MINERALS DISCOVERED IN OTHER COUNTRIES, FOR WHICH THE LOCALITIES ON THE TERRITORY OF THE FORMER SOVIET UNION WERE MENTIONED (WITHOUT SIGNIFICANT ANALYTICAL DATA GIVEN) IN ORIGINAL DESCRIPTIONS

MANGANOKUKISVUMITE, \(\text{Na}_6\text{MnTi}_4\text{Si}_8\text{O}_{28} \cdot 4\text{H}_2\text{O} \), described as a new mineral from Poudrette Quarry, Mont Saint-Hilaire, Quebec, Canada, was also found as zones in crystals of kukisvumite, \(\text{Na}_8\text{ZnTi}_4\text{Si}_8\text{O}_{28} \cdot 4\text{H}_2\text{O} \), from its type locality: the Kukisvumitovoye pegmatite, level +252 m, Kirovskii underground mine, Kukisvumchorr Mt., Khubiny massif, Kola Peninsula, Russia (Gault e.a., 2004).

TARKIANITE, \((\text{Cu},\text{Fe})(\text{Re},\text{Mo})_4\text{S}_8 \) described as a new mineral from Hitura Mine, Nivala, Finland, was also found in several other localities including Monchegorsk Cu-Ni deposit, Monche-Tundra, Kola Peninsula, Russia (Kojonen e.a., 2004).

The same mineral was also described earlier without a name from the Likkulaisvaara complex, Northern Karelia, Russia (Barkov, Lednev, 1993).

DISCREDITED MINERAL NAMES

CLINOHOLMQUISTITE - see FLUORO-SODIC-PEDRIZITE (pages 22, 56).

MAGNIOTRIPLITE = polytype of WAGNERITE

SURKHOBITE
Surkhobite was described as a new species, Ca-dominant mineral related to jinshajiangite and perraultite, with the idealized formula \((\text{Ca},\text{Na})(\text{Ba},\text{K})(\text{Fe}^{2+},\text{Mn})_4\text{Ti}_4(\text{Si}_4\text{O}_{14})(\text{O,F,OH})_6 \) obtained from wet chemical data (IMA No.: 2002-057. approved). It was found in the moraine of the Darai-Pioz Glacier, southern slope of the Alai Range, Tajikistan. Its brownish-red lamellar crystals up to 1 mm and grains up to 0.4 x 1 x 2 cm occur in an alkaline pegmatoid rock, with aegirine, microcline, albite, quartz, amphibole, ammaseite, astrophyllite, zircon, fluorite, polythionite, stillwellite-(Ce), sodgianite and tajzikite. Surkhobite was named after the Surkhob River in the region of the locality (Es'kova e.a., 2003). However the idealized formula \((\text{Ba},\text{K})_2\text{CaNa}(\text{Fe}^{2+},\text{Mn})_8\text{Ti}_2(\text{Si}_4\text{O}_{14})(\text{O,F,OH})_6 \) written taking into account result of its crystal structure study (Rozenberg e.a., 2003), reflects the crystal chemical features of the mineral more correct.

Later, E. Sokolova with co-authors have re-studied the holotype specimen of surkhobite (FMN 91055) using electron microprobe and found that Na prevails over Ca and F content is lower than it was reported in the paper by Es'kova e.a. (2003) and, therefore, the formula \((\text{Ca},\text{Na})(\text{Ba},\text{K})(\text{Fe}^{2+},\text{Mn})_4\text{Ti}_4(\text{Si}_4\text{O}_{14})(\text{OH,F})_6 \) is incorrect. Basing on this data, E. Sokolova with co-authors considered that surkhobite is identical to jinshajiangite, \((\text{Na,Ca})(\text{Ba},\text{K})(\text{Fe}^{2+},\text{Mn})_2(\text{Si}_4\text{O}_{14})(\text{O,F,OH})_6 \), and submitted a proposal to discredit surkhobite to the IMA CNMMN (No. 06-E). In October 2006, surkhobite was discredited as a mineral identical to earlier described jinshajiangite (see http://www.geo.vu.nl/users/ima-cnmmn/minerals06-11).

Note that Mossbauer data recently obtained for "surkhobite" specimen (N.V. Chukanov personal communication) show presence of significant amount of Fe\(^{3+}\) that causes prevailing of Mn over Fe\(^{2+}\): \((\text{Mn,Fe}^{2+},\text{Fe}^{3+})_6 \). Thus, jinshajiangite/perraultite-like minerals from the Darai-Pioz alkaline massif need further investigation.