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ABSTRACT

Post-Variscan vein-type Co-Ni-Bi ores of the Bieber deposit, Spessart mountains, Germany, which are
related to the Permian Kupferschiefer, have been investigated by ore microscopy, X-ray powder
diffraction and electron-probe microanalysis. The samples contain a variety of ore minerals, notably
skutterudite, native bismuth, cobaltite, alloclasite, niccolite, maucherite, gersdorffite, rammelsbergite/
pararammelsbergite, safflorite, loellingite and emplectite. The ores display structures indicative of
multiple brecciation and complex zoned arsenide assemblages. Three sequential stages of deposition are
identified, which are (1) the Cu stage, (2) the main Co-Ni-Bi stage, and (3) the late stage. The arsenide
minerals, notably skutterudite, diarsenides and sulpharsenides, show a large range of compositional
variation in Co-Ni-Fe space. A relatively limited number of skutterudite and diarsenide compositions
lie outside the compositional fields established in the literature. Skutterudite and diarsenides are
characterized by a significant substitution of As by S up to 0.44 a.p.fu. and 0.31 a.p.f.u., respectively,
which is larger than the range previously reported for these minerals. Sulpharsenide compositions can
be grouped into three populations, which conform to cobaltian arsenopyrite, cobaltite and gersdorftite.
They display highly variable As/S ratios between 0.95:1.00 and 1.29:0.73, consistent with experimental
data. Estimates of the formation temperatures, based on the presence of dendritic native bismuth and
emplectite, are in the range 100—300°C, similar to different post-Variscan mineralization styles
widespread in Central Europe. Comparison of the Co-Ni-Bi vein assemblage with the framework of
available paragenetic information and radiometric age data for regional mineralization events indicates
an age of mineralization of ~150—160 Ma for the Bieber deposit.

Keyworbs: Co-Ni-Bi ores, Bieber, Spessart, skutterudite, diarsenides, sulpharsenides.

Introduction type mineralizations of Co, Ni, Bi and As. Most of

the recent studies have focused on the stratabound

BAse metal deposits related to the Permian
Kupferschiefer are widespread in central Europe
and have been the subjects of extensive miner-
alogical-geochemical investigation (e.g. Vaughan
et al., 1989; Speczik, 1995). The Kupferschiefer
hosts two different types of mineralization: (1)
stratabound mineralizations of Cu, Ag, As, Au
and PGE, and (2) crosscutting epigenetic vein-

mineralization style, emphasizing the importance
of post-depositional processes (diagenetic to
epigenetic) for the metal accumulation and re-
distribution within the Kupferschiefer deposits
(e.g. Sun and Piittmann, 1997). These investiga-
tions have focused on ore mineralogy, trace
clement analysis, stable isotope and organic-
geochemical studies (e.g. Bechtel and Piittmann,
1991; Sun and Piittmann, 2000). The epigenetic
vein-type Co-Ni-Bi mineralizations have not been
studied to the same extent, and only limited
mineralogical-geochemical data are available for
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The present study reports the results of
mineralogical investigations carried out on vein-
type Co-Ni-Bi ores of the Bieber deposit, which
belongs to a small area of Kupferschiefer-related
base metal mineralizations located in the NW part
of the Spessart mountains (Fig. 1). The Bieber
deposit is the type locality of the rare supergene
minerals bieberite, CoSO47 H,O, and rosslerite,
MgH[AsO,4]-7 H,O; samples originating from the
Co-Ni-Bi veins are held by most of the important
mineralogical museums throughout Europe
(including Museum fiir Naturkunde, Berlin,
Natural History Museum, London, and Ecole
des Mines, Paris). The ore assemblages of the Co-
Ni-Bi veins are similar to other epigenetic
Kupferschiefer-related deposits, e.g. Richelsdorf,
Mansfeld and Sangerhausen (Kautzsch, 1953;
Rentzsch and Knitzschke, 1968; Tobschall ef al.,
1986; Gerlach, 1992), but show some distinct
features, such as the presence of large amounts of
native bismuth and very complex intergrowths of
Co-Ni arsenides and sulpharsenides. The major
objectives of this investigation are (1) to establish
a mineralogical characterization of the Co-Ni-Bi
ore assemblages, and (2) to place some constraints
on the genetic evolution of the Bieber deposit.

Regional geological setting

The Spessart mountains constitute a part of the
Mid-German Crystalline Rise, which belongs to
the internal zone of the mid-European Variscan

Orogen (Weber, 1995). The crystalline basement
can be divided into several SW—NE-striking
tectono-metamorphic units, which are:
(1) Alzenau formation (biotite and hornblende
gneisses, amphibolites); (2) Geiselbach formation
(quartzites, mica schists, amphibolites);
(3) Mombris formation (staurolite-garnet-plagio-
clase gneisses, muscovite-biotite gneisses);
(4) Schweinheim formation (mica schists, biotite
gneisses); and (5) Elterhof formation (amphibo-
lites, calcsilicate gneisses, marbles, hornblende
gneisses). Pervasive deformation and peak meta-
morphism occurred during the Variscan orogeny
at ~320—-330 Ma (Weber, 1995). The metasedi-
mentary rocks are crosscut by several lampro-
phyric dykes (Wrobel, 2000) and intruded by late
Permian rhyolitic magmas.

