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Abstract: The crystal structure of dmisteinbergite has been determined using crystals from the
type locality in Kopeisk city, Chelyabinsk area, Southern Urals, Russia. The mineral is trigonal,
with the following structure: P312, a = 5.1123(2), c = 14.7420(7) Å, V = 333.67(3) Å3, R1 = 0.045,
for 762 unique observed reflections. The most intense bands of the Raman spectra at 327s, 439s,
892s, and 912s cm −1 correspond to different types of tetrahedral stretching vibrations: Si–O, Al–O,
O–Si–O, and O–Al–O. The weak bands at 487w, 503w, and 801w cm−1 can be attributed to the
valence and deformation modes of Si–O and Al–O bond vibrations in tetrahedra. The weak bands in
the range of 70–200 cm−1 can be attributed to Ca–O bond vibrations or lattice modes. The crystal
structure of dmisteinbergite is based upon double layers of six-membered rings of corner-sharing
AlO4 and SiO4 tetrahedra. The obtained model shows an ordering of Al and Si over four distinct
crystallographic sites with tetrahedral coordination, which is evident from the average <T–O> bond
lengths (T = Al, Si), equal to 1.666, 1.713, 1.611, and 1.748 Å for T1, T2, T3, and T4, respectively.
One of the oxygen sites (O4) is split, suggesting the existence of two possible conformations of the
[Al2Si2O8]2− layers, with different systems of ditrigonal distortions in the adjacent single layers.
The observed disorder has a direct influence upon the geometry of the interlayer space and the
coordination of the Ca2 site. Whereas the coordination of the Ca1 site is not influenced by the disorder
and is trigonal antiprismatic (distorted octahedral), the coordination environment of the Ca2 site
includes disordered O atoms and is either trigonal prismatic or trigonal antiprismatic. The observed
structural features suggest the possible existence of different varieties of dmisteinbergite that may
differ in: (i) degree of disorder of the Al/Si tetrahedral sites, with completely disordered structure
having the P63/mcm symmetry; (ii) degree of disorder of the O sites, which may have a direct influence
on the coordination features of the Ca2+ cations; (iii) polytypic variations (different stacking sequences
and layer shifts). The formation of dmisteinbergite is usually associated with metastable crystallization
in both natural and synthetic systems, indicating the kinetic nature of this phase. Information-based
complexity calculations indicate that the crystal structures of metastable CaAl2Si2O8 polymorphs
dmisteinbergite and svyatoslavite are structurally and topologically simpler than that of their stable
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counterpart, anorthite, which is in good agreement with Goldsmith’s simplexity principle and similar
previous observations.

Keywords: dmisteinbergite; feldspar; polymorphism; metastability; burned coal dumps; Kopeisk;
Ural region; crystal structure; Raman spectroscopy

1. Introduction

Feldspars are the most common rock-forming minerals of the Earth’s crust, and constitute more
than 50% of the continental crust [1]. Recent investigations revealed the existence of a number of
metastable feldspar polymorphs in relevant melt inclusions [2–5], meteorites [6–9], high-pressure and
ultra-high-pressure rocks [10–16], pyrometamorphic formations [17], and pseudotachylytes [18–20].
Similar to rock-forming feldspars, these metastable phases are based upon tetrahedrally coordinated
Al3+ and Si4+ cations, but with drastically different structural topologies from the feldspar framework
topology. Their formation can be explained using Goldsmith’s principle of simplexity [21], which states
that metastable kinetic mineral phases are structurally simpler than their stable thermodynamic
counterparts. This principle, first formulated in 1953, was recently verified using information-based
structural complexity measures and checked against mineral systems with different chemical
compositions [22–28].

Metastable polymorphs with the composition CaAl2Si2O8 (i.e., metastable polymorphs of anorthite)
have been known for a long time [29–36]. There are at least two such polymorphs, sometimes described
as “pseudo-orthorhombic” (or “monoclinic”) and “hexagonal” modifications. These are also known
as the mineral species svyatoslavite [37,38] and dmisteinbergite [39,40], respectively, discovered in
the burned coal dumps of the Chelyabinsk coal basin. It had been assumed that both svyatoslavite
and dmisteinbergite crystallize directly from the gaseous phase under extreme reducing conditions at
temperatures close to 1000 ◦C [41].

