Metavivianite, $Fe^{2+}Fe^{3+}_2(PO_4)_2(OH)_2 \cdot 6H_2O$: new data and formula revision

N. V. Chukanov^{1,*}, R. Scholz², S. M. Aksenov³, R. K. Rastsvetaeva³, I. V. Pekov⁴, D. I. Belakovskiv⁵, K. Krambrock⁶, R. M. Paniago⁶, A. Righi⁶, R. F. Martins⁶, F. M. Belotti⁷ and V. Bermanec⁸

¹ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region 142432, Russia

- ² Federal University of Ouro Preto (UFOP), Mining School, Geology Department, Ouro Preto, Minas Gerais, Brazil
- ³ Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow 117333, Russia

⁴ Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991 Russia

- ⁵ Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow 119071, Russia
- ⁶ Federal University of Minas Gerais (UFMG), ICEx, Physics Department, Belo Horizonte, Minas Gerais, Brazil
- ⁷ Federal University of Itajubá (UNIFEI), Campus Itabira, Itabira, Minas Gerais, Brazil
- ⁸ Geological Department, Faculty of Sciences and Mathematics, University of Zagreb, Zagreb, Croatia

[Received 4 March 2012; Accepted 22 April 2012; Associate Editor: Stuart Mills]

ABSTRACT

The composition, structure, X-ray powder diffraction pattern, optical properties, density, infrared, Raman and Mössbauer spectra, and thermal properties of a homogeneous sample of metavivianite from the Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil are reported for the first time. Metavivianite is biaxial (+) with $\alpha = 1.600(3)$, $\beta = 1.640(3)$, $\gamma = 1.685(3)$ and $2V_{meas} = 85(5)^{\circ}$. The measured and calculated densities are $D_{meas} = 2.56(2)$ and $D_{calc} = 2.579$ g cm⁻³. The chemical composition, based on electron-microprobe analyses, Mössbauer spectroscopy (to determine the Fe²⁺:Fe³⁺ ratio) and gas chromatography (to determine H₂O) is MgO 0.70, MnO 0.92, FeO 17.98, Fe₂O₃ 26.60, P₂O₅ 28.62, H₂O 26.5; total 101.32 wt.%. The empirical formula is $(Fe_{1.43}^{3+}Fe_{1.23}^{2}Mg_{0.085}Mn_{0.06})_{\Sigma3,015}(PO_4)_{1.98}(OH)_{1.72}$ ·6.36H₂O. Metavivianite is triclinic, $P\overline{1}$, a = 7.989(1), b = 9.321(2), c = 4.629(1) Å, $\alpha = 97.34(1)$, $\beta = 95.96(1)$, $\gamma = 108.59(2)^{\circ}$, V = 320.18(11) Å³ and Z = 1. The crystal structure was solved using a single-crystal techniques to an agreement index R = 6.0%. The dominant cations in the independent sites are Fe²⁺ and Fe³⁺, with multiplicities of 1 and 2, respectively. The simplified crystal-chemical formula for metavivianite is $Fe^{2+}(Fe^{3+},Fe^{2+})_2(PO_4)_2(OH,H_2O)_2 \cdot 6H_2O$; the endmember formula is $Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O$, which is dimorphous with ferrostrunzite.

KEYWORDS: metavivianite, formula revision, crystal chemistry, Minas Gerais, Brazil.

Introduction

METAVIVIANITE has a complex history. It was discovered at the Big Chief mine, near Glendale, South Dakota, USA and was originally thought to be dimorphous with vivianite, $Fe_3(PO_4)_2 \cdot 8H_2O$,

* E-mail: chukanov@icp.ac.ru DOI: 10.1180/minmag.2012.076.3.20 and isostructural with symplesite, Fe₃(AsO₄)₂·8H₂O (Ritz *et al.*, 1974). The original description was based on a heterogeneous sample and is incomplete. The density was not measured due to the presence of impurities and the hardness was not determined. Although most of the crystals in the sample were described as either opaque or translucent, the optical properties of rare pale grains were reported, resulting in incorrect values for the refractive indices. The original infrared (IR) data is now known to include contributions from disordered phases such as X-ray amorphous santabarbaraite, $Fe_3^{3+}(PO_4)_2(OH)_3$, $5H_2O$, and does not correspond to pure vivianite and metavivianite. No separate analyses for Fe^{2+} and Fe^{3+} and no determination of H_2O was made. The crystal structure was considered to be similar to symplesite on the basis of similarities in the Xray powder-diffraction patterns, but no singlecrystal studies were attempted.

Subsequent investigations have shown that metavivianite contains Fe^{3+} and that it is not dimorphous with vivianite (Dormann and Poullen, 1980; Dormann et al., 1982; Rodgers and Johnston, 1985; Rodgers, 1986). On the basis of Fe²⁺:Fe³⁺ ratios obtained from Mössbauer spectroscopy, Rodgers (1986) suggested the formula $Fe_{3-x}^{2+}Fe_x^{3+}(PO_4)_2(OH)_x \cdot (8-x)H_2O$ with x > 1.4. This formula is in much better agreement with the general composition of metavivianite, but it is written without regard to the two independent sites for iron in the structure (Dormann et al., 1982). Within the compositional limits (with xranging from 1.4 to almost 3), this formula includes two possible endmember compositions, which are either Fe^{2+} or Fe^{3+} -dominant, and it therefore represents two mineral species.

In this work, a pure monomineralic metavivianite sample from the Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil was investigated. We report detailed chemical data; a crystal structure analysis, with bond valence calculations for all sites; determinations of the optical characteristics and density; infrared, Raman and Mössbauer spectra; thermal analyses including thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA); and a complete X-ray powder diffraction pattern.

Geological setting, occurrence and general appearance

The Boa Vista mine is located in the municipality of Galiléia and is well known to mineralogists as a source of pegmatite phosphates (Cassedanne and Cassedanne, 1979). The mine is located in the Conselheiro Pena pegmatite district, a subdivision of the Eastern Brazilian Pegmatite province (EBP) which encompasses an area of about 150,000 km², extending from Bahia to Rio de Janeiro states (Pedrosa Soares *et al.*, 2011). About 90% of the province is situated in the eastern part of Minas Gerais. The Conselheiro Pena pegmatite district covers an area of about 5000 km² in the municipalities of Conselheiro Pena and Galiléia, in the Doce river basin, about 360 km northeast of Belo Horizonte.

The pegmatite district is a part of the central domain of the Araçuaí mobile belt (Almeida, 1977), which was formed during the Brasiliano orogeny (630–490 Ma) by accretion to the eastern margin of the São Francisco craton. In this area, several suites of granitic rocks (e.g. Urucum and Palmital of Eocambrian to Palaeozoic age, and Galiléia of Neoproterozoic age), intrude schistose rocks of the Neoproterozoic São Tomé Formation (Chaves *et al.*, 2005).

The São Tomé Formation and associated granites crop out along a north-south trending synclinorium with metasedimentary rocks dominating in the synclines and granitic intrusions in the adjacent anticlines. The granites, which are typically S-type and peraluminous, were generated during the syn-collisional stage of the Araçuaí orogen. Pegmatites (with ages of ~580 Ma; Nalini, 1997) are related to the G2 granite super-suite (Pedrosa-Soares *et al.*, 2001) and are common in the metasedimentary rocks.

The Boa Vista pegmatite is worked for industrial feldspar; gemstones and mineral specimens are a minor by-product. The pegmatite is heterogeneous with well developed mineralogical and textural zonation. It has an asymmetric lens shape with the long axis trending northwest—southeast and dips at about 65° to the northeast. The strike extension is up to about 80 m and the body is ~10 m thick. The pegmatite is hosted by quartz-mica schist of the São Tomé Formation which is tourmalinized at the contact. Hydrothermal and metasomatic processes have produced extensive albitization (Cassedanne and Cassedanne, 1978).

The primary assemblage includes quartz, muscovite, microcline, schorl, dravite, beryl, graftonite and triphylite. The secondary assemblage includes albite, Li-rich micas, Sn, Nb, W and Ta oxides, sulfides, siderite and a complex phosphate assemblage formed by the alteration of primary triphylite (Cassedanne and Cassedanne, 1978, 1982; Chaves *et al.*, 2005).

Secondary phosphates including heterosite, wolfeite, arrojadite, beryllonite, alluaudite, amblygonite, hydroxylherderite, vivianite, ludlamite, rockbridgeite, phosphosiderite and tavorite are common in miarolitic cavities and in metre-scale blocks that are formed by the alteration of primary triphylite (Cassedanne and Cassedanne, 1979). Bladed metavivianite crystals up to 3.0 cm along the *c* axis occur with siderite, ludlamite, albite and muscovite (Fig. 1). Fragments of a crystal of metavivianite \sim 2.0 cm in length were selected for this study. The crystal was extracted from a massive block where it was associated with siderite and ludlamite.

Physical properties

Metavivianite is translucent and very dark bluegreen, with a vitreous lustre. The streak is blue. It is brittle and the Mohs' hardness measured using calcite and gypsum as standards is $2\frac{1}{2}$. The cleavage is perfect on $(1\overline{10})$ and distinct in two directions across $(1\overline{10})$. The density measured by flotation in heavy liquids is 2.56(2) g cm⁻³; the calculated density is 2.579 g cm⁻³.

Optically, metavivianite is biaxial (+), with $\alpha = 1.600(3)$, $\beta = 1.640(3)$, $\gamma = 1.685(3)$, $2V_{meas} = 85(5)^{\circ}$ and $2V_{calc} = 89^{\circ}$. The dispersion is very strong, r < v. The optical orientation is $X \perp (1\overline{10})$; $Z^{\wedge}a = 33^{\circ}$. Pleochroism is very strong, with X (dark indigo blue) >> Y (light khaki green) $\ge Z$ (yellowish green). It seems probable that the refractive indices reported in the original description of metavivianite using atypical pale grains [$\alpha = 1.579(6)$, $\beta = 1.603(2)$, $\gamma = 1.629(2)$; Ritz *et al.*, 1974] refer in fact to admixed vivianite. If they are attributed to metavivianite, these parameters, produce a very poor Gladstone–Dale compatibility index (Mandarino, 1981) of about 0.14.

Vibrational (infrared and Raman) spectroscopy

Our initial infrared absorption spectra were recorded using powdered samples, which were mixed with anhydrous KBr, pelletized and

FIG. 1. A fragment of pegmatite with metavivianite from Boa Vista.

analysed using a Specord 75 IR spectrometer. The IR spectrum of a pure KBr disk was subtracted from the overall spectrum. The accuracy of the spectra in the ranges 3000-4000 and 1500-1800 cm⁻¹ was proved in a separate experiment using dry mineral oil as an immersion medium. Polystyrene and gaseous NH₃ were used as frequency standards. The precision of measurement is ± 1 cm⁻¹ and the mean resolution for the region 400-1600 cm⁻¹ is 0.8 cm⁻¹.

Absorption bands in the IR spectrum of metavivianite (Fig. 2), abbreviated as strong (s) and shoulder (sh), and their assignments, are as follows: 3350(s), 3240(s), 3145(s), 2850(sh), O–H stretching vibrations of H₂O molecules and OH groups; 2370, PO–H stretching; 1670, 1625, 1580(sh), bending vibrations of H₂O molecules; 1060(sh), 1024(s), 967(s), 945(sh), asymmetric stretching vibrations of PO₄³⁻ ions; 865(sh), 777, Fe···O–H bending and H₂O libration; 670(sh), 582(s), 560(sh), bending vibrations of PO₄³⁻ ions; and 475(sh) cm⁻¹ Fe–O stretching vibrations.