The crystalline basement is unconformably
overlain by Permian sedimentary rocks of the
Zechstein (Zechstein 1, Werra cycle), which
comprises conglomerates, the Kupferschiefer
and bituminous dolomites (Fig. 1). The lower-
most unit of the Zechstein is composed of
component-supported conglomeratic sandstones,
1—2 m thick, which have a predominantly
dolomitic cement. These conglomeratic sand-
stones are overlain by the Kupferschiefer, which
represents an intercalation of bituminous argillac-
eous to silt-rich shales, dolomite-rich siltstones
and dolostones. The Kupferschiefer reaches a
maximum thickness of 2.2 m (mean of 0.7 m) and
is followed by the Zechstein dolomite unit. The
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FiG. 1. Geological sketch map of the northern part of the Spessart, showing the locations of the Bieber Co-Ni-Bi
deposit as well as of several other Co-Ni and Cu deposits. Redrawn and modified after Matthes and Okrusch (1965).
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lowermost part of the Zechstein dolomite is
composed of platy bituminous dolostones with
mm-thick interlayers of silty dolostones, whereas
the middle and upper parts are pure dolostones
(Schmitt, 1992, 1993a). The sedimentary rocks of
the Zechstein are overlain by the siliciclastic
successions of the Lower, Middle and Upper
Bunter (Triassic), which represent a complex
sequence of sandy shales, sandstones and
conglomeratic sandstones.

Both the Variscan crystalline basement and the
sedimentary rocks of the post-Variscan cover are
crosscut by NW—SE-striking fault systems
(Figs 1,2), which were activated as a consequence
of the post-Variscan extensional regime in Central
Europe (e.g. Ziegler, 1987). These fault systems,
which dip 45—80° towards the SW and NE, are
frequently mineralized with baryte and quartz
(Murawski, 1954; Hofmann, 1979), and carry
local enrichments of Bi minerals, which are
dominated by emplectite and native bismuth
(Schmitt, 1993b). Vein-type Co-Ni-Bi assem-
blages occur only in close contact with the
sedimentary rocks of the Zechstein. A more
complex mineralization style has been reported
from a structurally similar fault zone exposed in
the Lower Permian rhyolite of Sailauf, where Mn
ore assemblages (Mn oxides and carbonates)

occur in close association with native arsenic,
native bismuth and several accessory minerals
(Lorenz, 1991, 1995). Geochronological investi-
gations have demonstrated that the onset of
mineralization was at ~180 Ma; hydrothermal
activity occurred at several distinct stages and
continued until ~100 Ma (Hautmann et al., 1999).

The Bieber Co-Ni-Bi deposit

Mining activities in the Bieber area were first
recorded in 1542, when early workings concen-
trated on stratabound Cu-Pb-Ag mineralizations
in the Kupferschiefer. The major mining period,
which focused on the cobalt ores of the Co-Ni-Bi
vein deposits, was from 1731 to 1869 (Freymann,
1991). Most of the samples held within museums
were collected during this period. The Co-Ni-Bi
mineralization of the Bieber deposit comprises
four distinct vein systems, which are: (1) the
Biichelbach Co veins; (2) the Rohrig Co veins;
(3) the Lochborn Co veins; and (4) the Bismuth
vein (Fig. 2). All vein systems represent miner-
alized parts of the post-Variscan fault zones,
which were still active during ore formation, as
demonstrated by brecciation and partial myloni-
tization of the older ore assemblages. Most of the
veins display a NW—SE strike in the range

Lower Bunter
B3 salmiinster Unit
E=3 Gelnhausen Unit
[ siltstone Unit
Zechstein, delomite
Il Zechstein, bituminous shales
Rotliegend

E=3 Staurolite gneiss

~ Major faulls

2~ Co-Ni-Bi veins

FiG. 2. Detailed geological map of the Bieber Co-Ni-Bi deposit, Spessart, Germany, showing the principal

arrangement of the vein systems. Redrawn and modified after Diederich and Laemmlen (1964).
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120—150°, and dip 40—70° towards the SW and
NE. Only the major vein of the Biichelbach cobalt
vein system shows a diverging E—W strike
(Fig. 2). The vein dimensions range from a few
cm to ~6 m, with mean values in the range
0.15—1.50 m (Freyman, 1991). The mineralized
fault zones, which are exposed in the crystalline
basement, the Zechstein sediments and the
overlying Lower Bunter, are mainly filled with
baryte, siderite and strongly-altered wallrock
fragments. It is important to note that the
occurrence of Co-Ni-Bi ores, which form local
concentrations in the veins, is restricted to the
crystalline basement and the lowermost part of the
Zechstein sediments (Kupferschiefer and lower
part of the dolomite unit). Major components of
the Co-Ni-Bi ores are skutterudite, niccolite,
safflorite, rammelsbergite/pararammelsbergite
and native bismuth. Although most of the veins
contain native bismuth in close association with
the Co-Ni ores, the most important enrichments of
native bismuth occur within a particular vein, in
the SE part of the deposit (the bismuth vein).

Mineralogy of the Co-Ni-Bi ores

Most of the sample material investigated in this
study was obtained from museum collections;
additional material was collected from dumps of
the Lochborn and Rohrig Co veins. A total of 68
samples was studied by reflected-light micro-

scopy, electron-probe microanalysis and X-ray
powder diffraction. Ore mineral assemblages
from 16 representative samples are listed in
Table 1. The vein-type Co-Ni-Bi ores occur as
local enrichments and impregnations in a gangue
composed of tabular baryte crystals and massive
siderite. Most of the Co-Ni arsenide assemblages
are present as complex zoned rosettes, botryoidal
masses and idiomorphic crystals, which were
subsequently overgrown by siderite. The vein ores
were subjected to several stages of tectonic
movement along the fault zones, which resulted
in extensive fracturing and brecciation of the
older assemblages. On the basis of the mineral
assemblages and textural relationships, three
sequential stages of deposition can be distin-
guished: (1) the Cu stage; (2) the main Co-Ni-Bi
stage; and (3) the late stage (Fig. 3).