Dmisteinbergite is the so-called “hexagonal” polymorph of CaAl2Si2O8, which was recently
identified in a range of geological environments using scanning electron microscopy (SEM), electron
backscattered diffraction (EBSD), and micro-Raman spectroscopy [6,8,9,18–20]. Its crystal structure
model was originally reported in the P63/mcm space group as having disordered arrangement of Si and
Al atoms [30,36]. According to these studies, the structure of dmisteinbergite is based upon double
layers of TO4 tetrahedra (T = Si, Al), with Ca atoms in the interlayer space. However, the hexagonal
symmetry of dmisteinbergite was questioned in the literature [32,42], due to its disagreement with
observed X-ray powder diffraction patterns and the high degree of atomic disorder (the hexagonal
model has only one symmetrically independent T site, which implies complete Al/Si disorder).

Herein, we report on the results of X-ray diffraction and Raman spectroscopic studies of
dmisteinbergite from the holotype locality in the burned coal dumps, Kopeisk, Chelyabinsk
region, Russia.

2. Materials and Methods

2.1. Materials

The sample of dmisteinbergite is a holotype sample (number 054-107) and was taken from the
personal collection of B.V. Chesnokov. It is currently deposited at the Natural Science Museum of the
Ilmen State Reserve (Miass, Russia). The sample originates from the coal dumps of mine number 45 near
Kopeisk city, Chelyabinsk region, Southern Urals, Russia [41]. Dmisteinbergite and its orthorhombic
polymorph svyatoslavite were found in the area containing “black blocks”, which are the products of
extensive combustion of clays and carbonate rocks under reducing conditions at temperatures up to
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1200 ◦C [39]. Dmisteinbergite was found as hexagonal platy crystals grown on the surface of charcoal
(Figure 1).
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Figure 1. The crystals of CaAl2Si2O8 polymorphs on the surface of charcoal: (a) hexagonal plates of
dmisteinbergite; (b) dmisteinbergite in association with prismatic anorthite crystals. Photography by
Gregory Yu Ivanyuk.

2.2. Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction study of dmisteinbergite was performed at the X-ray Diffraction
Methods Resource Center of St. Petersburg State University using a Bruker Kappa APEX II DUO
diffractometer operated at 45 kV and 0.6 mA (microfocus tube) and equipped with a CCD area detector.
The study was done by means of monochromatic MoKα X-radiation (λ = 0.71073 Å), frame widths
of 0.5◦ in ω, and with 10 s counting time for each frame. The intensity data were reduced and
corrected for Lorentz, polarization, and background effects using the Bruker software APEX2 [43].
A semiempirical absorption correction based upon the intensities of equivalent reflections was applied
using SADABS [44]. The unit cell parameters were refined by least square techniques using 2898
reflections. The structure was solved and refined in the space group P312 to R1 = 0.045 (wR2 = 0.136)
for 703 unique observed reflections with I ≥ 2σ(I) using the ShelX program package [45] within the
Olex2 shell [46]. The merohedral twinning model was introduced into the refinement at the later stage
by applying the matrix [100/010/00-1] with (001) as a twin plane. The resulting ratio of the two twin
components was 0.51:0.49. During the refinement, a relatively large electron density peak was observed
near the O4 atom, indicating splitting of this position into two sites. The splitting was modeled by
introducing an additional O4A site with the O4–O4A distance of 1.13(1) Å. The refinement of the
occupancies of the split sites (constrained to be equal to 1) resulted in the site occupation factors of
0.60(1) and 0.40(1) for O4 and O4A, respectively. We note that no disorder of O sites was reported in the
previous crystallographic works on dmisteinbergite [30,36]. Crystal data, data collection information,
and refinement details are given in Table 1. Atom coordinates, site occupancies, and displacement
parameters are listed in Table 2 and Table S1, whereas Table 3 contains selected interatomic distances.
Table 4 provides the results of bond valence analysis with the bond valence parameters taken from a
previous study [47].
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Table 1. Crystal data and structure refinement for dmisteinbergite.

