varying Cu-OR bond lengths, distortions in the chelate ring are necessary. Equivalent bonds within the various ligands have lengths randomly spread about their means which are acceptable values for each particular type of bond. The separation between the two ring oxygen atoms increases as R is changed

¹⁷ A. D. Liehr and C. J. Ballhausen, Ann. Phys., 1958, 3, 304. ¹⁸ C. J. Ballhausen and H. Johansen, Mol. Phys., 1966, 10,

2798

^{183.} ¹⁹ M. H. L. Pryce, K. P. Sinha, and Y. Tanabe, Mol. Phys., 1965, **9**, 33.

²⁰ J. D. Pocock and F. J. C. Rossotti, unpublished work.

from H to Me to Ph with a concommitant opening of the angles at the carbon atoms. The angle C-C-OR is less than the tetrahedral angle for R = H, and greater for R = Ph. The angles at the carboxy-group are symmetrical with respect to the C-C bond for R = H, but unsymmetrical for R = Me and Ph. If it is assumed

Cu O(

0(0(0(C(C(

TABLE 3

Atomic co-ordinates $(\times 10^4)$ and their estimated standard deviations $(\times 10^4)$

x a	$\sigma(x a)$	y b	$\sigma(y b)$	z c	$\sigma(z/c)$	U_{iso}	$\sigma(U_{iso})$
	(a) Diaqu	iobis(p	henoxyac	etato)c	opper(11)		

Cu(1)	0	0	0	0	0	0	351	7
$O(\mathbf{i})'$	681	5	-1738	10	-51	3	363	18
O(2)	-929	6	4345	11	363	3	416	21
O(3)	414	5	1788	10	904	3	309	17
O(4)	-968	5	-2018	10	384	3	321	17
C(1)	-530	8	3147	16	397	4	324	25
C(2)	131	8	3440	15	867	4	289	24
C(3)	961	8	1754	14	1344	4	300	25
C(4)	1246	9	196	16	1350	5	378	28
C(5)	1858	10	56	18	1762	5	465	33
C(6)	2110	11	1478	20	2175	5	541	36
C(7)	1820	10	3040	20	2171	5	520	35
C(8)	1237	9	3214	16	1757	4	363	27
Cu(2)	3292	1	344	,2	4	I	371	5
O(11)	4004	0	- 1330	11	070	4	447	20
O(12)	4312	0	-3870	11	-212	3 9	308	19
O(13)	2922	0	1000	10	- 009	3 9	297	10
C(14)	2010	0	- 1075	15	209	3 4	329	10
C(11)	2094	0	- 2141	10	- 325	4	200	20
C(12)	0240 9370	8	-1653	14	- 1397	4	203	
C(13)	2010	å	1055	17	-1350	5	392	28
C(15)	1403	10		18	1763	5	483	33
C(16)	1165	11	-1569	20	-2162	6	542	36
C(17)	1507	ii	-3070	$\tilde{21}$	-2146	6	551	36
C(18)	2112	- <u>9</u>	-3150	17	-1729	5	409	29
O(21)	2626	5	2098	10	55	3	364	18
O(22)	2369	6	4648	12	415	3	471	22
O(23)	3725	5	2034	10	890	3	327	18
O(24)	4251	6	2392	10	- 393	3	353	17
C(21)	2774	9	3453	16	426	4	352	27
C(22)	3414	8	3634	15	897	4	305	24
C(23)	4266	8	1920	14	1320	4	283	23
C(24)	4544	9	341	17	1302	5	417	29
C(25)	5173	10	150	19	1709	5	485	34
C(26)	5431	10	1510	20	2134	5	529	35
C(27)	5154	10	3060	20	2149	6	551	37
C(28)	4556	9	3310	18	1744	5	437	31
H(1)	691		4738		782		400	
H(2)	- 103		3022		1252		400	
H(3)	904		- 3382		370 1027		400	
II(4) II(5)	9114		-1197		1759		400	
H(6)	2114		1365		2504		400	
H(7)	2038		4148		2493		400	
H(8)	1013		4448		1757		400	
$\hat{\mathbf{H}}(\hat{9})$	-1520		-2505		159		400	
H(11)	3569		-3337		-1192		400	
H(12)	2702		-4500		-735		400	
H(13)	2334		3034		397		400	
H(14)	2277		1028		-1048		400	
H(15)	1126		1031		-1755		400	
H(16)	702		1539		2487		400	
H(17)	1303		-4211		-2461		400	
H(18)	2363		-4338		-1726		400	
H(19)	1759		-2175		169		400	
H(21)	3955		4970		850		400	
H(22)	3087		3636		1285		400	
H(23)	4271		3765		349		400	
11(24) 11(95)	4000		- 702		981 1679		400	
H(26)	5460		- 1041		2450		400	
H(27)	5409		4140		2409		400	
H(28)	4333		4542		1769		400	
H(29)	4776		2929		149		$\frac{100}{400}$	
<u>\/</u>								

		Т	ABLE 3	3 (Ca	ontinued)			
	x/a	$\sigma(x/a)$	y/b	$\sigma(y/b)$	z c	$\sigma(z/c)$	$\boldsymbol{U}_{\mathrm{iso}}$	$\sigma(U_{iso})$
		(b) <i>Diaq</i>	uobis(m	ethoxy	acetato)cof	bper(11)	
Cu	(0 0	0	0	0	0	376	7
O(1)	1842	2 14	-1154	. 11	1051	7	345	19
O(2)	473	1 14	-837	11	2039	8	365	19
O(3)	209	6 14	2341	12	353	7	346	19
O(4)	142	3 16	-708	3 13	-1794	8	435	22
C(1)	335	619	-205	5 15	1411	10	268	22
C(2)	373	9 21	1866	5 16	1082	11	337	26
C(3)	239	8 25	4157	20	-312	13	472	34
		(c)) Bis(gl	ycollate	o)copper(I	I)		
Cu		0 0	() 0	0	0	273	8
O(1)	157	5 12	2063	3 18	1604	12	207	20
O(2)	257	2 12	1676	3 19	3954	12	217	21
O(3)	- 61	4 12	-3055	5 18	1469	11	203	20
C(1)	161	2 17	681	25	2809	17	186	26
C(2)	33	5 18	-2403	3 26	2907	17	209	28
	(0	1) Aquo	bis(lacta	to)copf	ber(11) hen	nihydra	ate	
Cu	181	6 2	2158	3 1	0	0	436	8
O(1)	73	6 13	1906	37	2923	29	405	30
O(2)	-141	8 15	1548	3 7	4455	32	500	35
O(3)		4 12	1647	76	-1362	32	371	27
O(4)	209	0 13	1118	36	198	40	465	29
O(5)	118	4 29	5713	3 15	270	79	606	115
C(1)	-60	6 17	1652	29	2769	41	320	35
C(2)	129	2 18	1493	39	198	56	416	38
C(3)	-257	6 20	688	8 10	75	72	546	44
C(11)	418	6 18	3027	79	-2722	42	339	37
C(12)	480	8 17	3313	38	-265	51	356	35
C(13)	529	0 19	4118	8 10	68	66	524	43
O(11)	291	8 12	2505	54	-2896	28	367	28
O(12)	496	7 14	3336	37	-4502	32	473	34
O(13)	374	5 14	2853	57	1355	34	431	31
ΓT	he occ	unation	numbe	r of C	(5) is 0.5	603 wit	th an	e.s.d. (

upation number of O(5) is 0.503 with an e.s.d. of 0.053.]

(e) Diaquobis-(2-hydroxy-2-methylpropionato(copper(II)

(i) With anisotropic temperature factors for the copper atom giving R = 0.169.

	x a	$\sigma(x a)$	y b	$\sigma(y b)$	z/c	$\sigma(z/c)$	U_{iso}	$\sigma(U_{\rm iso})$
Cu	0	0	0	0	0	0		_
O(1)	0	0	-2364	35	882	16	378	46
O(2)	0	0	-3069	40	2775	18	509	56
O(3)	0	0	2295	34	1712	15	351	45
O(4)	2534	27	0	0	0	0	736	69
C(1)	0	0	-1656	55	2128	24	398	69
C(2)	0	0	1297	52	2750	22	334	63
C(3)	1236	25	1954	41	3545	19	554	60

The anisotropic temperature factors $(\times 10^4)$ for the copper atom with their e.s.d. in parentheses are U'_{11} , 879(44); U'_{22} , 260(37); U_{33} , 71(18); U'_{12} , 0(0); U'_{13} , 0(0); U'_{23} , 47(35).