The mineralization sequence initiated with the
formation of quartz, which is a relatively
subordinate gangue mineral. Quartz is present as
idiomorphic prismatic crystals, which are
commonly enclosed in tabular baryte I. The
baryte has been overgrown by the principal ore
minerals of the Cu stage, mainly chalcopyrite and
tennantite. Chalcopyrite, galena and sphalerite are
present as anhedral inclusions within tennantite,
which forms both massive aggregates, up to
3—4 cm in size, and idiomorphic crystals.
Tennantite close to fault zones has been strongly
brecciated. The intensity of the brecciation

TaBLE 1. Description of representative samples from the Bieber Co-Ni-Bi deposit.

Sample Source/location Ore assemblage

BIE-2 Aschaffenburg natural history museum  Maucherite, niccolite, native bismuth

BIE-32 Aschaffenburg natural history museum  Cobaltite, cobaltian arsenopyrite, skutterudite, native bismuth

BIE-79 Aschaffenburg natural history museum  Gersdorffite, rammelsbergite, safflorite, skutterudite

BIE-124  University of Stra3burg Emplectite, loellingite, skutterudite, native bismuth

BIE-129  University of Stralburg Skutterudite, native bismuth

BIE-132b University of Stra3burg Safflorite, skutterudite, native bismuth

BIE-149  University of StraSburg Tennantite, chalcopyrite, pyrite, sphalerite, galena

BIE-151a University of Stra3burg Emplectite, safflorite, skutterudite, native bismuth

BIE-243  University of Stra3burg Niccolite, gersdorffite, safflorite, rammelsbergite, loellingite,
native bismuth

BIE-254  Rohrig cobalt vein Alloclasite, skutterudite

BIE-264  Rohrig cobalt vein Gersdorffite

BIE-448a Bieber, not further specified Skutterudite, native bismuth

BIE-452a University of Karlsruhe Tennantite, skutterudite, marcasite, pyrite

BIE-456  University of Stuttgart Cobaltite, safflorite, loellingite, skutterudite

BIE-457  University of Karlsruhe Native bismuth, bismuthinite, loellingite, tetrahedrite

BIE-460  University of Karlsruhe Safflorite, loellingite, skutterudite
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Cu stage

Co-Ni-Bi stage

Late stage

Quartz - |

Baryte

Siderite -
Chalcopyrite -

Galena -
Sphalerite -
Tennantite -
Skutterudite L

Cobaltite
Niccolite
Maucherite
Gersdorffite
Rammelsbergite
Safflorite
Loellingite

Alloclasite
Emplectite
Bismuthinite

| -
Native bismuth -

Fic. 3. Paragenetic sequence of the Bieber Co-Ni-Bi mineralisation, as determined through textural observations.

The vertical lines indicate brecciation events.

decreases with increasing distance from the faults.
Subsequent to the brecciation event, skutterudite |
precipitated within the microfractures of the
tennantite breccia (Fig. 4a). This skutterudite is
composed of numerous very minute (5—20 pum)
idiomorphic crystals, which display a significant
growth zonation and hopper crystal morphology,
indicative of rapid deposition. Skutterudite I is
also present as strongly-fractured and brecciated
skeletal crystals, which were overgrown and
enclosed by later emplectite (Fig. 4b).

In contrast to skutterudite I, the later skutter-
udite II, which makes up most of the massive Co-
Ni-Bi ores, does not show evidence of extensive
brecciation. Skutterudite 11, which was deposited
subsequent to cobaltite and native bismuth I, is
present as idiomorphic cubo-octahedral crystals,
0.2—8.5 mm in size (Fig. 4¢), anhedral massive
aggregates (Fig. 4d), dendritic aggregates
(Fig. 4¢) and composite idiomorphic crystals
which display a significant growth zonation
(Fig. 4f). Native bismuth, up to 5 mm in size, is
commonly found both as large dendritic aggre-
gates, which are enclosed in skutterudite (Fig. 4d)
and emplectite (Fig. 40). Very commonly, the
dendritic bismuth is surrounded by radial micro-
fractures, a texture initially described by Ramdohr
(1981). Anhedral grains of native bismuth are
rarely found as inclusions within cobaltite and
cobaltian arsenoyprite, which both display euhe-
dral to subhedral grain shapes; cobaltite and
cobaltian arsenopyrite were subsequently over-
grown and enclosed by massive skutterudite
(Fig. 4d). The larger dendritic aggregates of