The IR spectra of vivianite and santabarbaraite are included in Fig. 2 for comparative purposes. The splitting of the asymmetric P–O stretching vibrations indicates a relatively strong distortion of the PO₄ tetrahedra. The presence of a shoulder at 2370 cm⁻¹, indicates the presence of trace amounts of HPO₄²⁻ ions in metavivianite as a result of the substitution PO₄³⁻ + H₂O \leftrightarrow HPO₄²⁻ + OH⁻. This is commonly observed in hydrous phosphates and arsenates (Pekov *et al.*, 2001). Analogous bands are present in the IR spectra of vivianite and santabarbaraite.

The Raman spectrum of metavivianite from the Boa Vista pegmatite was recorded at room temperature using a triple monochromator spectrometer (JY T64000) in backscatter configuration. Excitation was by an argon ion laser operating at a wavelength of 514.5 nm and a power of 10 mW. The spectrum (Fig. 3) is similar to the vivianite spectrum reported by Frost et al. (2004), but not to their metavivianite spectrum. The positions and intensities of the Raman bands, abbreviated as strong (s), medium (m) and weak (w), are as follows: 8 lines in region A at 143(m), 166(m), 197(m), 236(m), 256(m), 289(m), 322(m) and 374(w) cm⁻¹; 3 lines in region B at 461(m), 506(s) and 579(m) cm⁻¹; 3 lines in region C at 970(s), 1022(m) and 1089(w) cm⁻¹; 5 lines in region D at 3194(s), 3257(s), 3299(s), 3378(s) and $3431(s) \text{ cm}^{-1}$.

FIG. 2. Infrared spectra of metavivianite and related minerals. (a) Infrared spectrum of metavivianite from Boa Vista. (b) Infrared spectrum of vivianite from the Kamysh-Burun deposit, Kerch peninsula, Crimea, Ukraine. (c) Infrared spectrum of santabarbaraite from the Kamysh-Burun deposit, Kerch peninsula, Crimea, Ukraine. Ranges for different H-bearing groups are indicated.

FIG. 3. The Raman spectrum of metavivianite from Boa Vista showing the four principal regions (A–D) of interest.

By analogy with vivianite, the strong band at 970 cm⁻¹ corresponds to the symmetric stretching mode of PO_4^{3-} ions, and the bands about 1022 and 1089 cm⁻¹ correspond to asymmetric P-O stretching vibrations. Numerous bands at wavenumbers lower than 580 cm^{-1} correspond to bending vibrations of PO_4^{3-} ions combined with Fe–O stretching and H₂O libration; unambiguous assignments could not be made based on the available data. The Raman spectrum of metavivianite from the Boa Vista pegmatite has O-H stretching bands at 3194, 3257, 3299, 3378 and 3431 cm^{-1} , the latter being the most intense. All the bands observed in this region correspond to hydroxyl groups and water molecules forming hydrogen bonds.

The Raman spectrum of metavivianite reported by Frost *et al.* (2004) contains broad poorly resolved bands of low intensity, which are characteristic of amorphous substances. In this context it is worthwhile noting that metavivianite is commonly admixed with an amorphous secondary Fe^{3+} phosphate (see below).

Mössbauer spectroscopy

The Mössbauer spectrum was recorded at room temperature in the Physics Department of the Federal University of Minas Gerais, using a spectrometer with a 57 Co/Rh (50 mCi) source and a drive operating at constant acceleration. A thin metallic iron foil (α -Fe) was used as a calibration. The *NORMOS* program (Brand, 1987) was used to fit the spectrum.

The Mössbauer spectrum of metavivianite from the Boa Vista pegmatite (Fig. 4) contains two doublets, which correspond to octahedrally coordinated Fe^{2+} and Fe^{3+} , in the ratio 43:57. Due to the absorber thickness effect, which reduces the accuracy of the relative ferrous and ferric fractions obtained from the Mössbauer spectrum, the uncertainty is estimated to be ~2%. Hyperfine parameters and the sub-spectral areas are listed in Table 1. Additional doublets have been reported in Mössbauer spectra of metavivianite (Dormann and Poullen, 1980; Rodgers and Johnston, 1985, Rodgers, 1986) and partially oxidized vivianite (Marincea *et al.*,

FIG. 4. Mössbauer spectrum of metavivianite from Boa Vista. Filled circles are experimental data; open circles are the fitted Fe^{2+} subspectrum; open squares are the fitted Fe^{3+} subspectrum.

1997), but these were not detected in the Mössbauer spectrum of the sample from Boa Vista.

Thermal data and chemical composition

Thermal data for metavivianite were obtained using a Shimadzu analyser in a nitrogen atmosphere at a gas flow rate of 50 cm³ min⁻¹. Differential thermal analysis (DTA) and thermogravimetric (TG) and differential thermogravimetric (DTG) analyses were carried out simultaneously; 10 mg of sample was heated in an open platinum crucible at a rate of 10.0° C min⁻¹ up to a temperature of 950°C.

The TG curve (Fig. 5) of metavivianite shows a total mass loss of about 21% on heating to 950°C. The DTG curve has two main maxima, one centred

at about 152.5°C and the other at 185.6°C, these are probably due to loss of loosely bound water molecules. The total mass loss of 21% corresponds to about 6 water molecules p.f.u. The discrepancy between the total mass loss of 21% by TG and the H₂O content determined by gas chromatography at 1200°C (26.5 wt.%, see below) can be explained by the loss of hydroxyl groups above 950°C. The IR spectrum of vivianite heated to 800°C contains a strong band corresponding to O-H-stretching vibrations, whereas the H-O-H bending vibrations have a very low intensity (Pei-lin Tien and Waugh, 1969). The oxidation of iron in a reaction with H₂O or OH⁻ (self-oxidation after Frost et al., 2004), can be represented by the following simplified schemes:

$$2Fe^{2+} + H_2O \rightarrow 2Fe^{3+} + (O^{2-})_{solid} + H_2\uparrow \\ 2Fe^{2+} + 2OH^- \rightarrow 2Fe^{3+} + 2(O^{2-})_{solid} + H_2\uparrow$$

TABLE 1. Ch	aracteristics of	of the	Mössbauer	spectrum	of	iron	in	metavivianite	from	Boa	Vista.
-------------	------------------	--------	-----------	----------	----	------	----	---------------	------	-----	--------

Doublet	Isomer shift $\delta \text{ (mm s}^{-1}\text{)}$	Quadrupole splitting $\Delta \text{ (mm s}^{-1}\text{)}$	Area (%)	Valency
1	1.20	3.025	43	Fe ²⁺
2	0.42	0.865	57	Fe ³⁺

FIG. 5. The TG, DTG and DTA curves of metavivianite from room temperature to 950°C.

In the course of gas chromatography, the evolved hydrogen would be oxidized by atmospheric oxygen and determined as H_2O . The second scheme (with OH^-) is more probable taking into account the low weight loss and the presence of a broad maximum on the DTA curve

(that may indicate the self-oxidation process) in the temperature range 300 to 800°C. Manganese can oxidize (to Mn^{3+} or, more probably, to Mn^{4+}) in a similar way.

Electron-microprobe analyses were carried out using a VEGA TS 5130MM SEM equipped with an EDX analyser (INCA Si(Li) detector) at an accelerating voltage of 15.7 kV and a beam current of 0.5 nA. The electron beam was rastered over an area of 16×16 µm. This type of analysis was chosen due to the instability of metavivianite under the electron beam. Attempts to analyse metavivianite using wavelengthdispersive spectrometry were unsuccessful due to its instability at even the smallest probe current (10 nA). Water was determined by gas chromatography of the products of annealing at 1200°C; CO₂ was not analysed by this method as bands corresponding to vibrations of C-O bonds are absent in the IR spectrum. Iron was apportioned between FeO and Fe₂O₃ on the basis of the Mössbauer data. Other elements including F, Na, Al, Si, S, Cl, Ca, Ti, Cr, Co and Ni were sought, but were below detection limits. Analytical results are given in Table 2. The charge-balanced empirical formula of metavivianite (calculated on the basis of 16 oxygen atoms) is $(Fe_{1,64}^{3+}Fe_{1,23}^{2+}Mg_{0.085}Mn_{0.06})_{\Sigma 3.015}$ $(PO_4)_{1.98}(OH)_{1.72} \cdot 6.36H_2O$. The simplified formula, taking into account structural data (see below), can be written $Fe^{2+}(Fe^{3+},Fe^{2+})_2(PO_4)_2$ (OH,H₂O)₂·6H₂O. The Gladstone-Dale compatibility index, $1 - (K_P/K_c)$, (Mandarino, 1981) calculated from the empirical formula is 0.043 (good) using D_{calc} and 0.035 (excellent) using $D_{\rm meas}$.

TABLE 2. Composition of metavivianite from Boa Vista based on five electron-microprobe analyses.

Constituent	Content (wt.%)	Range	Analytical standard
MgO	0.70	0.59-0.88	Diopside
MnO	0.92	0.77 - 1.04	Mn metal
FeO*	17.98		Natural Fe ₂ O ₃
$Fe_2O_3^*$	26.60	41.96-42.86**	2 9
P ₂ 0 ₅	28.62	28.37-28.82	Synthetic LaPO ₄
H ₂ O***	26.5(5)		-
Fotal	101.32		

* Total iron content analysed as FeO is 42.33 wt.% and is divided between FeO and Fe_2O_3 based on the Mössbauer data.

** For total iron measured as FeO.

*** H₂O determined by gas chromatography.

X-ray diffraction study and crystal structure determination

The X-ray powder diffraction data for metavivianite (Table 3) were collected on a STOE IPDS II single-crystal diffractometer equipped with an image plate detector (Mo $K\alpha$ radiation) using the Gandolfi method. These data were indexed on the triclinic unit cell found by single-crystal studies. The unit-cell parameters refined from the powder

$I_{\rm obs}^{\dagger}$	$d_{\rm obs}$	I _{calc} *	d _{calc} **	h k l
40	8.72	37	8.705	010
9	7.53	9	7.482	100
100	6.95	100	6.947	110
32	4.926	24	4.915	110
19	4.351	3, 8	4.352, 4.338	020, 011
12	4.206	5	4.174	101
8	3.983	6	3.954	210
34	3.804	11, 9, 11	3.810, 3.787, 3.768	Ī11, 1Ī1, 011
11	3.658	7	3.639	101
2	3.453	1	3.449	021
2	3.319	1, 1	3.327, 3.309	121, 120
23	3.060	2, 14	3.077, 3.047	130, 111
24	2.974	22	2.967	121
24	2.776	12, 8	2.767, 2.749	<u>2</u> 21, 2 <u>2</u> 1
12	2.679	4, 2, 6	2.698, 2.690, 2.659	131, 201, 031
3	2.589	2	2.569	320
14	2.454	10, 5	2.452, 2.433	121, 231
9	2.346	4, 1, 3	2.353, 2.343, 2.328	211, 301, 231
8	2.315	5	2.308	140
8	2.184	3, 1, 5	2.182, 2.182, 2.178	321, 311, 141
5	2.156	2, 1	2.160, 2.152	112, 112
3	2.109	2	2.107	041
6	2.070	4, 2	2.068, 2.057	<u>3</u> 31, 3 <u>3</u> 1
4	2.004	2, 1	2.002, 1.995	221, 131
3	1.954	1, 1	1.958, 1.956	122, 032
6	1.919	5	1.920	112
5	1.898	3, 1	1.899, 1.894	212, 411
5	1.857	3, 2	1.860, 1.851	222, 132
6	1.833	3	1.831	401
6	1.822	5	1.823	302
8	1.740	3, 5, 4	1.741, 1.738, 1.737	050, 142, 440
5	1.714	4, 3	1.720, 1.714	232, 410
6	1.650	1, 2, 3, 3	1.655, 1.655, 1.654, 1.643	032, 240, 322, 401
4	1.630	2, 2	1.638, 1.625	330, 151
2	1.591	3	1.588	412
3	1.547	2, 1	1.550, 1.549	421, 521
5	1.528	2, 2	1.524, 1.521	222, 132
3	1.486	2, 3	1.491, 1.484	123, 242
3	1.478	2	1.473	332
2	1.457	1, 1	1.456, 1.453	061, 361
1	1.446	1	1.449	013
4	1.388	1, 4, 1, 1	1.390, 1.389, 1.383, 1.383	223, 550, 442, 223

TABLE 3. X-ray powder diffraction data for metavivianite from Boa Vista.