Crystal System Trigonal

Space group P312
a, Å 5.1123 (2)
c, Å 14.7420 (7)

V, Å3 333.67 (3)
Z 2

Dcalc, g/cm3 2.769
µ, mm−1 1.575

Crystal dimensions, mm 0.17 × 0.05 × 0.03
F (000) 276.0

Radiation MoKα (λ = 0.71073)
2θ range, degree 2.76–62.89

Index ranges −7 ≤ h ≤ 7, −7 ≤ k ≤ 7, −21 ≤ l ≤ 16
Reflections collected 2731

Independent reflections 762 [Rint = 0.0198, Rsigma = 0.0189]
Data/restraints/parameters 762/0/48

Goodness of Fit 1.132
Final R indices [I ≥ 2σ (I)] R1 = 0.0451, wR2 = 0.1355
Final R indices [all data] R1 = 0.0478, wR2 = 0.1382

Largest diff. peak/hole/eÅ−3 0.57/−1.08

Table 2. Atomic coordinates, isotropic atom displacement parameters (Å2), and site-occupation factors
(s.o.f.) for dmisteinbergite.

Atom x y z Ueq

Ca1 0 0 0 0.0099 (5)
Ca2 0 0 1

2 0.0154 (6)
T1 2/3 1/3 0.8622 (2) 0.0057 (6)
T2 1/3 2/3 0.8592 (3) 0.0114 (9)
T3 1/3 2/3 0.6358 (3) 0.0152 (9)
T4 2/3 1/3 0.6400 (3) 0.0066 (7)
O1 2/3 1/3 0.7536 (4) 0.013 (2)
O2 1/3 2/3 0.7460 (5) 0.021 (3)
O3 0.997 (1) 0.3821 (9) 0.9029 (2) 0.0055 (6)

O4 * 0.598 (2) 0.617 (2) 0.5964 (5) 0.017 (2)
O4A ** 0.394 (3) 0.382 (3) 0.5967 (8) 0.019 (3)

Note: * s.o.f. = 0.60 (1), ** s.o.f. = 0.40 (1).

Table 3. Selected bond lengths (Å) in the crystal structure of dmisteinbergite.

T1–О1 1.600 (6) T3–O2 1.625 (8) T3–O2 1.625 (8)
T1–O3 1.688 (6) 3× T3–O4 1.606 (9) 3× T3–O4A 1.732 (19) 3×

<T1–O> 1.666 <T3–O> 1.611 <T3–O> 1.705

T2–O2 1.669 (10) T4–O1 1.675 (8) T4–O1 1.675 (8)
T2–O3 1.728 (6) 3× T4–O4 1.773 (10) 3× T4–O4A 1.66 (2) 3×

<T2–O> 1.713 <T4–O> 1.748 <T4–O> 1.664

Ca1–O3 2.429 (3) 6× Ca2–O4 2.461 (7) 6× Ca2–O4A 2.444 (10) 6×
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Table 4. Bond-valence sums analysis (v.u. = valence units) for dmisteinbergite *.

Atom T1 T2 T3 T4 Ca1 Ca2 Total

O1 1.07 0.94 2.01
O2 0.94 1.00 1.94
O3 0.84↓ ×3 0.81↓ ×3 0.29↓ ×6 1.94
O4 1.05↓ ×3 0.73↓ ×3 0.26↓ ×6 2.04

O4A [0.75↓ ×3] [0.98↓ ×3] [0.28↓ ×6] [2.01]

Total 3.58 3.38 4.15 [3.24] 3.12 [3.84] 1.73 1.57 [1.67]

Note: * calculated using bond-valence parameters from a previous study [47]: T1–O and T3–O bonds (using Si–O
parameters), T2–O and T4–O bonds (using Al–O parameters). The values given in square brackets [] are calculated
for the occupied O4A site.