(ii) With disordered copper atoms giving R = 0.129.

0	0	0	0	0	0	156	
550	—	0	0	0	0	156	
0	0	-2353	29	881	13	439	38
0	0	-3007	30	2774	13	467	41
0	0	2261	27	1714	12	366	36
2520	22	0	0	0	0	771	56
0	0	-1631	41	2098	19	364	51
0	0	1209	38	2749	16	281	44
1229	20	1946	33	3545	15	573	47
	$egin{array}{c} 0 \\ 550 \\ 0 \\ 0 \\ 0 \\ 2520 \\ 0 \\ 0 \\ 1229 \end{array}$	$\begin{array}{cccc} 0 & 0 \\ 550 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2520 & 22 \\ 0 & 0 \\ 0 & 0 \\ 1229 & 20 \end{array}$	$ \begin{smallmatrix} 0 & 0 & 0 \\ 550 & - & 0 \\ 0 & 0 & -2353 \\ 0 & 0 & -3007 \\ 0 & 0 & 2261 \\ 2520 & 22 & 0 \\ 0 & 0 & -1631 \\ 0 & 0 & 1209 \\ 1229 & 20 & 1946 \end{smallmatrix} $	$ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 550 & & 0 & 0 \\ 0 & 0 & -2353 & 29 \\ 0 & 0 & -3007 & 30 \\ 0 & 0 & 2261 & 27 \\ 2520 & 22 & 0 & 0 \\ 0 & 0 & -1631 & 41 \\ 0 & 0 & 1209 & 38 \\ 1229 & 20 & 1946 & 33 \\ \end{smallmatrix} $	$ \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 \\ 550 & & 0 & 0 & 0 \\ 0 & 0 & -2353 & 29 & 881 \\ 0 & 0 & -3007 & 30 & 2774 \\ 0 & 0 & 2261 & 27 & 1714 \\ 2520 & 22 & 0 & 0 & 0 \\ 0 & 0 & -1631 & 41 & 2098 \\ 0 & 0 & 1209 & 38 & 2749 \\ 1229 & 20 & 1946 & 33 & 3545 \\ \end{smallmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The occupation numbers of Cu(1) and Cu(2) are 0.702 and 0.149 respectively. Parameters for which there are no e.s.d.'s were not refined in the final cycles.

that the hydrogen-bonds formed by the hydroxy-groups in the hydroxycarboxylates are linear, the oxygen atom of all Cu-O(R)-C groups appears to be trigonal-planar to a high degree of approximation, although the angles about the oxygen may deviate widely from 120°. By contrast, oxygen atoms in bridging hydroxy-groups ²¹ or

²¹ C. K. Prout, J. Chem. Soc., 1962, 4429.

TABLE 4

Observed structure amplitudes and calculated structure factors for diaquobis(phenoxyacetato)copper(II)

 $h k l |F_o| F_c$

Inorg. Phys. Theor.

h	k	l	$ F_{o} $	$F_{\rm c}$
<u>๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>	06666666666666666666666666666666666666	0124567890124680012461254612545789135025456789456789457890254567890134567890124678901246789545789012467891356789012467891356789012467891356789012467891356789012467891356789012467891457890124678914567890124678914567890124678914578901246789145789012467891457890124678914578901246789145789012467891457890124678914578901246789145789012467891457890124678914578901246789145789012467891457890124678914578901246789145789	228663303364552460783180923366740396758609205655552583055326695742662646451365132651292999957455993449459221253294521292532945129253295252525325454545454545454545454545454545	949639842851234938644399485761688302899701199463892504284485649888265783146588302366538258258256453412110-2-2-212121101194638925428844485649831465883023665382582582584755428887444511151231631634538554236887444511151231631634538554236887444511151231631634538554236887444511151231631634538554236887444511151231631634538554236887444531151231631634538554236887444531151231631634538554236887444531151231631634538554236887444531151231631634538554236887444531151231631634538554236887444531151231631634534525542368874453115123163163453855423688744453115123163163453855423688744453115123163163453855423688744453115123163163453855423688744453115123163163453855425422884754538545385453854538554554375455855423484534538554525423845545288744531151231631634538554525423286874453115123163163453855452543286878314545385454538554538545453854558854558854558854558555455855455855455855455855455855455855545585554558555455855455855545585555455855554555554555554555554555555

TABLI	E 4	((Con	tinued)
h	k	l	$ F_{o} $	F_{e}
	oudebold and and and and and and and and and an	1618902122426781231457890111215167890212325267123567890111214516789212325282902345678012131451678922420123456789011121451678922420112345678901112145167892242011234567890111214516789224201123456789011121451678912324528290234567890111214516789123245282902345678901112145167890111111111111111111111111111111111111	$\begin{array}{c} 2711254271712480928022251807376144716445164298434121313749811068827226662130135736435776434312887694205837780192508289945568231431288798434312887984343128879842210019250828915568231431288798421001925082891556823143128879844499467534312111218171949421001925082891556823143128878844594459345675644312887694205839845956582314312887894564298845935482314312887884459846823143131333312488788445984459345675644312887884566429844598445984459844598458398459545339845955339845553539845955339845555353984555353984555339845555353585555555555$	261-023287111 5-750-1344781468793360289233485606257133474112-112-56889296191168359388361751734409241221-508692944155236788531255682247 2642493477247700473447814685579336028923348560625713347476701835688929619115882593835261751737463744106909596514252437867885312555682247

h	k	ı	F	F_{c}
๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 121111 1211111 12111111	0844632480953765111171871853774444177726126126526784521995262577766045689680110992868378882549514214577712187185277444417722512261265784451212925277766045569880110992866963378882549514214577712565837721267348	213-1 $121-1$ $1-11$ $1-527-113-332-3-25$ $122-3-2323982844686176033327149245136894046319261854833377368172132285$

h	k	l	$ F_{\circ} $	F_{c}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000077777777777777777777777777777777	111122 111122 111112 111112 111112 111112 111112 111112 111112 111111	$9964919992209774833 \\ 5191106586561333221461394659465946594659245979692986764495729368988564495729368988654145755936585524597969269832277593665855245979692669832277593658585525979597969266983223775936585856259795979692669832237759365858562597959796926698322377559365858585625979597969266983223775593658585858585858585858585858585858585858$	196260543931770835999981437705376897553595359535535939465775535535949428575494 -940551171919157784354999914377055768975553595494565775535553899442875759494 -941117191577843549595355389755535954951575535535954915594421857550359177953494 -941117191978435495080775534991455557553594915594421877925 -941117191978435455557553491455557553595491455557553594942877255494 -941117191978435455557553495177554591457755349517755459145775534951775545914577554591457554591477255 -9411171917784354553955395555955355535553595459145555575553594942877255459145755459145755459145755459145755459142722127

2802

257733990856565693518848474787551568951658565659797489658568507955857778775982829565345566945956534449554781285287365566834 211339985162096453264534449554735156895165565979747459658856735589577787759857755928295653444955478128528736556834 

 $h k l |F_o| F_c$ 341853809265084826543765382889578552093318553292441171283429755143353684471554528763821745145145744924479218492184792960754499260754492834 2418143809265084882654376538282818578552093318553292441171273535555514335358447185452876338217451357749243792