[†] The seven strongest lines are indicated in bold face.

* In the calculated X-ray pattern, only reflections with intensities ≥ 1 are given.

** For the unit-cell parameters calculated from single-crystal data.

data (using the *KRIST* program, least-squares method) are a = 8.00(1), b = 9.35(7), c = 4.62(4) Å, $\alpha = 97.3(2)$, $\beta = 96.0$ (2), $\gamma = 108.5(2)^{\circ}$ and V = 321(2) Å³.

Our X-ray powder diffraction pattern is a significant improvement on the data reported by Ritz *et al.* (1974) and Sameshima *et al.* (1985). It has more reflections and the *d* spacings and intensities are in good agreement with the calculated structural data.

The crystal structure of an Fe³⁺-rich mineral related to metavivianite was solved by Dormann *et al.* (1982), but with a high *R* factor of 13.3%. The Fe²⁺:Fe³⁺ ratio of 0.176 in this sample, which was described using the name metavivianite, is much lower than that in metavivianite from the type locality (0.613; Rodgers and Johnston, 1985). The crystal structure of metavivianite was investigated in the present work for these reasons.

Single-crystal X-ray studies of metavivianite from Boa Vista were carried out using an Xcalibur S diffractometer with a CCD detector. Details of data collection and structure refinement are given in Table 4. The crystal structure of metavivianite (Figs 6–8) was solved by the 'charge flipping' method using *Jana2006* (Petricek *et al.*, 2006) and refined in space group $P\overline{I}$ to an *R* value of 6.0% for 1350 independent reflections with $|F_{obs}| > 3\sigma(F)$. Final atom parameters for metavivianite are given in Table 5, and interatomic distances in Table 6. The relatively high R value is due to the poor quality of the crystals. A crystallographic information file has been deposited with the Principal Editor of *Mineralogical Magazine* and is available at www.minersoc.org/pages/e_journals/ dep mat.html.

The metavivianite structure consists of heteropolyhedral layers which are coplanar with (110). Each layer contains double Fe^{3+} -centred octahedral groups $[Fe_2^{3+}O_6(H_2O,OH)_4]$ and isolated Fe^{2+} -centred octahedra $[Fe^{2+}O_2(H_2O)_4]$ connected via $[PO_4]$ tetrahedra. The layers are linked by hydrogen bonds between H_2O molecules and hydroxyl groups.

The hydrogen atoms were not located in the structural analysis, but the distances between some of the O atoms suggest the existence of strong hydrogen bonds formed by H₂O and OH⁻ with each other and with PO₄³⁻ groups. According to Brown (1976), the bond-valence contributions of hydrogen bonds are dependent on the O–O distances and they are as follows: 0.2 for W1-W4 (2.74 Å), 0.18 for W1-O2 (2.8 Å), 0.22 for W4-O3 (2.72 Å), 0.18 for W2-W3 (2.79 Å), 0.20 for W2-O1 (2.74 Å) and 0.22 for W3-O1 (2.70 Å). These values are listed in Table 7. On the basis of the values we assume that the W1 and W3 sites contain OH groups as well as water molecules.

TABLE 4. Crysta	l structure,	data collection	and refinemer	nt details for	metavivianite	from Boa	Vista.
2							

Chemical formula	$Fe^{2+}Fe^{3+}_2(PO_4)_2(OH)_2\cdot 6H_2O$
a, b, c (Å)	7.989(1), 9.321(2), 4.629(1)
α, β, γ (°)	97.34(1), 95.96(1), 108.59(2)
$V(A^3)$	320.2(1)
Space group	$P\overline{1}$
Z	1
$\mu (mm^{-1})$	3.689
F(000)	236
D_{calc} (g cm ⁻³)	2.5048
Crystal dimensions (mm)	$0.23 \times 0.23 \times 0.17$
Radiation	ΜοΚα
$\theta_{\rm max}$	55.95
R _{int}	0.096
Reflection collected $ F_{all} $	7242
Unique reflection $ F_{obs} > 3\sigma F $	1350
GooF	1.04
Final R value $(\%)^*$	6.0
wR (%)*	6.5

* Refinement was by a full-matrix least squares fit on F^2 using the weighting scheme $w = 1/(\sigma^2(F) + 0.0016810001F^2)$.

N. V. CHUKANOV ET AL.

FIG. 6. The crystal structure of metavivianite from Boa Vista, (001) projection.

The O–O distances listed above are in good agreement with those estimated from the correlation between O–H stretching frequencies and O–H···O hydrogen bond lengths (Libowitzky, 1999) from 2.62 to 2.77 (based on IR absorption data) and from 2.70 to 2.82 Å (based on Raman shifts). The latter values are more precise because the widths of the bands in the Raman spectrum are lower than that in the IR spectrum.

The refined crystal-chemical formula of metavivianite (Z = 1) is $[(Fe_{0.4}^{3+}Mn_{0.06})(H_2O)_4]$ $[(Fe_{0.32}^{3+}Ee_{0.14}^{2+}Mg_{0.04})_2(H_2O,OH)_4][PO_4]_2$. The distribution of cations between different octahedral sites was calculated on the basis of the $Fe^{2+}:Fe^{3+}$ ratio of 43:57, obtained from the Mössbauer spectrum, interatomic distances (Table 6) and the results of bond-valence calculations (Table 7).

FIG. 7. Mixed octahedral-tetrahedral layer in the crystal structure of metavivianite from Boa Vista.

FIG. 8. The crystal structure of metavivianite from Boa Vista, (111) projection.

Discussion

On the basis of available data, Rodgers (1986) cast doubt on the homogeneity of some of the

investigated metavivianite samples, including the type material (Ritz *et al.*, 1974) from the Big Chief pegmatite, South Dakota. The existence of an

TABLE 5. Fractional coordinates, site multiplicities (Wyckoff) and equivalent displacement parameters U_{eq} (Å²) for metavivianite from Boa Vista.

Site	x/a	y/b	z/c	Wyckoff	$U_{ m eq}$
Fe1	0.5	0.5	0	1g	0.0112(4)
Fe2	0.1305(1)	-0.0845(1)	-0.5020(2)	2i	0.0117(3)
Р	0.1888(2)	0.1768(2)	0.0579(3)	2i	0.0098(4)
01	0.045(1)	0.219(1)	-0.129(1)	2i	0.013(1)
02	0.257(1)	0.064(1)	-0.129(1)	2i	0.013(1)
03	0.343(1)	0.324(1)	0.189(1)	2i	0.015(1)
O4	0.105(1)	0.101(1)	0.312(1)	2i	0.013(1)
O <i>W</i> 1	0.351(1)	-0.080(1)	-0.678(1)	2i	0.024(2)
OW2	0.259(1)	0.477(1)	0.697(1)	2i	0.020(2)
OW3	0.137(1)	-0.275(1)	-0.310(1)	2i	0.028(2)
OW4	0.560(1)	0.342(1)	0.696(1)	2i	0.020(2)

N. V. CHUKANOV ET AL.

—— Th	iis work ——	Calculated from the data of Dormann <i>et al.</i> (1982)			
Fe1-O3	2.075(4) ×2	Fe1-O3	1.977(22) × 2		
-OW4	$2.111(5) \times 2$	-04	$1.991(18) \times 2$		
-OW2	$2.196(5) \times 2$	-06	$2.012(18) \times 2$		
Mean	2.127	Mean	1.994		
Fe2-OW1	2.010(6)	Fe2-O1	2.016(16)		
-02	2.015(4)	-08	2.021(23)		
-01	2.072(4)	-02	2.063(15)		
-04	2.084(5)	-05	2.080(22)		
-OW3	2.093(6)	-07	2.123(18)		
-04	2.127(5)	-07	2.149(18)		
Mean	2.067	Mean	2.075		
P-O3	1.525(4)	P-O1	1.517(22)		
-02	1.541(5)	-O2	1.520(20)		
-01	1.546(5)	-03	1.531(16)		
-04	1.551(5)	-07	1.532(17)		
Mean	1.541	Mean	1.525		

TABLE 6. Bond lengths (Å) for metavivianite.

oxidation series vivianite \rightarrow metavivianite \rightarrow santabarbaraite was subsequently established by Pratesi *et al.* (2003). Naturally oxidized vivianite samples are often heterogeneous and they commonly contain two or even all three of these minerals. This may account for the inconsistencies in earlier publications. In particular, the optical data reported by Ritz *et al.* (1974) on the palest grains (extracted from a heterogeneous sample) are identical to those of non-oxidized vivianite; and the second Fe³⁺ doublet in the Mössbauer spectra (reported by Dormann and Poullen, 1980; Marincea *et al.*, 1997) is probably produced by admixed santabarbaraite, Fe³⁺₃(PO₄)₂(OH)₃·5H₂O. Note that the homogeneity of metavivianite before its structural investigation by Dormann and Poullen (1982) was checked by X-ray diffraction, but this technique would not reveal admixtures of amorphous santabarbaraite. The existence of homogeneous metavivianite with $Fe^{3+}:Fe^{2+} =$ 2.9:0.1 (Dormann and Poullen, 1980; Rodgers and Johnston, 1985) is even more questionable.

Santabarbaraite is an amorphous phase produced by the transformation (oxidation) process described by Pratesi *et al.* (2003), it is trimorphous with ferristrunzite and allanpringite (crystalline Fe³⁺ phosphates that are isostructural with strunzite and wavellite, respectively).

TABLE 7. Bond-valence calculations for metavivianite from Boa Vista.

Site	01	02	O3	O4	O <i>W</i> 1	O <i>W</i> 2	OW3	O <i>W</i> 4	ΣV_i
Fe1			0.40 (×2	2)→		0.29 (×2)- 0.29	\rightarrow	$\begin{array}{c} 0.36 \ (\times 2) \rightarrow \\ 0.36 \\ \end{array}$	2.1
Fe2 P	0.43 1.21	0.50 1.23	1.28	$\begin{array}{c} (0.41 + 0.37) \downarrow \rightarrow \\ 1.19 \end{array}$	0.51	· · · · ·	0.41	v	2.63 4.91
ΣV_i^*	1.64 (0.42)	1.73 (0.18)	1.68 (0.22)	1.97	0.51 (0.2)	0.29 (0.18)	0.41 (0.18)	0.36 (0.2)	

* Bond valences for anions are supplemented by contributions (in brackets) due to hydrogen bonding from the hydrogen atoms of H_2O molecules.

Investigations using a polarizing microscope showed that our sample from the Boa Vista pegmatite does not contain any admixed amorphous phase and the Mössbauer spectrum of this sample contains only one doublet for Fe^{3+} .