2.3. Raman Spectroscopy

Raman spectra of dmisteinbergite (Figure 2) were collected from the surfaces of hexagonal
transparent plates at the Geomodel Resource Center of St. Petersburg State University using a Horiba
Jobin-Yvon LabRam HR 800 system at room temperature using a 514 nm laser. The Raman spectra
were recorded up to 1200 cm−1. No peaks were observed in the region of 1200–4000 cm−1.
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2086 (red).

3. Results

3.1. Raman Spectroscopy

The Raman spectrum of dmisteinbergite from the burned dumps of the Chelyabinsk coal basin
is very similar to the published spectra of dmisteinbergite from the RRUFF Raman database [48]
(Figure 2). The data were compared with the material from the deposit near Katashina village, Gunma
Prefecture, Japan (RRUFF identification code R130087), and with the material from the meteorite NWA
2086 (RRUFF identification code R130085, museum of the University of Szeged, Hungary) [9].

At least six of the strongest bands in the region of 200–1200 cm−1 (327, 439, 503, 801, 892,
and 912 cm−1) match well in those dmisteinbergite spectra, and four bands (327, 439, 801, 912 cm−1)
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match with dmisteinbergite from the Gole Larghe fault (Italian Alps) [18]. Interpretation of the bands
present in the Raman spectra of dmisteinbergite is given in Table 5. The most intense bands at 327s,
439s, 892s, and 912s cm−1 correspond to the symmetric modes of stretching and bending vibrations in
tetrehedra: Si–O, Al–O, O–Si–O, and O–Al–O [49]. The weak bands at 487w, 503w, and 801w cm−1

were attributed to the asymmetric stretching and deformation modes of Si–O and Al–O bond vibrations
in tetrahedra. The weak bands in the range of 70–200 cm−1 can be attributed to Ca–O bond vibrations
or lattice modes. The presence of additional bands in the spectra of sample NWA 2086 (1002w, 1122w,
and 1194w cm−1) and dmisteinbergite from the Chelyabinsk coal basin [40] (484s, 650s, and 935s cm−1)
are most likely due to the nano-sized (<1 µm) inclusions of quartz and anorthite.

Table 5. Raman shifts for the spectrum of dmisteinbergite *.

Shift, cm−1 Vibration Type of Vibration

912s, 892s, 801s Si-O, Al-O v1,3
487w, 503w O-Si-O, O-Al-O v4
327s, 439s Si-O, Al-O v2

72w, 115w, 173w, 221w Ca-O, lattice vibrations Т, v1

Note: * s—strong band, w—weak band.

3.2. Crystal Structure

The crystal structure of dmisteinbergite is based upon double layers of six-membered rings
of corner-sharing AlO4 and SiO4 tetrahedra (Figure 3a). The high-symmetry P63/mcm structure
model for dmisteinbergite (“hexagonal anorthite”), which was previously reported [30,36], implies
completely disordered distribution of Si and Al over one crystallographically independent tetrahedral
site. In contrast, our model obtained in the space group P312 shows at least partial order of Al and Si
over four distinct crystallographic sites with tetrahedral coordination. The existence of order is evident
from the average <T–O> bond lengths (T = Al, Si), which are equal to 1.666, 1.713, 1.611, and 1.748 Å
for T1, T2, T3, and T4, respectively. Therefore, T1 and T3 sites are predominantly occupied by Si,
whereas the T2 and T4 sites are predominantly occupied by Al. The P63/mcm structure model was first
determined by Takeuchi and Donnay in 1959 [30] and refined to the essentially high crystallographic
agreement index R1 = 13.8%. Dimitrijević et al. [36] refined the structure from the powder diffraction
data using the Rietveld method and obtained the final agreement factors RP = 8.99%, Rwp = 11.87%,
and RB = 4.31%. The refinement was done using the model of Takeuchi and Donnay [30] from the
mixture of dmisteinbergite and anorthite with the ratio 30:70% obtained by annealing Ca-LTA zeolite
over 900 ◦C. The authors pointed out that the anorthite phase was of pure crystallinity, which increased
the number of additional diffraction peaks and created considerable problems when refining the profile
parameters. Under further annealing, the mixture transformed into pure anorthite, indicating the
metastable character of dmisteinbergite. Considering the abovementioned problems in the previous
studies, we believe that the P312 model is probably more correct, considering its general agreement
with the basic crystal chemical principles, such as ordered arrangement of Al and Si atoms over
tetrahedral sites.