389

native bismuth are surrounded by a layer of
skutterudite, which shows idiomorphic termina-
tions. Skutterudite hosting dendritic native
bismuth is enclosed by massive baryte II or has
idiomorphically grown upon this baryte, which
indicates that deposition of skutterudite II was
approximately contemporaneous with baryte II.
Complex diarsenide/sulpharsenide rosettes,
composed of rammelsbergite/pararammelsbergite,
gersdorffite, safflorite and loellingite, have formed
subsequent to skutterudite. Two distinct textural
types can be distinguished, which are:
(1) rammelsbergite/pararammelsbergite-rich
assemblages surrounding niccolite; and
(2) safflorite-rich assemblages surrounding skut-
terudite. Niccolite, which is present as anhedral
grains, and rarely associated with massive
maucherite (Fig. 5a), constitutes the core of the
Ni-rich rosettes. Niccolite contains anhedral and
dendritic inclusions of native bismuth, but no
inclusions of skutterudite, indicating more or less
contemporaneous formation of niccolite and
skutterudite. The Ni-rich diarsenide/sulpharsenide
rosettes are characterized by a complex growth
zoning. Niccolite has been overgrown by alter-
nating bands of gersdorffite and rammelsbergite/
pararammelsbergite, which were followed by later
idiomorphic safflorite and loellingite (Fig. 5b).
The sequence of gersdorffite and rammelsbergite/
pararammelsbergite is found to be repeated twice,
which indicates oscillating precipitation condi-
tions. It is important to note that the presence of
both rammelsbergite and pararammelsbergite
(Fleet, 1972) has been confirmed by X-ray
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FiG. 4. Photomicrographs in reflected light showing various representative textures of the Bieber Co-Ni-Bi ores.
(a) Brecciated tennantite (ten) close to a fault zone has been infilled by skutterudite I (skd). Sample BIE-452a. Width
of field: 1.15 mm. (b) Skutterudite I (skd) has been strongly brecciated. Subsequently, native bismuth I (bi) has
precipitated as anhedral grains. Both skutterudite and native bismuth have been overgrown by prismatic emplectite
(epl). Sample BIE-151a. Width of field: 1.39 mm. (¢) Native bismuth I (bi), present as dendritic aggregates, has been
overgrown and enclosed by an idiomorphic crystal of skutterudite II (skd). In contrast to skutterudite I, skutterudite II
does not show extensive brecciation. Idiomorphic crystals of loellingite (loe) have grown upon the crystal faces of
skutterudite. Sample BIE-124. Width of field: 2.65 mm. (<) Subhedral crystals of cobaltite (cob) and anhedral grains
of native bismuth (bi) are both present as inclusions within massive skutterudite I (skd). Sample BIE-32. Width of
field: 500 pm. (e) Skutterudite II (skd), hosted by baryte (ba), has overgrown and enclosed dendritic native bismuth I
(bi). Sample BIE-448a. Width of field: 1.0 mm. (f) Skutterudite II (skd) showing complex growth zoning, has been
enclosed by later siderite (sid). Sample BIE-129. Width of field: 2.35 mm.
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Fic. 5. Photomicrographs in reflected light showing various representative textures of the Bieber Co-Ni-Bi ores.
(a) Niccolite (nic) has been overgrown by maucherite (mau). Subsequently, microfractures within maucherite were
filled by native bismuth II (bi). Sample BIE-2. Width of field: 560 pm. () A typical niccolite-rich rosette, showing a
complex oscillatory growth zoning. Niccolite (nic) has been overgrown by alternating bands of gersdorffite (ger) and
rammelsbergite/pararammelsbergite (ram), which were followed by late safflorite (saf) and idiomorphic crystals of
loellingite (loe). Sample BIE-243. Width of field: 1.75 mm. (¢) Detail of a gersdorffite band in a Co-rich rosette,
showing idiomorphic terminations of both safflorite (saf) and gersdorffite (ger). Sample BIE-456. Width of field:
1.07 mm. (d) Marginal zone of a Co-rich rosette, which encloses a core of skutterudite. The diarsenide rosette is
composed of safflorite (saf), which has a highly variable composition. Sample BIE-132b. Width of field: 3.0 mm.
(e) Siderite (sid) has been partially replaced by alloclasite (all). Sample BIE-254. Width of field: 2.20 mm.
(f) Fractures in siderite (sid) have been infilled by native bismuth II (bi). The native bismuth encloses aggregates of
loellingite (loe) crystals. Sample BIE-457. Width of field: 1.50 mm.
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powder diffraction in several niccolite-rich
samples, but it is very difficult to distinguish
between them by reflected-light microscopy and
electron-probe microanalysis. Therefore, the term
rammelsbergite/pararammelsbergite is used for
simplicity, referring to both minerals. The Co-rich
rosettes, which most commonly enclose a core of
skutterudite, are found to be composed of
safflorite and gersdorffite. Both safflorite and
gersdorffite show idiomorphic terminations
(Fig. 5¢), indicating relatively slow deposition of
both minerals within open fracture zones. The
marginal zones of the Co-rich rosettes are
characterized by several individual growth zones
of safflorite (Fig. 5d). Both textural types of
diarsenide/sulpharsenide rosettes are overgrown
by massive siderite, which has filled most of the
remaining open space within the Co-Ni-Bi veins.

Portions of the massive siderite show extensive
brecciation and infilling by the late stage
assemblages. In places, the fractured siderite has
been replaced by alloclasite, which is present as
accumulations of rhomb-shaped idiomorphic
crystals (Fig. 5e). Alloclasite is closely associated
with a late generation of skutterudite, which forms
isolated cube-shaped crystals enclosing idio-
morphic alloclasite. Local enrichments of native
bismuth are related to extensively brecciated
siderite. Fractures and micro-faults in siderite
have been infilled by massive native bismuth II,
which hosts inclusions of rhomb-shaped idio-
morphic crystals of loellingite and anhedral grains
of bismuthinite (Fig. 5f). Inclusions of loellingite
are also present within the siderite, indicating
loellingite formation during precipitation and
subsequent brecciation of the siderite.
Emplectite is apparently a late mineral in the
sequence of deposition, because aggregates
composed of acicular to prismatic crystals of
emplectite are commonly found in vugs within
siderite. Massive emplectite hosts inclusions of
corroded siderite, native bismuth and brecciated
skutterudite (Fig. 4b). The massive anhedral
native bismuth II is rarely crosscut by late
microfractures, which have been partially filled
by tetrahedrite.