Bond-valence calculations for our metavivianite sample (Table 7) show that Fe^{2+} and Fe^{3+} are the dominant components in the Fe1 and Fe2 sites, respectively. Therefore, the idealized (endmember) formula is $Fe^{2+}Fe_2^{3+}(PO_4)_2$ (OH)₂·6H₂O and not Fe₃(PO₄)₂·8H₂O or $(Fe^{2+}, Fe^{3+})_3(PO_4)_2 \cdot 8H_2O$, as reported previously (Ritz et al., 1974; Back and Mandarino, 2008). The formula $Fe_{3-x}^{2+}Fe_{x}^{3+}(PO_{4})_{2}(OH)_{x}(8-x)H_{2}O$, x > 1.4 (Rodgers, 1986) is misleading because it represent two possible endmember compositions (Fe^{2+} - and Fe^{3+} -dominant) and does not reflect the presence of two independent sites with different occupancies in the crystal structure. The formula $(Fe^{2+}, Fe^{3+})_3(PO_4)_2(OH)_2 \cdot 8H_2O$ is also given in the IMA list of mineral species and should be amended. On the basis of our data, endmember metavivianite is dimorphous with ferrostrunzite.

The crystal structure of strunzite, $Mn^{2+}Fe_2^{3+}(PO_4)_2(OH)_2\cdot 6H_2O$, (Fig. 9) was investigated by Fanfani *et al.* (1978). Ferrostrunzite, $Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2\cdot 6H_2O$, is considered to be the Fe^{2+} -analogue of strunzite (Peacor *et al.*, 1983; Hawthorne, 1998; Frost *et al.*, 2002). The atomic arrangement of strunzite-group minerals (strunzite, ferrostrunzite and ferristrunzite) consists of chains of Fe coordination octahedra sharing vertices; PO₄ tetrahedra link together adjacent octahedra. Parallel chains are connected by PO_4 groups to form thick slabs. Parallel slabs are connected by isolated Mn^{2+} -, Fe^{2+} - or Fe^{3+} centred coordination octahedra, to form a heteropolyhedral framework (Fig. 10).

Unlike ferrostrunzite, metavivianite is a 'transformational' mineral species which is formed as a result of the natural oxidation of vivianite. Rodgers (1986) showed that the transition to the triclinic structure takes place when the Fe^{3+} content exceeds 1.4 p.f.u. The crystal structure of vivianite (Fig. 11) is related to that of metavivianite but differs in the shifting of heteropolyhedral layers.

Metavivianite from the type locality has an $Fe^{2+}:Fe^{3+}$ ratio of 0.615 (Rodgers and Johnston, 1985). If the Fe^{3+} is concentrated in the Fe1 site and minor Mn is present in the Fe2 site, this sample has the same general formula, $(Fe^{2+},Mn^{2+})(Fe^{3+},Fe^{2+})_2(PO_4)_2(OH,H_2O)_2\cdot 6H_2O$, as our sample from Boa Vista.

Dormann *et al.* (1982) investigated a triclinic mineral which is isostructural with metavivianite from the Kamysh-Burun deposit, Kerch iron-ore basin, Crimea, Ukraine, described as α -kerchenite. The Mössbauer spectrum of this mineral indicates an Fe²⁺:Fe³⁺ ratio of 15:85, which would mean that Fe³⁺ is the dominant component in both the Fe1 and Fe2 sites, a conclusion which is supported by the shorter Fe1–O distances in comparison to our sample from Boa Vista (Table 6). The dominance of Fe³⁺ in both the Fe1 and Fe2 sites in the sample investigated by

FIG. 9. The crystal structure of strunzite-type minerals, (001) projection. In ferrostrunzite, the Fe3-octahedron is occupied predominantly by Fe²⁺.

N. V. CHUKANOV ET AL.

FIG. 10. Heteropolyhedral layer in the structures of strunzite and ferrostrunzite.

Dormann *et al.* (1982) is in agreement with bondvalence calculations (Table 8). Therefore, α -kerchenite is probably a distinct mineral species and not metavivianite, although its homogeneity and the absence of admixed amorphous phases such as santabarbaraite would need to be confirmed. A hypothetical mineral species with the endmember formula $Fe_3^{3+}(PO_4)_2(OH)_3 \cdot 5H_2O$ would be isostructural with metavivianite and (in its idealized

FIG. 11. The crystal structure of vivianite based on the data of Mori and Ito (1950), (100) projection.

FORMULA REVISION OF METAVIVIANITE

Site	01	02	03	07	08	O6	05	O4	ΣV_i
Fe1			$\begin{array}{c} 0.55 (\times 2) \rightarrow \\ 0.55 \downarrow \end{array}$			$\begin{array}{c} 0.50 \ (\times 2) \rightarrow \\ 0.50 \downarrow \end{array}$		$\begin{array}{c} 0.53 \ (\times 2) \rightarrow \\ 0.53 \ \downarrow \end{array}$	3.16
Fe2 P	0.50 1.31	0.44 1.30	1 26	$(0.37 + 0.35) \downarrow \rightarrow 1.26$	0.49	•	0.42	•	2.57 5.13
ΣV_i	1.81	1.74	1.81	1.98	0.49	0.50	0.42	0.53	5.15

TABLE 8. Bond-valence calculations for α -kerchenite from Kamysh-Burun, Kerch, Crimea, Ukraine.

Calculated from the data of Dormann et al. (1982).

TABLE 9. Comparative data for metavivia	inite, vivianite and ferrostrunzite.
---	--------------------------------------

Mineral Idealized formula	Metavivianite $Fe^{2+}Fe^{3+}(PO_4)_2$	Vivianite $Fe_{2}^{2+}(PO_{4})_{2} \cdot 8H_{2}O$	Ferrostrunzite $Fe^{2+}Fe^{2+}_{2+}(PO_4)_2$
	$(OH)_2 \cdot 6H_2O$		$(OH)_2 \cdot 6H_2O$
Space group	$P\overline{1}$	C2/m	$P\overline{1}$ or $P\overline{1}$
a (Å)	7.989(1)	4.69-4.71	10.17-10.23
b (Å)	9.321(2)	13.43-13.44	9.77-9.78
c (Å)	4.629(1)	10.03-10.09	7.37-7.40
α (°)	97.34(1)	90	88.63-89.65
β(°)	95.96(1)	102.7-104.3	97.60-98.28
γ (°)	108.59(2)	90	117.26-117.60
Z	1	2	2
Strongest lines	8.72 (40)	7.93 (13)	8.94 (80)
in the X-ray	6.95 (100)	6.73 (100)	5.29 (100)
powder-	4.926 (32)	4.90 (12)	4.47 (30)
diffraction	3.804 (34)	4.081 (12)	4.33 (20)
pattern	3.060 (23)	3.210 (16)	3.452 (30)
d (Å) I (%)	2.974 (24)	2.985 (10)	3.277 (40)
	2.776 (24)	2.728 (9)	3.213 (30)
Strongest bands of the	3350, 3240, 3145, 1625,	3485, 3115, 1620, 1045,	3470, 3360, 3090, 1630, 1103,
IR spectrum $(cm^{-1})^*$	1024, 967, 777, 582	972, 939, 821, 564, 543, 466	1006, 584, 518
Optical data:			
α	1.600	1.579**	1.628
β	1.640	1.602**	1.682
γ	1.685	1.629**	1.724
Optical sign, 2V (°)	+85	+87 (calculated)	-80
Measured and	2.56	2.68	2.50
calculated density, $(g \text{ cm}^{-3})$	2.579	2.69	2.57
References	This work	Fejdi <i>et al.</i> (1980); Feklichev (1989); Rodgers <i>et al.</i> (1993).	Peacor <i>et al.</i> (1983); Coveney <i>et al.</i> (1984); van Tassel and de Grave (1992); our data on the IR spectrum.

* Shoulders are omitted.

** Lowest values for non-oxidized vivianite.

endmember formula presentation) polymorphous with santabarbaraite, ferristrunzite and allanpringite. Comparative data for metavivianite, vivianite and ferrostrunzite are given in Table 9.

Frost *et al.* (2004) proposed that the oxidation of vivianite may result in the formation of ferrostrunzite or ferristrunzite. However, this study and the available published data indicate that natural low-temperature oxidation of vivianite results in the transformation series vivianite \rightarrow partly oxidized vivianite \rightarrow metavivianite \rightarrow Fe³⁺-analogue of metavivianite \rightarrow santabarbaraite. The members of this series, except for X-ray amorphous santabarbaraite, have similar crystal structures which make the transformations easy.

Acknowledgements

This work was financially supported by Russian Foundation for Basic Research (grant no. 11-05-00397-a and 11-05-00407-a) and supported through the X-ray Diffraction Resource Centre of St Petersburg State University; R. Scholz is grateful for the FAPEMIG grant.CRA - APQ-03998-10. K. Krambrock thanks MCT/CT-Mineral/VALE/CNPq – Project CORGEMA II for grant 550319/2010-7. The authors are grateful to S.J. Mills, F. Cámara, F. Hatert and D. Green for valuable comments and corrections.

References

- Almeida, F.F.M. (1977) O Craton do São Francisco. Revista Brasileira de Geociências, 7, 349–364.
- Back, M.E. and Mandarino, J.A. (2008) Fleischer's Glossary of Mineral Species. The Mineralogical Record, Tucson, Arizona, USA, 344 pp.
- Brand, R.A. (1987) Improving the validity of hyperfine field distributions from magnetic alloys. *Nuclear Instruments and Methods*, **B28**, 398–416.
- Brown I.D. (1976) On the geometry of O-H...O hydrogen bonds. *Acta Crystallographica*, A32, 24-31.
- Cassedanne, J.P. and Cassedanne, J.O. (1978) Présence de wolframite dans une pegmatite près de Galiléia, (MG). Anais da Academia Brasileira de Ciências, 50, 89–93.
- Cassedanne, J.P. and Cassedanne, J.O. (1979) Les minéraux de la pegmatite de Boa Vista (MG) et leur gangue. Anais da Academia Brasileira de Ciências, 51, 311–326.
- Cassedanne, J.P. and Cassedanne, J.O. (1982) Présence de legrandite dans une pegmatite de Minas Gerais, Brésil. *The Canadian Mineralogist*, **20**, 87–89.
- Chaves, M.L.S.C., Scholz, R., Atencio, D. and

Karfunkel, J. (2005) Assembléias e paragêneses minerais singulares nos pegmatitos da região de Galiléia (Minas Gerais). *Geociências*, **24**, 143–161.

- Coveney R.M. Jr, Allen, A.V., Blankenship, J.C. and Simmons W.B. (1984) Hawleyite and phosphate minerals from Bethel Church, Indiana, including a second occurrence for ferrostrunzite. *Mineralogical Record*, 15, 351–357.
- Dormann, J. and Poullen, J.-F. (1980) Étude par spectroscopie Mössbauer de vivianites oxydées naturelles. *Bulletin de Minéralogie*, **103**, 633–639.
- Dormann, J., Gaspérin, M. and Poullen, J.-F. (1982) Étude structurale de la séquence d'oxydation de la vivianite Fe₃(PO₄)₂·8(H₂O). *Bulletin de Minéralogie*, **105**, 147–160.
- Fanfani, L., Tomassini, M., Zanazzi, P.F. and Zanzari. A.R. (1978) The crystal structure of strunzite, a contribution to the crystal chemistry of basic ferricmanganous hydrated phosphates. *Mineralogy and Petrology*, 25, 77–87.
- Fejdi, P., Poullen, J.-F. and Gasperin, M. (1980) Affinement de la structure de la vivianite Fe₃(PO₄)₂·8(H₂O). *Bulletin de Minéralogie*, **103**, 135–138.
- Feklichev, V.G. (1989) Diagnostic Constants of Minerals. Nedra, Moscow, 480 pp., [in Russian].
- Frost, R.L., Kloprogge, T., Martens, W.N. and Williams, P. (2002) Vibrational spectroscopy of the basic manganese, ferric and ferrous phosphate minerals: strunzite, ferristrunzite and ferrostrunzite. *Neues Jahrbuch für Mineralogie, Monatschefte*, **2002**, 481–496.
- Frost, R.L., Weier, M.L. and Lyon, W. (2004) Metavivianite, an intermediate mineral phase between vivianite, and ferro/ferristrunzite – a Raman spectroscopic study. *Neues Jahrbuch für Mineralogie, Monatshefte*, **2004**, 228–240.
- Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. *Mineralogical Magazine*, 62, 141–164.
- Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. *Monatshefte für Chemie*, **130**, 1047–1059.
- Mandarino, J.A. (1981) The Gladstone–Dale relationship: part IV. The compatibility concept and its application. *The Canadian Mineralogist*, **19**, 441–450.
- Marincea, S., Constantinescu, E. and Ladriere, J. (1997) Relatively unoxidized vivianite in limnic coal from Capeni, Baraolt Basin, Romania. *The Canadian Mineralogist*, 35, 713–722.
- Mori, H. and Ito, T. (1950) The structure of vivianite and symplesite. Acta Crystallographica, 3, 1–6.
- Nalini H.A. Jr (1997) Caractérisation des suites magmatiques néoprotérozoïques de la region de Conselheiro Pena et Galiléia (Minas Gerais,

Brésil). Unpublished PhD thesis, Ecole Nationale Superieure des Mines de Saint Étienne, Saint Étienne, France, 237 pp.