$h k l  F_{o}  F_{c}$	
6 -1 11 522 546 6 -1 12 149 -142	
6 -1 14 76 -73 6 -1 15 124 139	
6 -1 16 65 64 6 -1 17 70 77 6 -1 18 108 -113	
6 -1 19 255 247 6 -1 20 64 -70 6 -1 21 123 130	
6 -1 23 124 120 6 -1 25 69 87 6 -1 27 86 74	
6 -1 28 34 31 6 2 0 645 594 6 2 1 222 196	
6 2 2 707 767 6 2 3 64 54 6 2 4 596 614	
6 2 6 708 803 6 2 7 576 -594	
6 2 9 217 -218 6 2 10 239 215	
6 2 12 279 239 6 2 13 198 -201 6 2 14 338 305	
6 2 16 454 448 6 2 17 160 132	
6 2 18 172 204 6 2 20 216 216 6 2 22 185 204	
6 2 23 59 71 6 2 24 177 158 6 2 25 136 117	
6 2 26 161 155 6 2 27 48 32 6 -2 0 646 928	
6 -2 1 152 -115 6 -2 2 388 486 6 -2 3 303 270	
6 -2 4 550 594 6 -2 5 349 330 6 -2 6 620 662	
6 -2 7 46 41 6 -2 8 222 270 6 -2 9 138 111 6 -2 10 398 $bb2$	
6 -2 10 550 442 6 -2 11 194 148 6 -2 12 467 485 6 -2 13 53 -57	
6 -2 14 137 163 6 -2 15 41 29 6 -2 16 238 255	
6 -2 17 123 -127 6 -2 18 326 310 6 -2 19 159 -172	
6 -2 20 166 186 6 -2 22 252 274 6 -2 24 185 200	
6 -2 25 55 -59 6 -2 26 75 85 6 -2 27 32 17	
6 -2 28 138 128 6 3 1 691 624 6 3 2 334 289	
6 3 3 299 232 6 3 4 298 215 6 3 5 345 321	
6 3 6 350 271 6 3 7 383 347 6 3 8 137 82	
6 3 9 461 443 6 3 10 151 109 6 3 11 341 320	
6 3 12 26 19 6 3 13 423 375 6 3 15 381 341	
6 3 16 120 -96 6 3 17 217 194 6 3 18 144 -173	
6 3 19 187 155 6 3 20 101 -140 6 3 21 176 197	
6 3 23 249 262 6 3 25 112 111	
6 -3 2 296 341  6 -3 3 525 571  6 -3 -3 -3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	
6 -3 5 682 741 6 -3 6 217 -167 6 -3 7 447 440	
6 -3 8 203 -142 6 -3 9 367 403 6 -3 10 10 -00	
6 -3 11 26 277 6 -3 13 25 271	

 $\frac{145790}{1224242570}$ 

 $h k l |F_o| F_c$ 

Inorg. Phys. Theor.

h 7	k	1	$ F_0 $	<i>F</i> c 280
7777	+++++++++++++++++++++++++++++++++++++++	-2350	98 292 338	66 314 362
77777	キオキキ	67890	116 361 109 301	-105 -107 -107
7777	7777	11 13 14	201 202 33	189 201 32
ל 7 7	キキキキ	16 17 19 21	68 222 175	46 225 170
ל 7 7	17779	23 24 25	110 59 71 262	104 62 75
7 7 7 7	-5-5-5-5	5456	217 310 265 293	-188 307 -232 310
7 7 7 7	-5-5-5-5	7 8 10 12	182 239 147 89	-170 238 143 88
7 7 7 7	-5-5-5-5-	13 14 15 16 17	84 149 49 170	-66 142 53 170
7 7 7 7		18 19 20 21	113 90 68 95	114 112 53 95
ל 7 7 7	5566	22 24 56	38 64 82 158	33 58 77 130
7 7 7 7 7	9999	7 8 9 10	96 229 196 161	79 201 171 152
7 7 7 7	44444	11 13 14 15	254 197 81 149	263 194 -72 148
7 7 8	10000	19 22 0	91 70 43	-57 -72
8 8 8	00000	2 4 8	82 88 82 64	-82 -68 -76
8 8 8 8	2222	0246	121 118 84 61	109 108 74 48
8 8 8 8	3333	1567	82 84 63 131	65 66 47 105
8 8 8 8	33337	9 10 11 12	152 66 183 103	157 78 204 92
8888	うろろろろ	15 15 17 19	105 88 72	105 114 94 70
8 8 8 8	14444	0246	173 173 157 152	173 163 161 140
8 8 8 8	4444	8 10 12 14	142 131 98 60	127 126 85 55
8888	4445	16 18 20 1	56 59 51 128	40 49 48 94
0 8 8 8 8	ううううち	54567	80 88 96 72	65 -77 66 -90
8 8 8 8	55555	8 9 10 11	76 79 63	-72 64 -52 61
8 8 8 8 8 8	55566	13 15 17 0 2	65 53 48 86 79	73 65 53 82 63

TABLE	4	(Continued)
h k	l	$ F_{o} $ $F_{c}$
86 86 86	4 6 8	67 63 74 76 60 53
8 6 8 -1 8 -1	10	40 32 71 -86
8 -1 8 -1	79	86 -83 125 -123
8 -1 8 -1 8 -1	11 13 15	110 -108 76 -80 82 -76
8 -1 8 -1 8 -2	17 21 0	58 -57 65 -61 153 -159
8 -2 8 -2	24	168 -183 138 -150 131 -150
8 -2 8 -2	8 10	166 -186 178 -182
8 -2 8 -2 8 -2	12 14 16	152 -166 128 -133 106 -103
8 -2 8 -2 8 -2	17 18 20	41 53 60 <b>-55</b> 42 <b>-</b> 46
8 -2 8 -3	22	64 -52 281 -320
8-3 8-3 8-3	3	230 -239 138 -118
8 -3 8 -3 8 -3	567	163 -167 94 -79 164 -168
8 -3 8 -3 8 -3	8	61 -53 170 -162 119 -115
8 -3 8 -3	13	128 -122 68 -41
0	15	88 -95 64 -74
8 -3 8 -4 8 -4	23	74 -81 90 -98 85 -105
88	4	125 -131 143 -159
8 -4 8 -4 8 -4	8	152 -170 35 41
8 -4 8 -4 8 -4	10 11 14	83 -86 47 44 82 -85
8 -4 8 -4 8 -4	15 16 18	59 -39 111 124 84 -85
8 -5 8 -5	1	117 -109 72 51
8 -5 8 -5	-4 5	94 85 112 -124
8 -5 8 -5 8 -5	6 7 9	76 85 98 -113 57 <b>-</b> 65
8 -5 8 -5 8 -5	10 12 14	4136 42 44 51 56
8 -6 8 -6	9 10	89 -84 89 -89
8 -6 9 0	12	72 -89 549 569
9 0 9 0 9 0	234	242 -195 206 212 538 -512
90	567	305 367 144 -124 410 420
9 0	8	201 -145 240 224
9 0	12 13	162 -158 138 148
9 0 9 0 9 0	14 15 17	145 -125 251 235 179 180
90	18	120 102 87 61 179 172
90	21 23	125 120 157 193
9 0 9 0 9 1	25 26 0	62 -62 325 269
9 1 9 1 9 1	2 3 4	136 108 122 111 407 383
9 1 9 1 9 1	5 6 7	329 249 332 363 343 276
9 1 9 1	8 9	399 426 108 58 63 72
24		J 12

h k	l	F ₀	<i>F</i> _c
91	12	290	
9 1	13 14 16	129	110
9 1		334	349
9 1		253	240
9 1	18	199	207
9 1	20	140	136
9 1	22	113	107
9 1	24	97	100
9 1	26	64	87
9 2	1	492	486
9 2	2	158	156
9 2 2 2 2	3456	485 270 386	399 220 356
9999	7	371	340
	9	254	269
	10	313	-367
9 2 2 2 2 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2	11 12 13 14	124 283 174 264	275 141 270
9 2 2 2 9 9 2 2 9 9 2 2	15 16 17 19	163 68 128 117	177 <b>-9</b> 5 114 108
9 2 9 2 9 3 9 3	21 23 0	116 126 196 275	135 140 191 256
99990	4680	146 254 305	98 209 273
79999 99999	10 12 13	441 539 86	446 584 90
393 993 993	16 18 20	260 153 141	265 246 138 129
93	21	85	60
93	22	104	116
94	1	249	187
94	3	336	308
94 94 94 94	56 79	251 62 180 218	185 67 164 209
94994	11	198	195
	13	145	169
	15	143	135
79999	19	169	169
	20	45	33
	0	217	179
39999 9999	44560	190 116 135	153 -119 110
9955 9995	8 10 12 14	142 84 71 61	109 83 61 55
9 6	1356	85	86
9 9 6		41	26
9 9 6		61	70
9 9 6		45	45
9 6	723L	65	101
9 -1		347	525
9 -1		156	-153
9 -1		300	321
9 -1 9 -1 9 -1	.56 7 8	322 335 161	-313 375 120
9 -1	9	438	-79
9 -1	10	438	478
9 -1	11	96	-91
9 -1 9 -1 9 -1	13 14 15	452 61 319 41	460 44 369 -47
9 -1	16	273	294
9 -1	17	86	73
9 -1	18	180	189
9 -1	19	157	154
9 -1	20	183	207
9 -1	22	158	184
9 -1	24	115	128
9 -1	26	83	98
9 -2 9 -2 9 -2 9 -2	1 23 4	379 91 545 186	504 -75 629 -161
9 -2	5670	296	351
9 -2		104	85
9 -2		360	415
9 -2 9 -2 9 -2	9 11 13	459 455	468 460