Mineral chemistry

The chemical composition of the mineral phases
was determined by wavelength-dispersive elec-
tron-probe microanalysis using the CAMECA
SX-50 instrument in Wiirzburg. Operating condi-
tions were 15 kV at a beam current of 15 nA, a

N

i

beam size of 1 -2 pum and counting times of 20 s
on TAP/PET and 30 s on LiF. Standards and
radiations used were as follows: Se (La), Te (L),
Cd (La), Ag (La), Bi (Ma), Au (Ma), Cu (Ko,
Co (Ka) and Ni (Ka), GaAs (As-La), FeS, (Fe-
Ko, S-Ka), ZnS (Zn-Ka), Sb,S; (Sb-La), PbS
(Pb-Ma), HgS (Hg-Ma), SnO, (Sn-La) and
MnTiO; (Mn-Ka)). Under the current analytical
conditions, the detection limit for these elements
is in the range of 0.1 wt.%; the analytical
precision is ~1% for all major elements. The
total number of analyses performed for each
mineral or mineral group is given in brackets in
the following paragraphs.

arsenides

The compositions of the two Ni arsenide minerals,
niccolite (n = 22) and maucherite (n = 24), are
characterized by relatively limited variability.
Niccolite and maucherite display Co incorpora-
tion in the range 0.28-0.62 wt.% and
0.65—1.19 wt.%, respectively, whereas the
concentration of Fe is generally <0.1 wt.%
(Table 2). Minor substitution of As by S is only
detectable in maucherite (0.20—0.25 wt.%),
whereas the S concentrations in niccolite are
below the detection limit.

Skutterudite

392

Skutterudite (n = 159) displays a broad range of
compositional variation. The most important
feature is a substantial substitution of Co by Ni
and Fe, which is in the range 0.11—-14.39 wt.%
and 0.46—7.97 wt.%, respectively (Table 3). The
skutterudite compositions detected in the Bieber
Co-Ni-Bi ores include both skutterudite and Ni-
skutterudite, which confirms the results of X-ray
powder diffraction analyses. Refinement of the
XRD data indicates that two types of skutterudite
are present, which have cell parameters of
8.172—-8.225 A and 8.259-8.265 A. These
conform to the values of 8.204 and 8.303 A
listed for skutterudite and Ni-skutterudite in the
JCPDS powder diffraction data file. On the basis
of their compositions in Fe-Co-Ni space, two
distinct types of skutterudite can be distinguished.
Most of the analytical data fall within a large field
corresponding to the known field of skutterudite
solid-solution (Roseboom, 1962; Klemm, 1965a;
Rosner, 1970), whereas relatively few analyses
define a separate group, characterized by elevated
Fe and Ni concentrations (Fig. 6a). Although
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TABLE 2. Representative electron microprobe analyses of niccolite and maucherite.

Sample BIE-2 8 BIE-2 17  BIE-2 41 BIE-2 22 BIE-227 BIE-2 50
nic nic nic mau mau mau
Wt.%
Co 0.62 0.34 0.28 0.80 1.19 0.65
Ni 42.26 4331 43.77 50.61 50.61 51.25
As 56.50 55.89 55.96 49.14 48.92 48.43
S <0.1 <0.1 <0.1 0.20 0.23 0.25
Se 0.26 0.29 0.34 0.35 <0.1 0.28
Total 99.64 99.83 100.35 101.10 100.95 100.86
Formulae
Co 0.01 0.01 0.01 0.17 0.25 0.14
Ni 0.98 0.99 0.99 10.82 10.74 10.86
As 1.03 1.00 1.00 8.23 8.13 8.04
S 0 0 0 0.08 0.09 0.10

CoAsj3

most of the crystals and aggregates of skutterudite
display a significant growth zonation, it is not
possible to correlate the observed compositional
trends with a distinct zonation pattern. The
compositional variations between different aggre-
gates and grains are similar to those between
individual growth zones. In addition to the
variation of skutterudite in Fe-Co-Ni space, a
significant substitution of As by S in the range
0.15-5.43 wt.%, corresponding to 0.01—0.44
atoms per formula unit (a.p.f.u.), has been
detected (Fig. 7a). The As concentrations are
negatively correlated with the S concentrations
over the entire compositional range (R* = 0.86).

FeAsj;

NiAsg

CoAs,

Interestingly, the Fe- and Ni-rich skutterudites
defining a separate group in Fe-Co-Ni space
display the lowest S concentrations. The
Me:(As+S) ratios of the skutterudites range
between 1:2.90 and 1:3.03 and are very close to
the ideal stoichiometry. It is noted that the
skutterudite compositions displaying elevated
levels of S substitution tend to be closer to the
ideal Me:(As+S) value. The extent of deviation of
skutterudite from ideal stoichiometry has been the
subject of much discussion. Synthetic skutterudite
corresponding to the Co end-member was found
to be almost stoichiometric with Me:As ratios in
the range 1:2.95 to 1:2.97 (Roseboom, 1962).

b FeAs,

NiAs;

Fi16. 6. Compositional representations (mol.%) of skutterudites and diarsenides. Both diagrams show a summary of
data from all samples analysed. () Skutterudites in the system FeAs;-CoAs3;-NiAs;. The shaded area indicates the
maximum field of solid-solution at 800°C (Roseboom, 1962), which conforms to the known range of natural
skutterudite compositions (Rosner, 1970). (») Diarsenides in the system FeAs,-CoAs,-NiAs,. The shaded area shows
the field of natural diarsenides (Roseboom, 1963).