- Peacor, D.R., Dunn, P.J. and Simmons, W.B. (1983) Ferrostrunzite, the ferrous iron analogue of strunzite from Mullica Hill, New Jersey. *Neues Jahrbuch für Mineralogie, Monatshefte*, **1983**, 524–528.
- Pedrosa-Soares, A.C., Noce, C.M., Wiedemann, C.M. and Pinto, C.P. (2001) The Araçuaí-West Congo orogen in Brazil: an overview of a confined orogen formed during Gondwanaland assembly. *Precambrian Research*, **110**, 307–323.
- Pedrosa-Soares, A.C., Campos, C.M. De, Noce, C.M., Silva, L.C. da, Novo, T.A., Roncato, J., Medeiros, S.M., Castañeda, C., Queiroga, G.N., Dantas, E., Dussin, I.A. and Alkmim, F. (2011) Late Neoproterozoic-Cambrian granitic magmatism in Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. *Geological Society Special Publication*, 350, 25-51.
- Pekov, I.V., Vinogradova, R.A., Chukanov, N.V. and Kulikova, I.M. (2001) On magnesium and cobalt arsenates of the fairfieldite and roselite groups. *Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva*, **130**, 10–23, [in Russian].
- Pen-li Tien and Waugh, T.C. (1969) Thermal and X-ray studies on earthy vivianite in Graneros Shale (Upper Cretaceous), Kansas. *American Mineralogist*, 54, 1355–1362.

- Petricek, V., Dusek, M. and Palatinus, L. (2006) Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.
- Pratesi, G., Cipriani, C., Giuli, G. and Birch W.D. (2003) Santabarbaraite: a new amorphous phosphate mineral. *European Journal of Mineralogy*, 15, 185–192.
- Ritz, C., Essene, E.J. and Peacor, D.R. (1974) Metavivianite, Fe₃(PO₄)₂·8H₂O, a new mineral. *The American Mineralogist*, **59**, 896–899.
- Rodgers, K.A. (1986) Metavivianite and kerchenite: a review. *Mineralogical Magazine*, 50, 687–691.
- Rodgers, K.A., Kobe, H.W. and Childs, C.W. (1993) Characterization of vivianite from Catavi, Llallagua, Bolivia. *Mineralogy and Petrology*, 47, 193–208.
- Rodgers, K.A. and Johnston, J.H. (1985) Type metavivianite: Mössbauer evidence for a revised composition. *Neues Jahrbuch für Mineralogie, Monatshefte*, **1985**, 539–542.
- Sameshima, T., Henderson, G.S., Black, P.M. and Rodgers, K.A. (1985) X-ray diffraction studies of vivianite, metavivianite, and barićite. *Mineralogical Magazine*, 49, 81–85.
- Van Tassel, R. and de Grave, E. (1992) Ferrostrunzite from Arnsberg, Sauerland, Germany. *Neues Jahrbuch für Mineralogie, Monatshefte*, **1992**, 207–212.

data global 'Jana2006 Version : 01/07/2011' audit creation method # 1. PROCESSING SUMMARY (IUCr Office Use Only) _journal_date_recd_electronic ? _journal_date_to_coeditor ? _journal_date_from_coeditor ? _journal_date_accepted ? _journal_date_printers_first ? _journal_date_printers_final ? _journal_date_proofs out ? _journal_date_proofs_in ? _journal_coeditor name ? _journal_coeditor_code ? _journal_coeditor_notes ; ? ; _journal_techeditor code ? _journal_paper_category ? _journal_techeditor_notes ; ? ; _journal_coden_ASTM ? _journal_name_full 'Acta Crystallographica Section C' _journal_year ? _journal_volume ? _journal_issue ? _journal_page_first ? _journal_page_last ? _journal_suppl_publ_number ? _journal_suppl_publ_pages ? # 2. SUBMISSION DETAILS _publ_contact_author name ? _publ_contact_author_address ; ? ; _publ_contact_author email ? _publ_contact_author fax ? _publ_contact_author_phone ? _publ_requested_journal 'Acta Crystallographica Section C' _publ_requested category ? _publ_contact letter ; ? ;

3. TITLE AND AUTHOR LIST

```
_publ_section_title
; ?
;
_publ_section_title_footnote
; ?
;
loop
 _publ_author_name
 _publ_author_footnote
 _publ_author_address
 ?
        # name
; ?
        # footnote
;
; ?
        # address
;
# 4. TEXT
publ section synopsis
; ?
;
_publ_section_abstract
; ?
;
_publ_section_comment
; ?
;
_publ_section_introduction
; ?
;
_publ_section_experimental
; ?
;
_publ_section_exptl_prep
; ?
;
_publ_section_exptl_refinement
; ?
;
_publ_section_exptl_solution
; ?
;
_publ_section_discussion
; ?
;
_publ_section_acknowledgements
; ?
;
_publ_section_references
;
Petricek, V., Dusek, M. & Palatinus L. (2006). Jana2006.
Structure Determination Software Programs.
Institute of Physics, Praha, Czech Republic.
Palatinus L. & Chapuis G. (2007). J. Appl. Cryst. 40, 786-790.
# enable this reference if Diamond ver. 2 was used for visualization
#Brandenburg, K. (1999). DIAMOND. Version. 2.1c.
```

#Crystal Impact GbR, Bonn, Germany. # enable this reference if Diamond ver. 3 was used for visualization #Brandenburg, K. & Putz, H. (2005). DIAMOND Version 3. #Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany. # enable this reference if SIR97 was used for solving of the structure #Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., #Guagliardi, A., Moliterni, A. G. G., Polidori, G., Spagna, R. (1997). #SIR97. A Package for Crystal Structure Solution by Direct Methods #and Refinement, Bari, Rome, Italy. # use this reference if SIR2002 was used for solving of the structure #Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., #Polidori, G., Spagna, R. #SIR2002: the program, J. Appl. Cryst, (2003). 36, 1103 # enable this reference if bond valences were calculated #Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480. # enable this reference if Xshape wase used for crystal shape refinement #Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany. # enable this reference if Flack coefficient was refined #Flack, H. D. (1983). Acta Cryst. A39, 876-881. _publ_section_figure_captions ; ? _publ_section_table_legends ; ? ; data I # 5. CHEMICAL DATA _chemical_name_systematic ; ? ; chemical name common ? chemical formula moiety ? _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_formula_iupac ? _chemical_formula_sum 'Fe3 016 P2' _chemical_formula_weight 485.5 chemical melting point ? chemical_compound_source ? _chemical_absolute_configuration . # 6. CRYSTAL DATA triclinic _symmetry_cell_setting

'P -1'

'-P 1'

symmetry_space_group_name_H-M

_symmetry_space_group_name_Hall

symmetry_Int_Tables_number 2 loop _symmetry_equiv_pos_site_id symmetry_equiv_pos_as_xyz 1 x,y,z 2 -x,-y,-z cell length a 4.6339(4)_cell_length_b 8.0079(7) _cell_length_c 9.3358(7)cell angle alpha 108.649(8) cell angle beta 97.387(7)_cell_angle_gamma 95.834(7)_cell_volume 321.74(5) loop _jana_cell_twin_matrix_id _jana_cell_twin_volume_fraction _jana_cell_twin_matrix_1 1 _jana_cell_twin_matrix_1_2 _jana_cell_twin_matrix_1 3 _jana_cell_twin_matrix_2 1 _jana_cell_twin_matrix 2 2 _jana_cell_twin_matrix_2_3 _jana_cell_twin_matrix_3_1 _jana_cell_twin_matrix_3 2 _jana_cell_twin_matrix_3_3 ? ? ? ? ? ? ? ? ? ? ? ? _cell_formula_units_Z 1 cell measurement reflns used ? ? _cell_measurement_theta_min _cell_measurement_theta_max ? cell measurement temperature 293 _cell_special_details ; ? ; _exptl_crystal_density_diffrn 2.5048 _exptl_crystal_density_meas ? _exptl_crystal_density_method ? _exptl_crystal_F_000 236 exptl absorpt coefficient mu 3.671 exptl crystal description ? exptl_crystal_size_max 0.23 _exptl_crystal_size_mid 0.23 _exptl_crystal_size_min 0.17 _exptl_crystal_size_rad ? _exptl_crystal_colour ? _exptl_absorpt_correction_type 'multi-scan' exptl absorpt process details ? _exptl_absorpt_correction_T_min 0.1 _exptl_absorpt_correction_T_max 0.1 # 7. EXPERIMENTAL DATA

diffrn ambient temperature

?

293

exptl special details

diffrn source ? _diffrn_source_power ? diffrn_source_voltage ? diffrn source current ? diffrn radiation type 'Mo K\a' _diffrn_radiation_source 'X-ray tube' diffrn radiation wavelength 0.71073 diffrn_radiation_monochromator graphite diffrn_measurement_device 'four-cycle diffractometer' diffrn measurement device type 'Oxford Diffraction CCD' diffrn detector ? diffrn detector area resol mean ? _diffrn_measurement_method ? _diffrn_measurement_specimen_support ? _diffrn_reflns_number 16814 _diffrn_reflns_theta_min 4.49 diffrn reflns theta max 56.3 diffrn_reflns_theta_full 38.05 _diffrn_measured_fraction_theta_max 0.84 diffrn measured fraction theta full 0.98 diffrn reflns av R equivalents 0.0961 diffrn_reflns_av_sigmaI/netI 0.3148 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -18 diffrn reflns limit k max 18 _diffrn_reflns_limit_l_min -19diffrn reflns limit 1 max 21 _diffrn_reflns_reduction_process ? diffrn standards number ? diffrn standards interval count ? _diffrn_standards_interval_time ? diffrn standards decay % ? loop diffrn standard refln index h diffrn standard refln index k _diffrn_standard_refln_index l ??? # 8. REFINEMENT DATA _refine_special_details ; ? ; _reflns_number_total 7242 reflns number gt 1350 _reflns_threshold_expression 'I>3\s(I)' _refine_ls_structure_factor coef F refine ls R factor gt 0.0600 _refine_ls_wR_factor_gt 0.0653 _refine_ls_R_factor_all 0.0600 _refine_ls_wR_factor_ref 0.0653 refine ls goodness of fit ref 1.04 _refine_ls_goodness_of_fit_gt 1.04 _refine_ls_restrained_S_gt ?