The suggested splitting of the O4 site in dmisteinbergite implies the existence of two possible
conformations of the [Al2Si2O8]2− layers. The nature of the conformation can be described by the
in-plane rotation of tetrahedra around the c axis. This phenomenon is well-known and has been studied
in detail for minerals of the mica group [50,51]. The ideal tetrahedral layer formed by a six-membered
ring has a hexagonal symmetry, with basal O atoms forming perfect hexagonal rings. The layers are
actually distorted according to a ditrigonal rotation, which is defined as a rotation of tetrahedra around
the axis perpendicular to the plane of the layer (Figure 4). The degree of the distortion is specified by
the tetrahedral rotation angle α, which in dmisteinbergite is 22.1◦. The directions of ditrigonal rotation
in two adjacent layers comprising a double layer may be either identical (++ or −−) or opposite (+−
or −+). The former case is realized when the O4 site is occupied, and therefore, the layers have the
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configuration shown in Figure 3b. The latter case is realized when the O4A site is occupied and the O4
site is vacant (Figure 3c).
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Figure 4. Ditrigonal rotation of tetrahedra in an ideal six-membered tetrahedral ring (gray tetrahedra
with dashed outlines) results in two different versions of distorted ring with positive (a) and negative
(b) values of the α angle. Red arrows indicate directions of shifts of bridging O atoms from their
ideal positions.

The disorder of the O4 site also has a direct influence on the geometry of the interlayer space
and coordination of the Ca atoms. There are two independent Ca sites in the crystal structure
of dmisteinbergite. Coordination of the Ca1 site is not influenced by the disorder and is trigonal
antiprismatic (distorted octahedral) (Figure 5b). In contrast, the coordination environment of the Ca2
site includes O4 and O4A atoms, and therefore, depends on the occupancies of the disordered O
sites. If one of the two sites is occupied in both upper and lower tetrahedral layers (e.g., O4–O4 and
O4A–O4a), the coordination is trigonal antiprismatic (Figure 5b; the A-type interlayer). However, if the
occupancies of the sites are different (e.g., if the O4 site is occupied in the upper layer and the O4A
site is occupied in the lower layer), the coordination becomes trigonal prismatic (Figure 5a; the B-type
interlayer). Ferraris and Ivaldi [51] noted that for mica-group minerals, polytypes with the A-type
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interlayer are more stable than those with the B-type interlayer. It is also noteworthy that the value of
the ditrigonal rotation angle α (22.1◦) is in good agreement with the values reported for Ca-bearing
micas that have Ca2+ cations as interlayer species. For instance, in the crystal structure of clintonite,
Ca(Mg,Al)3(Al3SiO10)(OH)2, the α value is in the range of 23.1–24.9◦ [52]. The typical value of α for
the rock-forming micas is in the range of 7–9◦ [50].Minerals 2019, 9, x FOR PEER REVIEW  8 of 12 
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4. Discussion