393



T.WAGNER AND J. LORENZ

a 30 T T r
29 |5 1
g
- ]
= 28|
g
=
w 27} = E
<
al -
26 = gn :. - 4
Sn m g
[ -- " Emy
25 : . : —
0 0.1 0.2 0.3 0.4 0.5
S (ap.fu.)
b . r
= 3
S a7t "ag,n
(2] [ ™
< -
16 | E
15 . . : .
0 0.1 0.2 0.3 0.4 0.5
S (ap.fu)

F1G. 7. Variation of As and S a.p.f.u. in (a) skutterudites, and (b) diarsenides from the Bieber deposit.

Systematic microprobe studies of natural skutter-
udite by Klemm (1965a) found a compositional
variation between 1:1.9 and 1:3.3, which could
not be confirmed in subsequent studies (e.g.
Rosner, 1970; Petruk et al., 1971; Ixer et al.,
1979; Zakrzewski et al., 1980; Oen et al., 1984).
The non-stoichiometric skutterudite analyses
reported in the literature may relate to very fine-
grained intergrowths with different diarsenides or
the presence of significant amounts of S
substituting for As, comparable to skutterudite
of the Bieber deposit.

Diarsenides

The different diarsenide minerals (n = 133),
comprising safflorite, loellingite and rammelsber-
gite/pararammelsbergite, are characterized by
extensive compositional variability in Fe-Co-Ni
space (Fig. 6b). Most of the analytical data plot
along the join connecting safflorite and loellingite
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(Table 4, Table 5). In contrast, evidence of solid-
solution between safflorite and rammelsbergite/
pararammelsbergite tends to be more restricted.
The incorporation of Co into rammelsbergite/
pararammelsbergite is in the range
0.64—-13.78 wt.% (corresponding to
0.02—0.46 a.p.f.u.), whereas Ni substitution in
safflorite is limited to a maximum of 9.09 wt.%
(corresponding to 0.23 a.p.f.u.). Most of the
analytical data plot within the known field of
diarsenide compositions in Fe-Co-Ni space
(Roseboom, 1963; Radcliffe and Berry, 1968),
whereas a limited number of Fe- and Ni-rich
safflorites have compositions outside this estab-
lished field (Fig. 6b). The diarsenides display a
substitution of As by S in the range 0.11—
5.13 wt.%, corresponding to 0.01—0.31 a.p.f.u.
(Fig. 7b); the As concentrations are negatively
correlated with the S concentrations (R* = 0.92).
It is noted that the relative proportion of S
substituting for As, expressed as S/(As+S) is very
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similar for both the diarsenides (0.16) and the
safflorites (0.15). Most of the safflorite making up
the marginal zones of Co-rich diarsenide/sulphar-
senide rosettes displays a significant composi-
tional zonation, which is characterized by
alternating Fe-rich and Fe-poor bands (Fig. 9).
The Me:(As+S) ratios of the diarsenides range
between 1:1.91 and 1:2.02, which is very close to
the stoichiometric value.

Sulpharsenides

The different sulpharsenide minerals (n = 117)
present in the Co-Ni-Bi ores can be grouped into
three different populations, based on their
compositional trends in Fe-Co-Ni space. Two of
these compositional populations, which corre-
spond to cobaltian arsenopyrite and cobaltite, are
found exclusively as inclusions in massive
skutterudite in sample BIE-32 (Table 6,
Fig. 8a). The textural and compositional classifi-
cation of these two distinct sulpharsenide phases
has been confirmed by X-ray powder diffraction
analyses. Cobaltian arsenopyrite displays a
relatively limited Co substitution (Fig. 8a),
which is in the range 5.19—11.23 wt.%, corre-
sponding to 0.15—0.32 a.p.f.u.; the amount of Ni
incorporation is insignificant and ranges between
0.46 and 1.52 wt.%. Cobaltite, present in the same
sample, is characterized by extended substitution
by both Fe and Ni (Fig. 84) in the range
2.19-8.04 wt.% and 1.07—12.32 wt.%, respec-
tively (corresponding to 0.06—0.24 and
0.03—0.35 a.p.fu.). The Ni concentrations are
positively correlated with the Fe concentrations
over the entire compositional range (R2 = 0.97),

a FeAsS

indicating that both Fe and Ni substitute for Co in
a fixed ratio. A similar solid-solution trend
between cobaltite and Co- and Fe-rich gersdorffite
has been reported from the Tunaberg skarn
deposit, Sweden (Dobbe and Oen, 1994). The
sulpharsenides from all other samples investigated
are located on a trend connecting cobaltite with
gersdorffite (Fig. 8b); the detected compositions
range between C00'92Ni0'01Feo'07A51'0880'90 and
Cog.10Nig.s8Fe0.02A81.14S0.86 (Table 7). This
compositional trend includes cobaltite, alloclasite
and gersdorffite, as shown by X-ray diffraction
analyses. The different sulpharsenide minerals
show highly variable As/S ratios between
0.95:1.00 and 1.29:0.73, which is consistent with
the experimentally-determined compositional
range (Klemm, 1965b; Bayliss, 1969).