refine ls restrained S all ? _refine_ls_number_reflns 1350 _refine_ls_number_parameters 98 refine 1s number restraints 0 _refine_ls_number_constraints 0 _refine_ls_weighting_scheme sigma _refine_ls_weighting_details 'w=1/(\s^2^(F)+0.0016810001F^2^)' _refine_ls_hydrogen_treatment ? _refine_ls_shift/su max 0.0420 refine ls shift/su mean 0.0132 refine diff density max 0.89 _refine_diff_density_min -0.42 _refine_ls_extinction_method 'B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)' _refine_ls_extinction_coef -156(14)_refine_ls_abs_structure_details _refine_ls_abs_structure_Flack ? _refine_ls_abs_structure_Rogers ? loop _atom_type_symbol _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source Fe 0.3463 0.8444 'International Tables Vol C tables 4.2.6.8 and 6.1.1.1' 0 0.0106 0.0060 'International Tables Vol C tables 4.2.6.8 and 6.1.1.1' 0.1023 0.0942 Ρ 'International Tables Vol C tables 4.2.6.8 and 6.1.1.1' computing data collection ? computing cell refinement ? _computing_data_reduction ? _computing_structure_solution ? ? _computing_structure_refinement _computing_molecular_graphics ? ? computing publication material # 9. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_adp_type _atom_site_U_iso_or_equiv _atom_site_symmetry_multiplicity _atom_site_occupancy atom site calc flag atom site refinement flags atom site disorder assembly _atom_site_disorder_group Fel Fe 0 0.5 0.5 Uani 0.0112(4) 1 1 d . . . Fe2 Fe -0.50203(19) 0.13050(11) -0.08450(10) Uani 0.0117(3) 2 1 d . . . P1 P 0.0579(3) 0.18877(19) 0.17684(17) Uani 0.0098(4) 2 1 d . . . 01 0 -0.6777(11) 0.3514(7) -0.0802(6) Uani 0.0238(18) 2 1 d . . .

```
02 0 0.6971(11) 0.2587(6) 0.4767(6) Uani 0.0200(15) 2 1 d . .
  O3 O -0.1286(9) 0.0448(5) 0.2191(5) Uani 0.0129(13) 2 1 d . . .
  04 0 -0.3100(12) 0.1365(8) -0.2746(6) Uani 0.028(2) 2 1 d . . .
  05 0 -0.1288(9) 0.2569(5) 0.0642(5) Uani 0.0130(12) 2 1 d . . .
  06 0 0.1888(9) 0.3428(6) 0.3243(5) Uani 0.0153(13) 2 1 d . . .
  07 0 0.6956(10) 0.5601(7) 0.3416(6) Uani 0.0197(16) 2 1 d . . .
  08 0 0.3123(9) 0.1050(5) 0.1012(5) Uani 0.0126(12) 2 1 d . . .
loop
 atom site aniso label
 atom site aniso type symbol
 atom site aniso U 11
_atom_site_aniso_U_22
 _atom_site_aniso_U_33
 atom site aniso U 12
 atom site aniso U 13
 atom site aniso U 23
 Fel Fe 0.0087(5) 0.0124(5) 0.0079(6) 0.0020(4) -0.0013(4) -0.0019(4)
 Fe2 Fe 0.0078(4) 0.0126(4) 0.0105(4) 0.0011(3) -0.0007(3) -0.0008(3)
 P1 P 0.0065(6) 0.0103(6) 0.0078(6) 0.0010(4) 0.0000(5) -0.0030(4)
01 \ 0 \ 0.018(2) \ 0.025(2) \ 0.030(3) \ -0.0004(19) \ -0.004(2) \ 0.015(2)
02 \ 0 \ 0.019(2) \ 0.020(2) \ 0.019(2) \ 0.0003(17) \ 0.0024(18) \ 0.0048(17)
O3 O 0.015(2) 0.0140(17) 0.010(2) 0.0018(14) 0.0064(16) 0.0037(14)
 04 0 0.028(3) 0.037(3) 0.028(3) 0.017(2) 0.014(2) 0.017(2)
 05 \ 0 \ 0.0091(18) \ 0.0103(16) \ 0.015(2) \ -0.0006(13) \ -0.0001(15) \ -0.0007(14)
 O6 O 0.0093(18) 0.0162(18) 0.012(2) 0.0009(14) 0.0011(15) -0.0056(14)
 07 \ 0 \ 0.014(2) \ 0.029(2) \ 0.016(2) \ 0.0080(18) \ -0.0010(18) \ 0.0074(18)
 08 \ 0 \ 0.0054(17) \ 0.0130(17) \ 0.016(2) \ 0.0046(13) \ 0.0026(15) \ -0.0004(14)
```

#______

10. MOLECULAR GEOMETRY

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label _geom_bond_site_symmetry_1 geom bond site symmetry 2 geom_bond_distance geom bond publ flag Fe1 06 . . 2.075(4) ? Fe1 06 . 2 566 2.075(4) ? Fe1 07 . 1 455 2.111(5) ? Fe1 07 . 2_666 2.111(5) ? Fe2 01 . . 2.010(6) ? Fe2 O3 . 2_455 2.072(4) ? Fe2 04 . . 2.093(6) ? Fe2 05 . . 2.015(4) ? Fe2 08 . 1 455 2.084(5) ? Fe2 08 . 2_555 2.127(5) ? P1 O3 . . 1.546(5) ? P1 05 . . 1.541(5) ? P1 06 . . 1.525(4) ? P1 08 . . 1.551(5) ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3

```
_geom_angle_site_symmetry 1
_geom_angle_site_symmetry_2
 _geom_angle_site_symmetry_3
 _geom_angle
 geom angle publ flag
 O6 Fel O6 . . 2_566 180.0(5) ?
 O6 Fe1 O7 . . 1 455 91.52(18) ?
 O6 Fe1 O7 . . 2_666 88.48(18) ?
 O6 Fel O7 2_566 . 1_455 88.48(18) ?
 O6 Fe1 O7 2 566 . 2 666 91.52(18) ?
  O7 Fe1 O7 1 455 . 2 666 180.0(5) ?
 O1 Fe2 O3 . . 2_455 94.61(18) ?
 O1 Fe2 O4 . . . 90.8(3) ?
 O1 Fe2 O5 . . . 96.46(18) ?
 O1 Fe2 O8 . . 1 455 93.3(2) ?
 O1 Fe2 O8 . . 2_555 176.9(2) ?
 O3 Fe2 O4 2_455 . . 93.24(19) ?
 O3 Fe2 O5 2 455 . . 167.4(2) ?
 O3 Fe2 O8 2_455 . 1_455 85.26(17) ?
  O3 Fe2 O8 2_455 . 2_555 84.72(16) ?
 O4 Fe2 O5 . . . 92.6(2) ?
  O4 Fe2 O8 . . 1 455 175.8(2) ?
 O4 Fe2 O8 . . 2_555 86.2(2) ?
 O5 Fe2 O8 . . 1_455 88.14(17) ?
 O5 Fe2 O8 . . 2_555 84.54(16) ?
 O8 Fe2 O8 1_455 . 2_555 89.66(18) ?
  O3 P1 O5 . . . 111.5(2) ?
 O3 P1 O6 . . . 108.4(3) ?
  O3 P1 O8 . . . 108.3(3) ?
 O5 P1 O6 . . . 110.3(2) ?
  O5 P1 O8 . . . 109.3(3) ?
 O6 P1 O8 . . . 109.0(2) ?
  Fe2 O3 P1 2 455 . . 127.0(3) ?
  Fe2 O5 P1 . . . 128.2(3) ?
  Fel O6 P1 . . . 132.4(3) ?
  Fe2 08 Fe2 1_655 . 2_555 90.34(17) ?
  Fe2 08 P1 1_655 . . 131.5(3) ?
  Fe2 08 P1 2 555 . . 135.2(3) ?
loop
 _geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label 2
_geom_torsion_atom_site label 3
geom torsion atom site label 4
 _geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
_geom_torsion
 geom_torsion_publ_flag
? ? ? ? ? ? ? ? ? ?
loop
 geom hbond atom site label D
 geom hbond atom site label H
 _geom_hbond_atom_site_label A
_geom_hbond_site_symmetry_D
_geom_hbond_site_symmetry_H
 _geom_hbond_site_symmetry_A
 geom hbond distance DH
_geom_hbond_distance_HA
```

_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_publ_flag
? ? ? ? ? ? ? ? ? ? ? ?

#-----

11. STRUCTURE-FACTOR LIST

loop_						
_refl	ln_iı	ndex	_h			
_refl	ln_iı	ndex	_k			
_refl	ln_iı	ndex	_1			
_refl	ln_F	_squ	ared_calc			
refl	ln F	squ	ared meas			
ref]	Ln F	squ	ared sigm	a		
ref]	Ln ol	 oser	ved statu	S		
	1	0	213.82	280.18	34.86	о
-4	1	0	99.30	119.44	20.82	о
1	1	0	2686.82	2584.21	22.56	о
2	1	0	206.66	222.53	13.89	о
3	1	0	1764.52	1802.00	28.39	0
4	1	0	66.53	78.58	20.10	0
- 5	1	0	1310.08	1422.20	38.35	0
7	1	0	487.44	407.49	57.46	0
-6	2	0	168.93	255.98	78.88	0
-5	2	0	567 40	604 61	43 25	0
_4	2	0	287 02	274 22	24 95	0
	2	0	792 /8	755 69	15 82	0
-5	2	0	153 76	303 11	11 17	0
-0	2	0	433.70	997 67	22 55	0
-4	2	0	92 5. 50	502.09	10 05	0
-5	2	0	491.10	7420 57	19.05	0
-2	ა ე	0	1092.99	7429.57	44.05	0
1	3	0	4093.59	3997.81	20.08	0
1	3	0	394.02	4/8.1/	15.09	0
2	3	0	1607.04	1568.51	2/.3/	0
4	3	0	1105.62	1159.45	44.95	0
5	3	0	22/.61	217.97	29.25	0
-7	4	0	304.23	347.13	49.34	0
-6	4	0	181.49	132.12	40.89	0
-5	4	0	223.37	246.45	33.78	0
-4	4	0	829.24	920.71	36.23	0
-3	4	0	117.18	135.62	15.14	0
-2	4	0	411.00	413.42	17.24	0
-1	4	0	3854.26	4289.23	29.59	0
2	4	0	69.62	102.90	15.86	0
3	4	0	1708.77	2086.93	41.23	0
5	4	0	776.12	921.65	42.67	0
7	4	0	283.22	366.52	50.62	0
-6	5	0	418.60	546.22	46.57	0
-3	5	0	46.26	82.39	19.76	0
1	5	0	1279.31	1567.08	29.43	0
3	5	0	114.28	156.82	28.44	о
4	5	0	205.90	228.01	28.83	0
6	5	0	332.57	306.26	37.54	о
-6	6	0	184.61	183.63	43.74	о
-5	6	0	274.26	229.32	40.10	о
-4	6	0	516.14	495.42	36.80	о
-3	6	0	122.83	176.73	24.91	о
-2	6	0	836.93	755.05	21.13	о