² 3999999999999999999999999999999999999
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
L 5679013570123456789012345678901234567890246123456789023456789012456780124562847890123501234681024680213572345678
$F_{0}$ 70039883993122138548776474974974530676809295549959059047986914632221 8294635494832256677005444459020613669355667658765447694153 $F_{0}$ 700398820281221281261355486762475826955566765876549494153 $F_{0}$ 700398820461554699911061855469765876587658765447694153 $F_{0}$ 70039882046153494832256677005444459020613669355667658765447694153 $F_{0}$ 70039882046153494832256677005444459020613669355667658765447694153
$ \begin{array}{c} r_{145145063470718506991448747599082649626780076499998626978217524972596949876772459775968959902788859990278885899144887475902088848496891299862678257636605599003761457548977590699376477245945959502788848496891299862678599097614575489775906993764577245977596998855990078185757845577245977596998855995027088848496891299862678599097614575489775906993764575798855995027088848496891299862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862678599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687859919986268785991998626878599199862687868989898991998628687869991998628699919986286899919986286999919862869991998628699919986286999199862869899199898628699919986286989991998628699999862869999986286999998628699999898989998989999898989998989899989889999$

		TABLE 4 (Continued)		
$h k l  F_o  F_c$	$h \ k \ l \  F_{\rm o}  \ F_{\rm c}$	$h k l  F_o  F_c$	$h k l  F_{o}  F_{c}$	$h k l  F_0  F_0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10 & -4 & 2 & 196 & 211 \\ 100 & -4 & 4 & 212 & 212 \\ 212 & 212 & 212 \\ 212 & 212 & 212 \\ 212 & 212 & 212 \\ 211 & 201 & 212 \\ 211 & 211 & 212 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & 211 & 211 \\ 211 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

in aquo-ligands appear to be pyramidal. In the chelate ring, there is a steady decrease in the angle Cu-OR-C for R = H, Me, Ph, accompanied by an increase in CuOC angle at the carboxylate oxygen. The C-O-R angles follow a pattern consistent with expected intramolecular repulsions for the phenoxyacetate, methoxyacetate, and glycollate, but have widely different values for the lactate and 2-hydroxy-2-methylpropionate, and these variations are necessarily reflected in the variations in the CuOR angle.

In the three 2-hydroxycarboxylates, each hydroxygroup is not only bound to the copper atom, but is also hydrogen-bonded to the non-chelated carboxylate oxygen atom of another complex. Although variations in the O-Cu and O-H bond lengths could be attributed to experimental error, it is noteworthy that the hydrogen bonds appear to shorten as the Cu-OH bonds shorten. A similar effect is observable for the water molecules in the hexa-aquocopper(II) ion in Tutton's salt.²² Such a co-operative strengthening of bonds would be expected from an electronic viewpoint.

The carboxylate group usually forms hydrogen-bonds only at the non-chelating oxygen atom. When this happens there is one hydrogen-bond approximately parallel to the carbon-carbon bond of the chelate ring and coplanar with it. Some non-chelating oxygen atoms (in phenoxyacetate, methoxyacetate, and lactate) form a second hydrogen-bond which is near to the carboxylate plane and roughly parallel to the  $O \cdots O$  vector in the carboxylate group, but others (in lactate and glycollate) form a long contact to a copper atom in another molecule.

The hydration of the 2-hydroxycarboxylate complexes

increases from 0 to 1 to 2 in the sequence glycollate. lactate, 2-hydroxy-2-methylpropionate, *i.e.*, in parallel with the substitution of methyl groups on the 2-carbon atom. In the 2-hydroxy-2-methylpropionate, adjacent chelate rings are linked into a ribbon structure by hydrogen-bonds from O(2) to O(3). The carboxy-group does not form a second hydrogen-bond (see above). The inclination of the two methyl substituents in each chelate ring keeps superimposed planes of chelate rings sufficiently far apart to accommodate two trans water molecules on each copper ion (see Figure 12). The hypothetical conversion of the 2-hydroxy-2-methylpropionate into the lactate involves the removal of one methyl group from each chelate ring, and the formation of large holes in the structure. The consequent closer approach of superimposed planes of chelate rings is such that there is now only room for one aquo-ligand on each copper ion. One lactate ligand only of each complex forms the second type of hydrogen-bond (see above), and a double hydrogen-bond ribbon is formed. The hypothetical conversion of lactate into glycollate involves the removal of the remaining two methyl substituents from the rings, and again the formation of holes. If the original ribbon structure were to be retained, a reasonably close packed structure could not be formed with axial Cu-O contacts of less than about 2.9 Å. The original  $O(2) \cdots O(3)$  twodimensional sheet with shorter Cu-O(2) contacts of 2.54 Å results.

The formation of two hydrogen-bonds by the nonchelating oxygen atom suggests  $sp^2$  hybridisation of the

²² H. Montgomery and E. C. Lingafelter, Acta Cryst., 1966, 20, 659.

Inorg. Phys. Theor.

6 N

7.		0	ou dovaro ampavado	• • • • • • •		
n	$k \mid  F_{o} $	$F_{\mathrm{c}}$	$h k l  F_o $	$F_{c}$	$h k l  F_{o}  F_{c}$	$h k l  F_{o}  F_{c}$
	k       0000000111111111111111111111111111111	F 31299 52147118523211171968222118366655676823493772228009194784906309920481905568817807566660444935257425466567682349377222800919478490630992048190556888780720756666044497167425466567682349377257828009194784906556863099920481905566888780720756666044497167425466567682349377257828009194784906556863099920481905566888780720756666044497167425466567682349377257828009919478490655686504819055688878072075666604449716784999204819055688878072075666044497167425468878072075666604449716742546887807207566604449716784990568887807207566604449716784990557682349878075666044497167849905568887807207566604449716784990575666044497167849905756660444971678499056888780720756660444971678490419057566604449716784990575666044497167849905756660444971678499057566604449716784990575666044497167849905756660444971777928800991947884990657688278075666044497177748907575666044497177792880791975666004497849906576889780756660444971777489079566604497177787878789079566604497878999877725880780756660449787899778988789778988789789788789789789	$k = 2k^{-1} + $	$F_{0}^{-112692073093393935936591880800395576663374986887791490145575899275792226591453280032258497300763795147951497149014557589927579222659145338003225849730076379514795149514597972265591453393800322584973007637951479514951459758999757972265591453393800322584973007637951479514795149514597589997579722655914533938003225849730076379514795149514597589997579722655914533938003225849730076379514795149514597589997579722655914880800395557666337749868877991490145575899975797226559145339380032258497300776379514795149532865914597914901455758999757972265591459319514975149751497595957979722655914593795149868877991490145575899975797226559914593280032258849739007637951479$	$ \begin{array}{c} h \\ f \\ f \\ f \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} F_{e} \\ F_{e} $

# 2805

TABLE 5 -wlated str Observed structur mplitudes and cal facto fa · .... obje/meth otur yacetato)copper(11)

 $h k l |F_o| F_c$ 423394343992192737337788594359821239747398794739877963185796739827235885376655387384585565337384545658877582238884538594492738855862888

		TABLE 5 (Continued)		
$h k l  F_{o}  F_{c}$	$h k l  F_o  F_c$	$h k l  F_o  F_o$	$h k l  F_o  F_c$	$h k l  F_{o}  F_{c}$
$\begin{array}{c} 231\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ -105\\ $	$\begin{array}{c} -7777493166233054144951180555860904113613156863163\\ -777774951493165233055414495186555809041316871568631563\\ -77777777778749316523305541449567891336779955254323058357795525441642444444444444444444444444444444$	$\begin{array}{c} 54\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -108\\ -$	$\begin{array}{c} 22 \\ 996 \\ 0 \\ 116 \\ 0 \\ 1 \\ 116 \\ 0 \\ 1 \\ 116 \\ 0 \\ 1 \\ 117 \\ 0 \\ 1 \\ 117 \\ 117 \\ 119 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	118       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55 <t< td=""></t<>

oxygen orbitals. Using the terminology of Martin and Waterman,²³ the hydrogen-bonds are in both the *syn*and *anti*-positions, and the copper-oxygen bond in the chelate ring is *anti* (see Figure 15). When the non-



chelating carboxy-oxygen makes a short contact to the copper atom (glycollate and lactate), this contact is neither syn nor anti. The oxygen forms a strong hydrogen-bond in the syn-positions, suggesting that there is  $sp^2$  hybridisation of the oxygen orbitals. However, the weak copper oxygen interaction is directed out of the plane of the carboxy-group and above the oxygen lone-pair rather than in the direction of the lone-pair. The interactions may be purely electrostatic and non-directional with respect to the oxygen, or perhaps utilise the oxygen  $\pi$ -electrons. The latter alternative seems less likely, since the interaction becomes weaker as its direction moves nearer to the perpendicular to the carboxy-group of the oxygen (lactate). Strong copper interactions in the *anti,anti*-configuration at a carboxy-

group, as in the formate tetrahydrate,²⁴ lead to superexchange effects. However, these effects are no longer observed as the direction of interaction moves out of the plane and interaction becomes weaker.