The observed features of the crystal structure of dmisteinbergite from the type locality suggest the
potential existence of different types of “hexagonal anorthite” that may differ in: (i) degree of disorder
of the Al/Si tetrahedral sites, with completely disordered structure having the P63/mcm symmetry;
(ii) degree of disorder of the O sites (particularly O4 site), which have a direct influence upon the
coordination of the Ca2+ cations (Ca2 site); (iii) polytypic variations (different stacking sequences and
layer shifts). These features may explain, at least in part, the different symmetries reported for natural
and synthetic dmisteinbergite [30,32,36,42]. It is interesting that the Raman spectra of dmisteinbergite
crystals from different localities are slightly different, suggesting variable degrees of the Al/Si ordering
by analogy with anorthite [53]. As was noted in a previous study [53], the peaks of symmetric bending
vibrations of Si–O and Al–O bonds at 488 cm−1 for the most ordered anorthite species shifted to
485 cm−1 in shocked type anorthite and HT (high-temperature) anorthite. If this approach is used for
the bands in the same range for dmisteinbergite spectra, then the sample from NWA 2086 meteorite
should be more disordered dmisteinbergite (and sample from Katashina, Japan should be more ordered
dmisteinbergite).

The formation of dmisteinbergite is usually associated with metastable crystallization in both
natural [6,8,9,18–20] and synthetic [32–35,54–56] systems, indicating the kinetic nature of this phase.
In the burned coal dumps, dmisteinbergite crystallizes directly from the gaseous phases together
with the other metastable anorthite polymorph, svyatoslavite. Goldsmith [21] suggested that
metastable, kinetically stabilized phases are usually structurally simpler than their stable counterparts.
The complexity of crystal structures can be estimated using the information-based approach developed
in previous studies [22,57]. The calculations of the structural complexity parameters for different
anorthite polymorphs were performed using the TOPOSPro software package [58] and the values are
given in Table 6. It can be seen that the crystal structures of the metastable CaAl2Si2O8 polymorphs
dmisteinbergite and svyatoslavite are much simpler than that of anorthite, in good agreement with
Goldsmith’s principle and similar previous observations [22–28,59,60].



Minerals 2019, 9, 570 9 of 12

Table 6. Information-based structural complexities of CaAl2Si2O8 polymorphs and topological
complexities of their tetrahedral units.

Polymorph
Topological Complexity of Tetrahedral

Unit Structural Complexity

v IG, bits/atom IG,total, bits/cell v IG, bits/atom IG,total, bits/cell

anorthite 24 2.752 66.039 104 5.700 592.846
svyatoslavite 12 1.585 19.020 26 3.700 96.211

dmisteinbergite 12 1.459 17.510 26 3.046 79.192

It is also of interest to evaluate the topological complexity of aluminosilicate tetrahedral
units in anorthite, dmisteinbergite, and svyatoslavite. The topological complexity is defined as
the information-based complexity of the atomic arrangement with the highest possible symmetry.
According to Baerlocher et al. [61], the tetrahedral framework in svyatoslavite corresponds to the BCT
zeolite framework type with the I4/mmm ideal space-group symmetry. The ideal symmetry of the double
tetrahedral layer in dmisteinbergite is described by the subperiodic layer group p6/mmm. The ideal
(topological) symmetry of the feldspar framework is C2/m [62]. The information-based topological
complexity parameters for the aluminosilicate units are given in Table 6, considering calculations of
zeolite frameworks reported in a previous study [63]. It is evident that topological complexities of
the tetrahedral units in three CaAl2Si2O8 polymorphs are in agreement with Goldsmith’s principle
as well—kinetically stable but thermodynamically metastable phases are topologically simpler than
thermodynamically stable ones. It is sometimes inferred that the formation of particular metastable
polymorphs in aluminosilicate systems is determined by the structure of the initial melt [4]. However,
this argument is not valid in our case, as the structures of the two metastable CaAl2Si2O8 polymorphs
are topologically different. In addition, crystallization from the gaseous phase does not involve any
reasonable melting state. Therefore, we suggest that metastable crystallization in feldspar systems is
a configurational entropy-driven process, where complexity is a major driving force as a parameter
closely associated with the configurational entropy of atomic arrangements [64].

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/10/570/s1,
Table S1: Anisotropic atom displacement parameters for dmisteinbergite, Dmisteinbergite.cif: Crystallographic
Information file for the crystal structure of dmisteinbergite.
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