-1	6	0	327.49	372.62	18.06 o
0	6	0	385.39	393.83	18.96 o
1	6	0	130.96	120.10	20.08 o
2	6	0	287.11	298.11	26.52 o
-5	7	0	225.34	203.70	39.94 o
-4	7	0	200.97	176.00	34.03 o
-3	7	0	204.97	182.59	23.83 o
-1	7	0	734.20	786.93	28.25 o
1	7	0	1663.07	1602.20	33.03 o
3	7	0	615.18	526.76	34.92 0
5	7	0	399.37	319.88	58.31 0
-6	, 8	0	533.21	440.84	50.35 0
_4	8	Õ	187 04	171 78	31 23 0
	8	0	17 35	70 18	20 67 0
-2	8	0	169 63	132 40	21 57 0
-2	0	0	1022 39	11/9 22	21.57 0
-1	0	0	112 54	1140.22	29.15 0
0	0	0	412.34	437.17	23.74 0
2	0	0	107.47	100.05	20.02 0
4	8	0	267.85	212.70	42.17 0
-5	9	0	188.94	1/3.02	36.12 0
-4	9	0	94.26	110.90	31.36 0
-1	9	0	784.94	970.28	37.51 0
-1	10	0	190.26	204.72	41.19 o
1	10	0	118.84	126.09	36.53 o
2	10	0	121.92	120.54	33.62 o
3	10	0	254.24	220.33	36.65 o
-3	11	0	151.48	112.48	36.70 o
2	11	0	153.88	161.12	36.06 o
-5	12	0	187.46	176.74	56.99 o
-3	12	0	171.85	193.60	38.40 o
-1	12	0	304.52	233.73	50.91 o
0	13	0	239.85	204.72	56.02 o
1	-14	1	183.91	192.14	56.12 o
-3	-11	1	376.04	397.50	39.82 o
-1	-11	1	301.05	283.76	41.44 o
1	-11	1	360.27	349.31	48.63 o
3	-11	1	287.50	224.53	34.26 o
4	-10	1	447.55	528.84	46.11 o
2	-9	1	114.64	108.33	23.50 o
-5	-8	1	411.00	303.95	60.67 o
-3	-8	1	605.36	549.16	33.13 o
-1	-8	1	346.75	339.26	26.16 o
1	-8	1	724.48	737.04	29.37 o
2	-8	1	122.29	109.61	21.83 o
3	-8	1	191.66	196.25	21.13 0
-4	-7	1	276.99	230.82	37.69 0
-3	_7	1	573.08	571.11	29.95 0
-2	_7	1	478.86	444.63	26.10 0
0	_7	1	1225 14	1189 60	44 79 0
2	_7	1	3305 23	3281 88	58 92 0
Z 1	- /	1	170 69	105 29	37 98 0
4	- /	1	250 27	300 60	16 10 0
- F	-1	1 1	JJJ.21	202.09 227 50	38 53 0
-0 2	-0	1 1	200.20	23/.39 01 OF	30.320
-3	-0	1	00.0J	91.95 1EC 01	21.10 0
-2	-6	1	201.93	120.21	30.88 O
-1	-6	1	100.61	139.56	19.18 0
0	-6	1	658.20	623.92	22.61 0
1	-6	1	957.59	1133.53	25.56 0
5	-6	1	589.85	/31.21	44.12 o
7	-6	1	337.02	327.44	49.41 o
-5	-5	1	131.77	116.92	34.83 o

-3	-5	1	730.79	756.72	34.66 o
-2	-5	1	709.21	746.52	24.96 o
-1	-5	1	598.13	661.65	22.30 o
1	-5	1	360.02	376.47	16.24 o
-5	-4	1	248.86	192.51	29.87 o
-4	-4	1	1052.49	1019.97	32.25 o
-2	-4	1	1241.18	1178.17	26.62 o
-1	-4	1	62.76	73.97	12.61 o
0	-4	1	2287.64	2461.93	28.55 o
1	-4	1	1566.62	1765.60	22.46 o
2	-4	1	5085.41	5147.59	49.48 o
3	-4	1	789.27	753.55	24.15 o
4	-4	1	901.86	878.55	33.38 0
6	-4	1	431.83	388.57	42.32 0
-7	-3	1	322.48	249.37	44.88 0
-5	-3	1	502.88	423.24	31.05 0
_4	-3	1	768.24	693.35	25.76 0
-2	-3	1	868.15	826.80	21.00 0
_1	-3	1	1073 38	1002 20	19 78 0
0	_3 _3	1	1/11 81	1649 12	19.08 0
1	-3	1	5352 81	5562 07	36 06 0
2	-3	1	212 40	234 46	15 27 0
2	-3	1	212.40	2706 00	10.16.0
5	-5	1	2070.09	2700.00	40.10 0
5	- 3	1	502 70	120.13	47.12 0
c	- 3	1	302.79	400.40	40.00
-0	-2	1	352.12	305.80	40.83 0
-5	-2	1	189.72	200.98	20.88 0
-4	-2	1	958.02	835.90	20.03 0
-2	-2	1	3349.54	3386.26	38.93 0
1	-2	1	1687.83	1/5/.80	18.03 0
1	-2	1	826.50	817.40	10.33 0
3	-2	1	694.08	/66.49	19.72 0
4	-2	1	109.00	96.40	25.49 0
3	-1	1	40.59	41.86	12.68 0
-6	0	1	268.42	295.15	47.92 0
-5	0	1	348.46	346.93	30.73 0
-4	0	1	123.62	158.93	19.69 o
-3	0	1	1416.99	1674.14	24.53 o
-2	0	1	870.88	979.23	16.21 o
-1	0	1	2007.87	1919.97	15.01 o
1	0	1	4075.49	4291.39	24.01 o
3	0	1	1913.47	2138.88	26.30 o
5	0	1	1641.69	1900.89	40.61 o
7	0	1	502.08	541.33	93.04 o
-6	1	1	697.14	651.83	55.22 o
-4	1	1	5967.01	5369.64	50.95 o
-3	1	1	115.57	125.33	11.34 o
1	1	1	11080.80	11195.80	45.97 o
2	1	1	8731.27	9264.86	56.95 o
5	1	1	397.12	405.87	28.49 o
6	1	1	478.19	413.93	40.63 o
-5	2	1	96.89	89.26	25.10 o
-3	2	1	1971.64	2090.69	27.87 o
-2	2	1	996.27	1125.59	17.27 o
-1	2	1	7554.73	7740.63	39.61 o
0	2	1	830.29	943.76	12.36 o
1	2	1	3885.40	4306.76	26.99 o
2	2	1	115.48	121.74	12.76 o
3	2	1	754.67	727.03	24.56 o
-7	3	1	72.91	156.40	44.51 o
-4	3	1	355.58	424.94	20.90 o

-3	3	1	635.08	630.24	20.05 o
4	3	1	442.43	446.93	37.30 o
7	3	1	126.14	257.57	62.67 o
-6	4	1	971.61	1170.91	53.32 o
-5	4	1	150.67	153.03	34.15 o
3	4	1	104.28	133.64	21.71 o
4	4	1	644.58	637.51	39.83 o
5	4	1	114.81	150.03	33.39 o
6	4	1	434.26	397.18	37.93 0
-5	5	1	1575.92	1488.44	51.17 0
-3	5	1	1543.21	1623.71	33.07 0
_1	5	1	1550 56	1636 95	23 41 0
0	5	1	108 79	82 17	12 21 0
1	5	1	3073 82	3350 70	35 88 0
2	5	1	526 04	100 09	21 57 0
5	5	1	102 40	499.90	26 11 0
5	С	1	182.40	100.00	36.11 0
6	5	1	234.87	191.58	36.96 0
-3	6	1	144.99	144.22	20.21 0
-1	6	1	69.92	75.79	14.53 o
0	6	1	1124.31	1140.76	23.81 o
1	6	1	592.50	565.26	22.32 o
2	6	1	955.85	926.72	42.06 o
4	6	1	173.39	171.87	41.05 o
-6	7	1	212.63	175.32	46.05 o
-4	7	1	190.43	139.46	28.74 o
-2	7	1	272.01	253.80	25.91 o
-1	7	1	268.93	256.87	21.08 o
3	7	1	78.40	103.81	29.87 o
4	7	1	136.35	167.13	45.17 o
-7	8	1	147.73	133.79	43.71 o
-5	8	1	536.36	562.34	39.81 0
-2	8	1	32 96	68 22	21 58 0
0	8	1	63 79	65 54	20 14 0
1	8	1	130 /0	135 20	40 27 0
-5	0	1	156 62	156 70	36 12 0
 ∧	9	1	200.02	196 00	22 07 0
-4	9	1	209.99	100.99	33.97 0
-2	9	1	258.60	220.93	20.40 0
0	9	1	562.61	550.65	31.06 0
2	9	1	574.30	567.82	41.99 0
3	9	1	108.82	113.16	36.75 0
4	9	1	345.34	350.43	47.33 o
-5	11	1	186.29	147.90	40.88 o
-3	11	1	214.23	206.78	32.20 o
-1	11	1	305.43	287.53	48.62 o
-2	12	1	198.62	217.01	50.25 o
0	12	1	351.01	351.16	53.86 o
2	12	1	164.99	194.08	53.46 o
4	12	1	162.74	214.77	60.59 o
2	-11	2	382.60	480.87	38.50 o
4	-11	2	366.08	382.74	46.46 o
-3	-10	2	164.34	153.77	34.70 o
-1	-10	2	191.20	188.47	30.87 o
0	-10	2	129.00	100.75	28.62 o
2	-10	2	246.28	203.34	29.52 0
3	-10	2	200.20	160.35	28.47 0
5	_10	2	192 40	159 15	44 26 0
_1	_0	2	221 20	221 02	42 73 0
-4 _ 0		2	231.30	221.UJ 200 01	76 96 0
-2	-9 0	∠ ว	212019 500 52	200.01 111 20	20.00 0
0	-9	2		444.2U	20.03 U
2	-9	2	101.80	122.10	23.59 0
4	-9	2	181.31	1/4.03	33.3U O

0	-8	2	889.25	861.03	30.02 o
1	-8	2	457.90	431.40	25.72 o
2	-8	2	532.00	555.15	25.68 o
3	-8	2	103.86	105.72	22.93 o
4	-8	2	119.25	103.66	30.47 o
-5	-7	2	136.43	116.18	38.32 o
-3	-7	2	572.61	578.23	23.87 o
-2	-7	2	185.78	185.89	22.16 o
-1	-7	2	116.72	177.09	36.05 0
0	-7	2	164.62	138.90	21.34 0
2	_7	2	647 86	714 98	36 25 0
2	_7	2	193 58	613 46	29 74 0
7	_7	2	495.90	512 50	53 11 0
0	-7	2	127 /2	217 27	57 14 0
-0	-0	2	221 00	211.21	20 47 0
0	-0	2	1269 50	1202 60	20.47 0
2	-0	2	1308.50	1393.00	27.55 0
3	-0	2	/03.93	749.79	28.35 0
4	-6	2	418.58	3/5.83	34.99 0
5	-6	2	150.07	134.36	36.79 0
-3	-5	2	516.36	468.38	29.12 o
-2	-5	2	325.18	324.99	20.58 o
-1	-5	2	520.68	437.70	19.22 o
1	-5	2	2554.00	2392.45	29.48 o
2	-5	2	145.77	167.69	19.18 o
3	-5	2	1111.95	1088.95	31.51 o
4	-5	2	300.80	265.23	26.97 o
5	-5	2	332.64	263.57	35.68 o
-7	-4	2	208.14	182.10	47.95 o
-5	-4	2	110.23	86.68	28.82 o
-4	-4	2	125.05	131.80	22.18 o
-2	-4	2	320.59	328.14	20.15 o
-1	-4	2	209.26	173.67	16.75 o
1	-4	2	659.08	713.94	16.78 o
2	-4	2	59.54	69.48	15.13 o
3	-4	2	737.02	701.14	22.61 o
4	-4	2	130.75	98.23	26.13 o
5	-4	2	263.14	167.15	41.19 o
-8	-3	2	308.53	234.65	58.85 0
-6	-3	2	287.44	231.35	33.96 0
_4	_3	2	1778 37	1537 74	32 93 0
_3	_3	2	550 30	457 91	25 60 0
_2	_3 _3	2	6068 20	5484 10	51 12 0
_1	_3	2	3019 82	3205 35	34 67 0
-1	-3	2	1231 32	1127 03	18 24 0
1	-3	2	3036 17	3200 58	38 02 0
2	-5	2	2440 25	2201 77	31 08 0
2	-5	2	2440.23	2091.77	10 20 0
5	-3	2	2029.01	2943.23	40.09 0
0	- 3	2	292.40	320.43	50.32 0
0	-3	2	277.42	3/5.0/	95.29 0
-8	-2	2	1/3.93	205.82	58.18 0
-2	-2	2	111.23	112.59	12.24 0
1	-2	2	10986.10	12893.10	61.60 0
-1	-1	2	415.10	424.20	10.71 0
1	-1	2	261.29	301.64	7.71 o
2	-1	2	1603.12	1730.59	26.66 0
3	-1	2	81.75	66.89	12.84 o
4	-1	2	606.67	663.12	26.20 o
5	-1	2	164.13	216.70	62.19 o
-6	0	2	446.78	361.14	39.52 o
-5	0	2	98.11	103.25	28.20 o
-4	0	2	2059.35	1789.87	27.82 o