The methoxy- and phenoxy-acetate crystal structures differ from those of the 2-hydroxycarboxylates. No hydrogen-bond can be formed between O(2) and O(3), and the molecules are now linked into three-dimensional networks by hydrogen-bonds between the water molecules and the carboxylate groups. In the methoxy-acetate, there are two hydrogen-bonds, one *syn* and one *anti*, to aquo-ligands of two neighbouring complexes. In the phenoxyacetate, hydrogen-bonding is to the chelating as well as to the non-chelating carboxy-oxygens, and bifurcated hydrogen bonds may be formed [Figure 1(b)].

## EXPERIMENTAL

Preparations.—Crystals were obtained by slow growth from aqueous solutions of pH < 5 in order to repress hydrolysis. All solutions were prepared in one of two ways.

(A) Basic copper carbonate was dissolved in carboxylic acid and any excess of carbonate filtered off.

(B) Carboxylic acid-sodium carboxylate buffers were added to dilute solutions of copper perchlorate containing a small amount of perchloric acid. These solutions, which had been prepared in connection with our related thermodynamic studies,^{2,20} were all made up in a 3M-sodium perchlorate ionic medium. Crystals were analysed for copper

²³ R. L. Martin and H. Waterman, J. Chem. Soc., 1959, 1359.
 ²⁴ R. Kiriyama, H. Ibamoto, and K. Matsuo, Acta Cryst., 1954, 7, 482.

$l  F_o $	$F_{\rm c}$		h k
2 20 4 24	16 50		1 1
6 195 8 115	185 110		11 -
2 191	173 -84		1
4 198 5 10	197 9		1 .
7 22 8 94	24 90		1
9 10 10 70	11 77		1
1 229 2 309	-184 248		1
3 79 4 267 5 67	-59 265 56		1
6 <b>6</b> 6 7 16	61 18		1
8 74 9 13 10 60	75 -10 60		1
0 122	103 -63		1
2 154 3 56 4 171	47 47 152		1 1
5 38	-29 109		1
8 68 9 5	66 9		1 1 1
0 163	138 52		1
3 85 4 108	73 95		1
5 85 6 108 8 40	-73 90 35		1 - 2 -
0 96 1 10	80 7		2 -
2 89 3 20 4 66	73 18 19		2 -
6 57 0 54	47 47		2 -
1 54 2 59 1 78	-25 70 65		2 - 2 - 2 - 2
2 46 3 23	41 16 88		2 -
2 12 3 100	-8 72		2 -
4 29 5 58 2 116	19 36 <b>-</b> 98		2 - 2 - 2
3 148 4 64	118 44		2.
6 20 1 164	18 141		2 - 2 -
2 25 3 208 4 29	-22 185 -22		222
5 85 6 22	71 -28		2 -
7 105 8 71 1 91	99 69 81		222
2 97 3 258	71 280		2.
4 92 5 176 7 79	-05 198 65		2 - 2 - 2 - 2
8 60 9 61	49 49		222
2 48 3 152	35 168		22
4 24 5 195 6 71	-18 215 64		2 2 2
7 171	166 -72		22
у 16 10 15 11 35	9 14 47		222
2 127 3 123	113 131		22
4 41 5 99 6 7	41 108 –8		222
7 196 8 75 9 30	215 -73		200
10 37 11 39	37 45		2 2 2
	<i>C</i> 24680233456789001234567890012345678901234567890123456789012345678901234567420286848264589523797966245744578912249777613224979765078901123424977771132224979785078901281249777711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717711322249717113222497177113222497177113222497171711322249717171132224971717113222497112349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349712349711234971123445711111111111111111111111111111111111	$F_{0}^{\circ} = 60500179944901779448955618500331729916982687597905807734977730511688729688844281252789981789895998128789456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789012345678901234567890012345678900123456789001234567890012352564680012173545678900121735735979556666645554597890012352565645890252556666645555555555555555555555555555$	$ \begin{bmatrix} F_{0} \\ 2468 \\ 155 \\ 11-847 \\ 9449 \\ 1779 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4567 \\ 8900 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ 123 \\ 4500 \\ $

Inorg. Phys. Theor.

h	k	1	$F_{o} $	$F_{ m c}$	
	· · · · · · · · · · · · · · · · · · ·	27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2057379212382216310922603681511495111799854668888972409904434912671249122673864807423778668035230530746849775735765765765612491224912226937386803523055053074684977713616699271289367	$\begin{bmatrix} -409375598450030048318340926901332391633180004950927564554225542205375775549048522585529087701425584678582590893419244555409495245845529808778147205845725847858259087781472058457858259087781472558467858259089341922455540948525845785490859258555290877814720584578582589087781472558457858258908778414227845554094852584578549088582590877841422558457854908858529885529087784142258457858497854498455540948525885552908778414225845785845785849884785584578554908858552988555290877841422588552988552988552988552988555298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855298855288552988552885528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855528855585858585858858$	

TABLE 6  $h k l |F_o| F_c$ 540782977827447427792819544453155142738486300634484306469109004091851798061096519716825971692486411051333399 - 21978297782744742779328741734269503146772934434761396344841864691090040918517980611096519716825971692486411051333339 0444444

 View Article Online

 $l |F_o| F_c$ 

6123456012345602345602345601234560424731935548429370470469494948239799911787149145612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345612345

8 8 8

h

k

Observed structure amplitudes and calculated structure factors for bis(glycollato)copper(II)

	Т	ABLE 6 (Continued)		
$h k l  F_{o}  F_{c}$	$h k l  F_o  F_c$	$h k l  F_{o}  F_{c}$	$h \ k \ l \  F_{\rm o}  \ F_{\rm c}$	$h k l  F_o  F_o$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 $-\frac{1}{4}$ 2 15 26 9 $-\frac{1}{4}$ 3 1 26 1 23 71 9 $-3$ 1 26 41 9 $-3$ 3 48 74 9 $-3$ 3 48 74 9 $-3$ 5 21 39 9 $-2$ 1 50 69 9 $-2$ 3 13 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

by complexometric titration using EDTA with murexide as indicator. 25 

**Bis(glycollato)copper(11).** Method B (Found: C, 22.4; H, 2.75; Cu, 29.3. C₄H₆CuO₆ requires C, 22.5; H, 2.85; Cu, 29.7%.)

Aquobis-(DL-lactato)copper(II) hemihydrate. Method A, the blue surfaces of these crystals became coated with a white sheen on standing, owing to efflorescence. Analyses of various batches indicated a variable loss of water. An anhydrous sample was obtained by dehydration in a vacuumdesiccator over phosphorus pentoxide (Found: C, 29.9; H, 4.15; Cu, 26.3. C₆H₁₀CuO₆ requires C, 29.8; H, 4.15; Cu, 26.3%).

Diaquobis-(2-hydroxy-2-methylpropionato)copper(II).

Method A (Found: C, 31.3; H, 6.2; Cu, 20.6.  $C_8H_{18}CuO_8$  requires C, 31.4; H, 5.95; Cu, 20.8%).

Diaquobis(methoxyacetato)copper(11). Method B (Found: C, 25.8; H, 5.1; Cu, 23.0.  $C_{6}H_{14}CuO_{8}$  requires C, 25.9; H, 5.05; Cu, 22.9%).

Diaquobis(phenoxyacetato)copper(II). Method B (Found: C, 47.9; H, 4.5; Cu, 15.6.  $C_{16}H_{18}CuO_8$  requires C, 47.8; H, 4.5; Cu, 15.8%). In the absence of sodium perchlorate, clusters of green needle-shaped anhydrous bis(phenoxyacetato)copper(II) crystals were obtained. These are the subject of a continuing investigation.