Tennantite and tetrahedrite

Tennantite (n = 33), which is the dominant fahlore
mineral in the Bieber Co-Ni-Bi ores, has a
composition close to the As end-member, with
As/(AstSb) ratios in the range 0.77—0.98
(Table 8, Fig. 10). The Zn/(Zn+Fe) ratios are in
the range 0.19—0.38, and are only very weakly
correlated with the As/(As+Sb) ratios (R* = 0.23).
The Ag concentrations are relatively low, in the
range 0.16—0.34 wt.%, whereas most analytical
data display a significant substitution of As by Bi
in the range 0.24—2.55 wt.%. The tennantite
compositions correspond well with analytical
data reported for tennantite from stratabound
mineralizations in different types of Zechstein
sediments in the Spessart (Schmitt, 1993a).
Tetrahedrite (n = 6), present as infilling of late

b FeAsS

CoAsS £ \ NiASS  CoAsS \ NiAsS

Fic. 8. Compositional representations (mol.%) of sulpharsenides in the system FeAsS-CoAsS-NiAsS. (a) Cobaltite

and cobaltian arsenopyrite, sample BIE-32. (b) Cobaltite, alloclasite and gersdorffite, samples BIE-79, BIE-243,

BIE-254, BIE-264 and BIE-456. The shaded area indicates the maximum field of solid-solution at 650°C after
Klemm (1965).
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F1G. 9. Schematic section through a complex zoned Co-Ni diarsenide rosette, showing the compositional variation
along the traverse. Sample BIE-132b.

As/As+Sb

microfractures, is characterized by relatively low
As concentrations in the range 0.99—2.27 wt.%
and the absence of Ag (Table 8). The Zn/(Zn+Fe)
ratios vary between 0.65 and 0.96 (Fig. 10).

10 o
% ¢

08} ?o:‘ '. 4
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04| 1

02} TETRAHEDRITE
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0 o 9% o o
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Zn/Zn+Fe

FiG. 10. Compositional representations of tennantite and
tetrahedrite, expressed as a plot of As/(As+Sb) vs. Zn/

(Zn+tFe).
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Bi minerals

The composition of native bismuth (7 = 10) of the
different textural types (anhedral grains, dendritic
aggregates, massive enrichments) conforms to the
pure element, with only very minor concentra-
tions of Cu detectable. Antimony, which is a
common substituent in native bismuth, was not
detectable by the electron microprobe (Table 9).
Emplectite (n = 15) and bismuthinite (z = 5) have
compositions close to stoichiometry; substitution
of Bi by Sb (0.18—0.56 wt.%) in emplectite
appears to be insignificant.

Discussion and conclusions

Temperatures of ore formation

Comparison of the sulphide-arsenide assemblages
with available experimental data on phase
relations enable constraints to be placed on the
formation conditions and the genetic evolution of
the Bieber ores. Experimental studies have
demonstrated that dendritic Bi, texturally compar-
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TABLE 9. Representative electron microprobe analyses of emplectite and native bismuth.

Sample BIE-124 5 BIE-151a 10 BIE-124 8 BIE-448a 15 BIE-129 14 BIE-129 34
epl epl bi bi bi bi
Wt.%
Cu 19.48 19.21 0.14 <0.1 0.13 <0.1
Sb 0.18 0.56 <0.1 <0.1 <0.1 <0.1
Bi 61.12 60.28 100.46 100.29 99.28 99.19
S 19.54 19.35 <0.1 <0.1 <0.1 <0.1
Formulae
Cu 1.02 1.01 0.01 0.00 0.01 0.00
Sb 0.00 0.02 0.00 0.00 0.00 0.00
Bi 0.97 0.97 0.99 1.00 0.99 1.00
S 2.03 2.02 0.00 0.00 0.00 0.00

able to natural assemblages, commonly precipi-
tates from hydrothermal solutions at temperatures
below the melting point. Above 271°C, native
bismuth is formed as liquid droplets, which retain
this morphology when solidified (Godovikov and
Kolonin, 1966). The radial fractures surrounding
most of the dendritic Bi aggregates in the Bieber
samples result from expansion of the Bi upon
cooling. A significant change of the linear
expansion coefficient of pure Bi metal occurs at
~75°C (Godovikov and Kolonin, 1966), which
provides a minimum temperature estimate for the
Bieber Co-Ni-Bi ore assemblages. In addition,
formation temperatures below 300°C are indi-
cated by the presence of emplectite as the major
Bi sulphide mineral associated with native
bismuth. Experimental studies of the Cu-Fe-Bi-S
system show that emplectite is stable at
temperatures below 320°C, where inversion to
the high-temperature phase cuprobismuthite
occurs (Sugaki et al., 1981; Wang, 1994). Very
low S concentrations detected in niccolite
(<0.1 wt.%) and maucherite (0.2 wt.%) from the
Bieber Co-Ni-Bi ores also indicate temperatures
well below 300°C. At 300°C, niccolite can
accommodate as much as 5.0 wt.% NiS,
whereas the maximum sulphur content of
maucherite is only 2.0 wt.% at 700°C. The
solid-solution relationships of niccolite and
maucherite in the Ni-As-S system show a strong
decrease of S substitution into both minerals with
decreasing temperature (Yund, 1962). The
temperature estimates (100—300°C) obtained for
the Bieber Co-Ni-Bi ores are in good agreement
with the typical temperature range of different
styles of post-Variscan mineralization in Central
Europe. Systematic fluid inclusion studies (e.g.
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Behr et al., 1987; Liders and Moller, 1992; Behr
et al., 1993; Muchez et al., 1994; Kling, 1997)
have demonstrated that most of the post-Variscan
vein-type mineralizations (e.g. Pb-Zn-fluorite-
baryte veins widespread in Central Europe) have
formed in a narrow temperature interval between
100 and 200°C; only a few data show slightly
higher temperatures, up to 300°C.