X-Ray Photography.—Crystals of all five complexes were monoclinic needles. The unit cell dimensions were obtained from calibrated zero-layer Weissenberg photographs taken about the needle axis and a second principal axis of the crystal so that one photograph was taken about the unique axis of the crystal. The X-ray intensities were estimated visually from sets of multiple-film Weissenberg photographs about the needle axis of the crystals. The results from individual layers were placed on a common scale either by using the exposure time to X-rays from a stabilised source and standardised development conditions [diaquobis(phenoxyacetato)copper(II), diaquobis-(2-hydroxy-2-methylpropionato)copper(11), and aquobis-(lactato)copper(II) hemihydrate] or by using intensities collected about a second axis [bis(glycollato)copper(11) and diaquobis(methoxyacetato)copper(11)] with layer scale factor calculated by the method of Hamilton, Rollett, and Sparks.²⁶ All intensities were corrected for Lorentz and polarisation factors but not for extinction or absorption.

Calculations.—Structure factors, cycles of least-squares refinement, Fourier syntheses, and interatomic distances were computed on an English Electric KDF9 computer using J. S. Rollett's 'Novtape' programme ²⁷ as modified and extended by J. Hodder. Atomic scattering factors for carbon, oxygen, hydrogen, and copper were taken from International Tables.²⁸ An anomalous-dispersion correction was applied to the scattering curve for copper.

²⁵ G. Schwarzenbach, 'Complexometric Titrations,' Methuen, London, 1957.
²⁶ W. C. Hamilton, J. S. Rollett, and R. A. Sparks, Acta Details of individual structure analyses follow. In each case, the authors mainly responsible for the experimental work are given in parentheses.

Diaquobis(phenoxyacetato)copper(II) (R. A. Armstrong).  $C_{16}H_{18}CuO_8$ , M 401·85, Monoclinic prismatic,  $a = 16\cdot26 \pm 0\cdot04$ ,  $b = 7\cdot28 \pm 0\cdot03$ ,  $c = 23\cdot99 \pm 0\cdot06$  Å,  $\gamma = 110\cdot4 \pm 0\cdot3^{\circ}$ . U = 2653 Å³,  $D_m = 1\cdot531 \pm 0\cdot01$  (by flotation), Z = 6,  $D_c = 1\cdot510$ . Space group  $P2_1/n$  ( $C_{2h}^{5}$ , No. 14), general positions  $\pm (x, y, z; \frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z)$ . Cu- $K_{\alpha}$ radiation,  $\mu = 15\cdot35$  cm.⁻¹, crystal size  $0\cdot12 \times 0\cdot15 \times 1\cdot0$ mm. Optically biaxial.

To have six bis(phenoxyacetato)copper(II) molecules in a unit cell in space group  $P2_1/n$  it is necessary that they should be of at least two crystallographically dissimilar types. If two molecules lie with their copper atoms at the inversion centres at 0,0,0 and  $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ , then the other four may have copper atoms in general positions and the molecules need not be centrosymmetric. The oscillation photographs about the *a*-axis shows layers 0, 3, 6, and 9 much more intense than the rest, suggesting molecules in similar orientations separated from each other by a/3.

A three-dimensional Patterson function sharpened to ' point atoms at rest ' was computed from 2383 independent reflections. The most prominent vectors could be explained if two copper atoms were at the special positions 0,0 and  $\frac{1}{2},\frac{1}{2},\frac{1}{2}$ , and a further four at the general positions 0.33, 0.08, 0, and symmetry-related positions. A threedimensional electron-density distribution was computed from the phases given by the proposed copper positions. Prominent independent maxima in this distribution correspond to three phenoxyacetate residues and three water molecules. The trial parameters were refined by two leastsquares cycles assuming isotropic thermal motion for all atoms and unit weights for all observations. The weighting scheme

$$v = \{1 + [(|F_0| - a)/b]^2\}^{-1}$$
(2)

was then adopted with a = b = 100 [on the scale of Table 4]. After two further refinement cycles R = 0.131. At this stage it was possible to locate hydrogen atoms from a three-dimensional difference synthesis calculated so that the two-dimensional sections were parallel to the plane of the phenoxyacetate molecules of the complexes. The hydrogen atoms were placed within the maxima on the difference synthesis at accepted bonded distances from the atoms to which they were attached. Three very strong reflections showing very considerable extinction effects were removed, and after two further least-squares cycles convergence was reached with R = 0.113. In all least-squares refinement cycles, a block diagonal approximation to the normal matrix was reduced to three blocks 39  $\times$  39, 36  $\times$  36, and  $75 \times 75$ , such that interactions of the temperature and overall scale parameters, and the space parameters, and of

²⁸ International Tables for X-ray Crystallography,' vol. 3 Kynoch Press, Birmingham, 1962, p. 220.

²⁶ W. C. Hamilton, J. S. Rollett, and R. A. Sparks, *Acta Cryst.*, 1965, **18**, 129.

²⁷ J. S. Rollett, unpublished work.

 TABLE 7

 Observed structure amplitudes and calculated structure factors for aquobis-(pl-lactato)copper(II) hemihydrate

	uructure	amplitudes and calculate	a structi	ire factors for aquobis-(	DL-Iacta	to)copper(ii) neniniydrate
$h R l  F_0  F_0$	α	$h \ k \ l \  F_0  \ F_0$	α	$h \ R \ l \  F_{\rm o}  \ F_{\rm c}$	α.	$h k l  F_0  F_c \alpha$
$ \begin{array}{c} k & l & \left  F_{0} \right  & F_{0} \\ k & l & \left  F_{0} \right  & F_{0} \\ \hline \\ k & l & \left  F_{0} \right  & F_{0} \\ \hline \\ k & l & \left  F_{0} \right  & F_{0} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \alpha & 175099041 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -11111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -1111111 \\ -11111111$	ampirtudes and calculate $h \ k \ l \  F_0  \ F_0$ 1 6 0 4 45 114 1 6 6 2 444 420 1 7 1 153 147 1 7 1 153 147 1 7 1 153 147 1 8 0 490 357 1 8 0 490 357 1 8 2 473 434 1 9 1 297 275 1 9 3 150 150 1 10 0 214 292 1 10 4 97 105 1 10 2 212 192 1 10 4 97 105 1 11 3 156 159 1 12 0 68 58 1 12 2 1 71 1 23 1 203 195 1 12 0 68 58 1 12 2 1 71 1 24 171 54 1 15 1 154 146 1 155 1 59 1 14 2 10 77 100 1 14 2 10 107 1 00 38 523 1 16 2 49 53 1 16 2 40 55 1 19 1 28 30 1 20 2 48 40 2 222-2 78 749 2 221-3 46 55 2 220-2 110 122 2 20 0 72 68 2 48 40 2 221-3 46 55 2 220-2 110 122 2 20 0 72 68 2 419-3 24 32 2 -10 -2 76 66 2 -10 -2 76 66 2 -10 -2 76 66 2 -10 -2 76 66 2 -10 -2 76 194 2 -10 -2 76 194 2 -10 -2 76 194 2 -10 -2 76 194 2 -10 -2 76 26 60 2 -10 -2 76 194 2 -10 -2 76 194 2 -10 -2 362 320 2 -10 -1 304 205 2 -10 -2 362 320 2	$ \begin{array}{c} \mathbf{\alpha} \\ \mathbf$	<b>he lactors</b> for a quotis- <b>k</b> <i>l</i> $ F_0 $ $F_c$ <b>k</b> <i>l</i> $ F_0 $ $ F_0$	$ \begin{array}{c} D \\ D \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	<b>b) copper (11) ineminy drate</b> <b>k</b> k l   $F_0$   $F_c$ a <b>3</b> 7 1 220 219 4 <b>4</b> 7 3 81 88 -72 <b>5</b> 6 0 644 41 -72 <b>5</b> 8 2 244 266 -87 <b>5</b> 9 3 0 664 411 -77 <b>1</b> 127 142 <b>5</b> 9 3 117 159 145 -127 <b>5</b> 9 3 117 159 145 -127 <b>5</b> 10 4 217 27 155 <b>5</b> 10 4 217 27 159 <b>5</b> 11 1 3 119 115 -12 <b>5</b> 112 2 3 37 -23 <b>5</b> 12 2 4 48 5 4 -11 <b>5</b> 112 0 79 67 -0 <b>5</b> 12 2 2 76 -174 <b>5</b> 114 2 92 76 88 160 <b>5</b> 14 2 92 76 84 160 <b>5</b> 139 104 -186 <b>5</b> 138 2 900 69 -167 <b>5</b> 4 -224 -2 15 5 32 159 <b>5</b> 17 3 18 2 900 199 2 0 <b>5</b> 16 2 368 44 11 04 <b>4</b> -222 -2 91 10 0 <b>5</b> 4 -224 -1 15 5 32 159 <b>1</b> 4 -224 -2 0 127 147 -80 <b>4</b> -220 -2 73 97 -161 <b>4</b> -177 -3 151 183 68 -148 <b>4</b> -16 -2 613 58 -148 <b>4</b> -177 -3 151 183 -68 <b>4</b> -16 -2 613 58 -148 <b>4</b> -16 -2 613 58 -148 <b>4</b> -177 -3 151 183 -68 <b>4</b> -144 -29 353 <b>3 3 5</b> -177 <b>5</b> 14 -122 125 -178 <b>6</b> 14 -144 77 -73 162 169 -177 <b>7</b> -1775 <b>1</b> 4 -144 -20 353 <b>5 3 1</b> -775 <b>1</b> 4 -144 -20 353 <b>1</b> 123 -164 <b>1</b> 4 -120 -14 78 89 163 <b>1</b> 104 <b>1</b> 4 -120 -14 78 89 163 <b>1</b> 104 <b>1</b> 4 -120 -14 78 89 163 <b>1</b> 167 <b>1</b> 4 -180 -2 1186 120 -788 <b>1</b> 0 <b>1</b> 4 -200 -2 73 97 -161 <b>1</b> 4 -180 -2 1186 120 -1785 <b>1</b> 4 -180 -142 125 00 -88 <b>1</b> 4 -160 -2 136 121 -173 <b>1</b> 4 -144 -2 355 <b>1</b> 19 123 -1644 <b>1</b> 4 -16 -2 61 155 <b>1</b> 148 <b>1</b> 4 -16 -2 61 155 <b>1</b> 148 <b>1</b> 4 -177 -1 1228 128 -180 <b>1</b> 4 -180 -142 128 168 <b>1</b> 104 <b>1</b> 4 -19 -1 149 79 79 -175 <b>1</b> 14 -19 79 79 -175 <b>1</b> 14 -19 79 79 1123 -175 <b>1</b> 4 -14 -177 -175 1777 177

		TABLE 7	(Continued)		
$h k l  F_{\rm o}  F_{\rm c}$	α	$h  k  l   F_{o}   F_{c}  \alpha$	$h \ k \ l \  F_{o}  \ F_{c}$	α	h k l
3/11076952112223680997028722641754871754867427175486742717548697377728423703889735198492760845595555555555555555555555555555555555	-11111 -12772500-2163803575508320002585510670376530314307865704868807244283170918708818080500099577814078508070730978 -12111	$\begin{array}{c} 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 $	204 30 50 657 96 556 80 99 59 56 50 79 326 67 9 326 67 9 56 70 9 57 70 77 77 77 77 77 77 77 77 77 77 77 77	3064580019507173488961990255740390084301705568833116031789490584417985421604452847380118380300260853800212032578844 	420314203142031420341420104112211 420314203142031420341201010101211021112211 506655444333222214203142034120101012122010112220 5055555555555555555555555555555555

h	k	l	$ F_{o} $	$F_{c}$	α
	A 060655444533222110009988876666554443322211000111000111000110001100009987766665544433222110000111000		$\begin{matrix} \bullet \\ \bullet $	$F^{\circ}_{051237803635148642437802624754306424664099071892164294316788921662943167583177779484443679938723899257789145905617455117455153106424664993216629433208952777948444669938725947240389738924056174651174551533666666666666666666666666666666666$	α 77086730004040404072107370009207879067500467054580020443008688060540636034400942074887 -11188371050040721073770009207879067500467054580020443008688060540636075406360754807207487 -111111111111111111111111111111111111
99999999999999	-1433222 -113222 -12221 -11221 -11000	03-42031420	128 332 133 158 655 10 10 10 10 10 10 10 10 10 10 10 10 10	1264765176530 145517745530	-180 30 9 34 2 0 -157 104 168 167
J99999999999	-10888776654	0420312010	100 83 103 139 139 178 91 173 913 53	112 79 108 104 141 175 82 108 142 56	180 -32 -23 0 2 15 174 -180 -178 0
199999	-3 -1 0 0 0	-1 -1 0 2 4	52 113 177 56 85	40 97 129 41 56	-9 -172 180 -150 178

												·
h	k	l	$ F_{o} $	$F_{\mathbf{c}}$	α	h	k	l	$ F_{o} $	$F_{\rm c}$	α	
9	1	1	94	85	-33	10	-15	-3	67	72	143	
9	2	0	260	205	21	10	-14	-4	32	24	-21	
9	ž	2	129	106	-0	10	-14	-2	40	47	177	
2	2	4	105	64	3	10	-13	-3	68 67	64 56	-4	
9	ر لا	0	200	149	-180	10	-11	-3	89	79	-153	
- Ś	<u> </u>	2	117	97	176	10	-10	-4	72	48	-173	
2	5	1	26	24	-110	10	-10	-2	56	59	168	
9	26	0	86	<u>ь</u> ц	-190	10	-9	-3	88	82	28	
9	Ğ	2	47	39	2	10	-9	-1	130	111	-50	
.9	.7	1	48	33	-18	10	-8	-2	59	65	-2	
10	-22	-1	59	54	19	10	-7	-1	72	61	140	
10	-21	-3	14	18	107	10	<b>-</b> 6	ò	125	133	-180	
10	-20	-2	84	103	-163	10	-3	-1	31	45	-47	
10	-20	-1	25	63	180	10	-1	~1	90 81	63	105	
10	-18	-2	140	162	5	10	ō	2	34	35	28	
10	-18	0	107	124	0	10	1	1	145	111	2	
10	-17	-3	28	34	-69	10	1	2	70	49 211	-102	
10	-16	-4	69	67	165	10	3	1	145	105	-180	
10	-16	-2	76	88	-179	10	- 4	Ó	60	35	-180	
10	-16	0	89	87	1.80	10	<u> </u>	2	L6	- 32	153	

the space parameters of the centrosymmetric molecule and the space parameters of the molecule in the general position, were ignored. Table 4 gives the observed structure amplitudes and the structures factors calculated from the atomic parameters in Table 3(a).

Diaquobis (methoxyacetato) copper (II) (J. G. Forrest).—  $C_{6}H_{14}CuO_{8}, M = 277.6$ , Monoclinic prismatic,  $a = 6.92 \pm 0.02$ ,  $b = 7.26 \pm 0.02$ ,  $c = 10.10 \pm 0.03$  Å,  $\gamma = 96.7 \pm 0.3^{\circ}$ , U = 505.2 Å³,  $D_{m} = 1.820 \pm 0.005$  (by flotation),  $Z = 2, D_{c} = 1.819$ . Space group  $P2_{1}/n$  ( $C_{2h}^{5}$ , No. 14), general position  $\pm (x, y, z; \frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z)$ . Cu- $K_{\alpha}$ radiation,  $\mu = 33.8$  cm.⁻¹. Crystal size  $0.4 \times 0.15 \times 0.08$ mm. Optically biaxial.

A trial structure was deduced from a Patterson function sharpened to 'point atoms at rest' computed from 722 independent reflections. The trial was refined by  $F_{\rm o}$ synthesis and six cycles of full matrix least-squares refinement, assuming isotropic temperature factors and giving each observation unit weight. The refinement converged with R = 0.115. Some adjustment at the layer scale factors was made after the third refinement cycle. At no stage was it possible to locate hydrogen atoms from a difference synthesis. Table 5 gives observed structure amplitude and structure factors calculated from the atomic parameters in Table 3(b).

Bis(glycollato)copper(II) (J. G. Forrest).—C₄H₆CuO₆,  $M = 213 \cdot 6$ , Monoclinic prismatic,  $a = 7 \cdot 93 \pm 0 \cdot 02$ ,  $b = 5 \cdot 08 \pm 0 \cdot 02$ ,  $c = 8 \cdot 68 \pm 0 \cdot 02$  Å,  $\gamma = 111 \cdot 1 \pm 0 \cdot 3^{\circ}$ ,  $U = 326 \cdot 3$  Å,  $D_{\rm m} = 2 \cdot 164 \pm 0 \cdot 01$  (by flotation), Z = 2,  $D_{\rm c} = 2 \cdot 165$ . Space group P2₁/a ( $C_{2h}^{5}$ , No. 14), general positions  $\pm (x, y, z; \frac{1}{2} - x, \bar{y}, \frac{1}{2} + z)$ . Cu- $K_{\alpha}$  radiation,  $\mu = 46 \cdot 0$  cm.⁻¹. Crystal size  $0 \cdot 4 \times 0 \cdot 2 \times 0 \cdot 15$  mm. Optically biaxial.