Mechanisms of ore deposition

Most of the conceptual models developed for the
post-Variscan vein-type baryte-Pb-Zn mineraliza-
tion in Central Europe invoke deposition of baryte
as a consequence of mixing between deep-
sourced metal-bearing basement brines and
cooler sulphate-rich formation waters. The
sulphate-rich formation waters were probably
derived from Permian or Mesozoic carbonate
rocks, which contain abundant intercalations of
anhydrite (e.g. Behr et al., 1987; Liiders et al.,
1993; Zheng and Hoefs, 1993). Recent studies
have shown that the precipitation of sulphide
minerals in these vein systems is probably related
to thermochemical sulphate reduction processes
during interaction of the hydrothermal fluids with
organic matter in the wallrocks (Jochum, 2000).
The distinct spatial association of the Co-Ni-Bi
enrichments in the Bieber veins with the
sedimentary rocks of the Kupferschiefer (both
vertically and laterally) suggests a genetic link
between the mineralization style and this
particular host-rock lithology. The abundant
organic matter in the Kupferschiefer could have
acted as a reducing agent for dissolved oxidized
sulphur and arsenic species in the hydrothermal
fluids, which would have resulted in the
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deposition of Co-Ni arsenides and sulpharsenides
in close vicinity to the contact between the
basement rocks and the Kupferschiefer. A model
of thermochemical reduction of arsenites and
sulphates was originally proposed by Blair (1997)
to explain the unusual mineral assemblages, the
geological setting and the structural distribution
of the classical Co-Ni-Bi-Ag-As (five-element)
veins of Cobalt, Ontario. In a series of reduction
experiments carried out with arsenite- and
sulphate-bearing hydrothermal solutions at
temperatures of 200°C and 300°C, Ni-Co
sulpharsenides were precipitated, together with
native silver and Ag,S (Blair, 1997). The results
of these experiments suggest that the process of
thermochemical arsenite reduction is likely to
occur under favourable conditions in ore-forming
environments. Experimental studies and analy-
tical data from active geothermal systems
demonstrate that arsenic is predominantly trans-
ported as oxidized As(III) species in ore-forming
fluids, such as H;AsOY, H,AsO5, HAsO?  and
AsO3~, whereas As(V) species are only found in
oxidizing near-surface environments (e.g.
Ballantyne and Moore, 1988; Krupp and
Seward, 1990; Akinfiyev ef al., 1992; Pokrovski
et al., 1996; Wood and Samson, 1998). Similarly,
the deep-sourced thermal spring system at the
southern margin of the Rhenish Massif, Germany,
which can be considered as a modern analogue of
the basement-derived post-Variscan mineralizing
fluids, contains significant concentrations of
As(II) species (Schwenzer et al., 2001). The
experimental and analytical evidence, combined
with the lithological and structural setting of the
Bieber Co-Ni-Bi ore deposits, make it plausible
that thermochemical reduction processes as a
consequence of interaction between metal-bearing
hydrothermal fluids and the organic-rich
hostrocks of the Kupferschiefer resulted in the
deposition of Co-Ni-arsenides, Co-Ni sulpharse-
nides and native Bi.

Age of mineralization

Although no direct radiometric dating of the Co-
Ni-Bi assemblage has been carried out, the
available age data (Hautmann et al., 1999) from
multiple-stage vein mineralization in the nearby
Sailauf rhyolite complex can be used to place
some constraints on the timing of the Bieber
deposit. The mineralization sequence of the
Sailauf rhyolite comprises a complex succession
of Fe and Mn oxides/carbonates and arsenates as
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well as different generations of white mica. The
relative age relationships between different
generations of Fe-Mn oxides and the major
generation of baryte in the Spessart district
(corresponding to baryte I of the Bieber deposit)
have been established, based on detailed textural
investigation. Manganite and a first generation of
braunite predate the deposition of tabular baryte,
which has been subsequently overgrown by
specularitic hematite and hausmannite. The
onset of mineralization in the vein systems of
the Sailauf rhyolite was at 178—180 Ma (illite,
K-Ar), whereas several stages of deposition of
oxide minerals and micas have been dated
between 161 and 98 Ma (Hautmann et al.,
1999), using K-Ar (illite, celadonite) and
(U+Th)-He chronometry (oxides). The first
generation of braunite (pre-baryte) has an
(U+Th)-He age of 157—161 Ma, whereas the
specularitic hematite (post-baryte) has been dated
at 136—148 Ma; hausmannite yields an age of
~130 Ma (Hautmann et al., 1999). Taking these
radiometric age data as a basis, the onset of
hydrothermal mineralization in the baryte veins of
the Spessart (including the Bieber deposit) must
have occurred at ~150—160 Ma. The duration of
the hydrothermal activity is presently unknown,
but the observed multiple brecciation and
deposition events indicate repeated hydrothermal
pulses. The minimum age obtained from compar-
ison with the radiometric data of the mineraliza-
tion in the Sailauf rhyolite coincides well with
other radiometric ages of post-Variscan vein-type
mineralization styles in Central Europe. Several
recent studies show that extensional tectonic
movements during the Triassic to Late Jurassic
were accompanied by strong hydrothermal
activity (e.g. Halliday and Mitchell, 1984;
Haack and Lauterjung, 1993; Hagedorn and
Lippolt, 1993; Wernicke and Lippolt, 1995,
1997a, 1997bh). The framework of available
radiometric age data allows us to place the
formation of the Bieber Co-Ni-Bi deposit into a
common model of Mesozoic mineralization in
Central Europe.
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