A trial structure was deduced from a three-dimensional Patterson function sharpened to 'point atoms at rest' computed from 602 independent reflections. The trial structure was improved firstly by  $F_0$  synthesis and then by four cycles of full matrix least-squares refinement assuming isotropic temperature factors and giving each observation unit weight. The refinement converged with R = 0.136. Attempts to locate the hydrogen atoms by difference synthesis failed. Table 6 gives the observed structure amplitudes and structure factors calculated from the atomic parameters in Table 3(c).

Aquobis-(DL-lactato)copper(II) Hemihydrate (J. R. Carruthers and R. A. Armstrong).— $C_6H_{10}CuO_6, 1\frac{1}{2}H_2O$ ,

Table 7	(Continued)							
α	$h k l   F_o$	F _c	α	h	k	$ F_{o} $	$F_{\mathbf{c}}$	α
143 -176 -21 -77 -63 -153 -168 -20 -20 -1480 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310 18954226410580099157989773 286447855556953808288573	8 18 -10 05 180 -1680 -180 -1680 -106 180 -106 180 -106 180 -1760 -175 -00 -175 -00 -180 -185 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -180 -175 -175 -175 -175 -180 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -180 -180 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175 -175	11 111 111 112 122 122 122 122 122 122	-75-00 2 22109875544392197553519197	1 129 1 129 1 70 8 23 9 2 3 40 1 26 9 3 40 1 26 1 27 1 20 1 20	9954444958600622870304207878	-154 -154 -1800 -1800 -34 -1770 -34 -1800 -34 -1800 -34 -1770 -380 -1800 -34 -1770 -34 -1800 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -34 -1770 -1800 -1800 -1800 -1800 -1800 -1800 -1770 -1800 -1800 -1800 -1800 -1770 -1800 -1770 -1800 -1770 -1800 -1770 -1772 -1770 -1772 -1775 -1772 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1755 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775 -1775

From the three-dimensional Patterson function sharpened to 'point atoms at rest' computed from 981 independent reflections, it was clear that the copper atom was in a general position in space group A2. The  $F_0$  synthesis computed from the phases given by the tentative copper atom position and the three-dimensional minimum function constructed by superposing the copper-copper vectors had similar sets of maxima. Surprisingly, after careful study of both maps, it was only possible to assign maxima to four atoms [O(1), O(13), O(3), and O(11)] of the copper co-ordination polyhedron and no others. However, the  $F_0$  synthesis phased on the five proposed atom positions showed the location of both lactate groups and a water molecule. This trial structure was improved by six cycles of full matrix least-squares refinement, assuming isotropic thermal motion, unit weights for the observations, and applying 0.5 shifts. After the third cycle the layer scale factors were adjusted manually, and the residual was 0.15. A difference map computed at this residual had a maximum of about four electrons at the site O(5). The agreement between observed and calculated densities assuming a monohydrate was not good nor were the analytical results. It was therefore decided to introduce one ' half water molecule ' at this position, and to refine its positional and temperature parameters and occupation number along with all other atomic parameters for the structure at R = 0.15 by the full matrix least-squares method with the weighting scheme (2) with a = b = 1000. The refinement converged after three cycles at R = 0.121. At no stage in the refinement was it possible to locate hydrogen atoms from difference syntheses with any certainty. Table 7 lists observed structure amplitudes and calculated structure factors based on the final atomic parameters in Table 3(d).

Diaquobis-(2-hydroxy-2-methylpropionato)copper(II) (R. A. Armstrong).—When a pale blue needle crystal of this complex was first subjected to X-ray photography it showed a diffraction pattern expected for a triclinic twinned crystal with a needle axis spacing of  $5\cdot80$  Å. As X-ray photography progressed the diffraction pattern changed during an exposure time of several days. One of several new

$h k l  F_{o}  F_{c}$	$h k l  F_{\rm o}  F_{\rm c}$	$h k l  F_{o}  F_{c}$	$h k l  F_{o}  F_{c}$
	2514207330392153314550228252885999484670991487298913892460272232260280200000000000000000000000000000	3515972837233853571473984475317648442839270548886666666666666666666666666666666666	123224993451226904437374345087769400000000000000000000000000000000000

monoclinic forms of the crystal resulted; one with unit cell dimensions  $a = 10.8 \pm 0.05$ ,  $b = 5.80 \pm 0.03$ ,  $c = 39.98 \pm 0.1$  Å,  $\alpha = 110 \pm 1^{\circ}$  and space group  $P2_1/c$ ; and another with the crystal data quoted below and whose structure has been determined. Investigation of the first form is in progress. Although crystals have been prepared and stored in a variety of ways, only the triclinic twin has been found at the beginning of X-ray photography of a particular crystal.

Diaquobis-(2-hydroxy-2-methylpropionato)copper(II),  $C_8H_{18}CuO_8, M = 305\cdot8$ , Monoclinic prismatic (after exposure to  $Cu-K_{\alpha}$  radiation),  $a = 10\cdot25 \pm 0\cdot05$ ,  $b = 5\cdot80 \pm 0\cdot03$ ,  $c = 11\cdot24 \pm 0\cdot05$ ,  $\alpha = 105\cdot9^{\circ} \pm 0\cdot5$ ,  $U = 642\cdot5$  Å³,  $D_m =$   $1\cdot647 \pm 0\cdot01$ , Z = 2,  $D_c = 1\cdot581$ . Space group C2/m( $C_{2h}^3$ , No. 12), general positions (0,0,0;  $\frac{1}{2}, \frac{1}{2}, 0) \pm (x, y, z;$   $\bar{x}, y, z$ ).  $Cu-K_{\alpha}$  radiation,  $\mu = 17\cdot3$  cm.⁻¹. Crystal size  $0\cdot15 \times 0\cdot18 \times 0\cdot32$  mm.

Space group C2 or C2/m are possible, from absent reflections. With two molecules to the unit cell the copper atoms lie on the two-fold axis, and if space group C2/m is used, then the chelate rings and the copper atom must lie in the mirror plane. A three-dimensional unsharpened Patterson function calculated from 406 independent reflections could be interpreted assuming that the space group was C2/m with the copper atoms at 0,0,0 and  $\frac{1}{2},\frac{1}{2},0$ . After a preliminary  $F_0$ synthesis, the trial was refined to convergence assuming isotropic thermal motion, and R was 0.214. Examination of the difference synthesis and the X-ray photographs suggested that the copper atom was executing anisotropic vibrations with the maximum displacement along a perpendicular to the plane of the chelate ring. There was no compelling evidence in the difference synthesis to suggest using anisotropic temperature factors for the light atoms.

Refinement continued using an anisotropic temperature factor for the copper atom. After five more refinement cycles, R dropped to 0.16, but a difference synthesis still indicated residual electron-density near the copper atom along a. After a re-examination of the difference synthesis at R = 0.214, the copper atoms were replaced by an arrangement whereby one half copper atom was placed at 0,0,0 and  $\frac{1}{2},\frac{1}{2},\frac{1}{2}$  and two one quarter copper atoms were placed along a at each side of the half copper atom, related by the mirror planes and about  $\frac{1}{2}$  Å distant. Then, starting with the atomic parameters for R = 0.214, the space and isotropic temperature factors of the light atoms and the occupation numbers only for the copper atoms were refined by least-squares using the full normal matrix. The refinement converged after five cycles with R = 0.129. The difference synthesis was much cleaner in the region of the copper than after the anisotropic refinement. The thermal parameters of the light atoms were very similar after both refinements, but the bonded distances at R =0.129 were markedly better than at R = 0.160, and the e.s.d.'s for the refined parameters calculated from the normal matrices were uniformly smaller at R = 0.129 than at R = 0.160. It was concluded that the last refinement came nearest to the true model. Table 8 gives observed structure amplitudes and structure factors calculated from the parameters in Table 3(e), which gave R = 0.129.

We thank the Oxford University Computing Laboratory for facilities, the S.R.C. for maintenance grants to P.M.-R. and J. R. C., and Drs. J. D. E. Carson, J. Pocock, and D. H. Schärer for assistance in the preparation of crystals.

[8/694 Received, May 16th, 1968]