-3	0	2	34.90	38.13	12.55 o
-2	0	2	350.41	326.24	12.38 o
-1	0	2	459.90	545.26	10.51 o
0	0	2	690.60	722.26	13.64 o
1	0	2	323.69	358.51	10.58 o
5	0	2	144.46	138.08	25.58 o
_ 7	1	2	192.56	142.99	45.72 0
-6	1	2	155 70	126 99	37 68 0
-5	1	2	358 52	395 70	12 74 0
_J ⊿	1	2	202 12	260 22	42.74 0
-4	1	2	293.42	209.33	27.01 -
-3	1	2	3902.39	3040.42	37.01 0
-2	1	2	185.89	225.98	12.43 0
1	Ţ	2	11681.20	12209.00	49.58 0
2	1	2	196.18	228.32	12 . 13 o
3	1	2	1797.60	1859.29	30.46 o
4	1	2	253.64	274.32	24.19 o
5	1	2	143.33	177.21	30.43 o
-5	2	2	149.50	173.01	22.47 o
-4	2	2	821.54	918.20	25.99 o
-3	2	2	1017.01	1185.75	24.57 o
4	2	2	1864.34	2194.65	53.46 o
6	2	2	513.58	641.39	58.86 o
-7	3	2	302.54	338.57	48.98 o
-6	3	2	392.87	377.48	34.57 o
-4	3	2	89.30	131.16	27.13 0
-3	3	2	164.98	136.88	16.88 0
2	3	2	73 23	75 13	12,46,0
2	3	2	86 79	80 32	21 07 0
5	1	2	450.25	132 60	21.07 0
-5	4	2	459.55	432.09	25.20 0
-4	4	2	03.00	109.09	23.24 0
-3	4	2	1925.30	1932.25	32.59 0
-1	4	2	2948.29	3158.07	27.47 0
1	4	2	1155.86	1210.96	22.91 o
3	4	2	476.02	439.79	24.03 o
-5	5	2	458.44	406.11	33.87 o
-4	5	2	680.36	639.99	32.25 o
-3	5	2	777.34	667.98	30.58 o
-2	5	2	95.28	85.16	14.00 o
0	5	2	4360.33	4277.56	36.73 o
1	5	2	71.24	95.16	16.18 o
2	5	2	2440.92	2344.51	43.43 o
4	5	2	342.76	271.34	42.07 o
6	5	2	662.58	556.58	53.25 o
-9	6	2	293.12	252.26	61.72 0
-5	6	2	290.13	286.23	34.10 0
-3	6	2	1258 39	1228 90	28 32 0
0	6	2	340 23	319 86	19 69 0
1	6	2	226 66	222 67	19.09 0
1 2	6	2	542 00	595 01	23.28 0
2	C C	2	105 56	215 40	20.40 0
3	0	2	185.56	215.40	28.08 0
-5	/	2	208.86	228.15	34.52 0
-4	7	2	307.41	374.03	29.78 o
-3	7	2	558.04	583.92	23.71 o
-5	8	2	199.90	203.12	36.23 o
-2	8	2	418.19	370.60	22.20 o
0	8	2	862.06	858.98	27.45 o
2	8	2	446.33	400.42	35.24 o
4	8	2	363.67	402.54	55.88 o
-5	9	2	276.00	223.43	37.36 o
-4	9	2	210.93	195.27	33.34 o
-3	9	2	105.09	109.86	24.87 o

-2	9	2	106.53	86.92	23.45 o
-1	9	2	152.71	149.09	23.41 o
0	9	2	223.28	242.23	27.26 o
1	9	2	226.11	245.60	34.86 o
3	9	2	160.00	157.51	37.24 o
-4	10	2	350.17	318.15	37.01 o
-2	10	2	398.79	388.18	36.61 o
0	10	2	194.92	169.67	37.17 o
3	10	2	109.58	142.41	41.22 o
0	11	2	89.03	128.49	41.15 o
1	11	2	131.56	131.51	43.03 o
-4	13	2	219.17	184.27	53.80 0
-2	-13	3	146.60	162.05	51.53 0
0	-13	3	303.94	258.86	54.67 0
-1	-12	3	56.16	139.78	41.43 0
3	-12	3	239.05	216.18	51.48 0
-2	_10	3	618 66	548 13	32 31 0
0	_10	3	611 01	568 13	33 47 0
2	_10	3	99 08	12/ 91	25 38 0
2	-10	3	135 57	1/3 06	28 19 0
1	-10	3	222 27	207 36	36 10 0
7 2	-10	2	100 39	116 30	25 50 0
-2	-9	с С	200 45	267 12	20.25.0
-1 1	-9	с С	050 02	307.13	22 00 0
2	-9	с С	930.03	990.17 626 51	20 10 0
ی ۲	-9	ა ე	040.//	030.51	30.19 0
S ⊿	-9	3	297.77	232.11	46.41 0
-4	-8	3	110.48	131.54	31.40 0
T	-8	3	137.20	130.24	20.90 0
4	-8	3	98.29	140.28	37.10 0
6	-8	3	301.90	312.08	46.11 0
-2	-/	3	602.16	624.86	29.99 0
0	-/	3	97.64	84.12	21.38 0
2	-7	3	614.34	631.50	24.76 0
4	-7	3	98.96	98.74	32.65 0
-4	-6	3	222.96	239.15	27.50 0
-3	-6	3	621.59	567.42	25.45 o
-2	-6	3	125.47	93.08	29.06 o
-1	-6	3	2373.76	2108.36	36.55 0
0	-6	3	83.59	65.10	17.36 0
1	-6	3	1982.42	1844.70	28.45 o
3	-6	3	2121.56	1911.23	39.50 o
5	-6	3	336.48	245.49	37.61 0
-6	-5	3	393.23	342.79	38.19 0
-2	-5	3	737.72	702.00	27.38 o
-1	-5	3	1288.47	1119.34	28.73 o
0	-5	3	1041.31	1037.80	26.74 o
1	-5	3	133.67	145.93	13 . 56 o
2	-5	3	175.38	149.15	19 . 11 o
3	-5	3	49.75	63.06	18.00 o
4	-5	3	1775.66	1468.80	38.72 o
-6	-4	3	128.67	142.20	34.31 o
-5	-4	3	223.41	211.48	30.59 o
-4	-4	3	117.64	92.65	20.76 o
-3	-4	3	655.84	624.60	27.50 o
-2	-4	3	519.83	458.27	22.50 o
-1	-4	3	759.63	736.98	23.37 o
0	-4	3	837.07	952.43	23 . 12 o
1	-4	3	200.75	249.09	15.43 o
2	-4	3	641.38	754.26	21.37 o
-8	-2	3	375.74	396.82	50.06 o
-6	-2	3	298.15	337.42	40.46 o

-4	-2	3	92.46	85.60	27.19 o
-3	-2	3	3147.76	3078.73	32.67 o
-2	-2	3	3285.50	2955.93	28.06 o
-1	-2	3	3491.03	3368.59	27.87 o
2	-2	3	8041.60	7582.43	44.02 o
3	-2	3	1417.80	1350.08	25.90 o
4	-2	3	1687.26	1570.46	35.06 o
-7	-1	3	364.89	313.38	40.44 0
-5	_1	3	593.83	507.48	29.86 0
_4	_1	3	78 32	70 63	19 08 0
_3	_1	3	3042 63	2802 34	32 09 0
-5	-1	2	2672 22	2520 50	20 50 0
-1	-1	່ ວ	2072.32	1025 00	20.39 0
1	-1	ა ე	900.27	1035.00	10.37 0
1	-1	ა ე	998.01 514 20	903.05	31.79 0
2	-1	3	514.20	541.00	12.27 0
3	-1	3	220.90	209.52	14./5 0
4	-1	3	469.17	495.18	29.47 0
5	-1	3	264.50	247.21	62.41 o
-4	0	3	294.58	274.06	17.61 o
-3	0	3	630.79	610.75	19.44 o
-2	0	3	1219.74	1294.72	20.68 o
-1	0	3	4475.30	4437.24	27.61 o
0	0	3	1080.77	1029.59	18.98 o
1	0	3	311.67	312.09	16.65 o
2	0	3	1727.96	1824.20	19.47 o
3	0	3	438.89	468.91	18.00 o
-5	1	3	126.92	131.90	22.19 o
-4	1	3	444.50	556.52	26.15 o
0	1	3	74,79	72.46	9.62 0
3	1	3	102.75	91.77	13,11 0
_7	2	3	801 42	985 87	57 88 0
-6	2	3	109 42	131 85	31 96 0
_1	2	3	66 81	108 76	26 01 0
-4	2	2		22/ 12	12 71 0
2	2	2	211.00	234.13	12.71 0
د ۸	2	ა ე	1102.09	1327.42	29.10 0
4	2	3	334.55	362.06	33.40 0
5	2	3	245.59	261.97	56.93 0
-6	3	3	160.99	216.77	34.88 0
-4	3	3	491.24	546.21	25 . 19 o
-2	3	3	4810.60	5065.42	49.81 o
-1	3	3	603.68	692.76	18.29 o
0	3	3	4378.58	4752.75	42.13 o
2	3	3	495.19	545.45	18.14 o
3	3	3	409.65	369.11	22.21 o
4	3	3	240.50	194.42	32.20 o
-4	4	3	128.89	130.95	23.71 o
0	4	3	655.99	619.16	19.33 o
2	4	3	519.30	472.88	21.26 o
3	4	3	444.74	414.65	30.84 o
4	4	3	270.50	221.67	58.54 o
5	4	3	179.14	207.30	64.30 o
6	4	3	221.55	192.12	48.28 0
_7	5	3	349.04	340,72	50.94 0
, _5	5	ך ג	420 34	412 86	35 17 0
_3 _7	5	2	701 70	772 00	33.170
 2	2	່ ວ	/ 24 • / Z / 15 52	112.02	21.12 U
-2 1	5	ა ი	410.00	413.33	19.33 0
-1	с 5	ა ი	431.02	404.03	10.73 0
U 1	2 -	3	200.45	502.19	19.54 0
1 ^	5	3	151.45	1//.46	18.97 0
3	5	3	303.64	384.41	28.31 o
5	5	3	215.79	269.61	72.85 o

-8	6	3	187.34	203.80	60.06 o
-6	6	3	229.12	306.73	46.71 o
-4	6	3	1603.21	1858.33	39.59 o
1	6	3	48.85	56.58	17.43 o
3	6	3	92.20	87.35	27.19 o
-4	7	3	176.51	206.96	28.11 o
-3	7	3	263.64	240.49	22.25 o
0	7	3	303.20	286.69	19.41 o
1	, 7	3	616.32	660.86	32,17 0
3	7	3	581 43	603 71	38 29 0
_3	, 8	3	102 48	97 45	22 53 0
-5	0	2	7/ 90	110 10	22.55 0
5	0	ך ר	74.09	202 00	52.92 0
-0	9	3 2	209.33	202.90	37.24 0
-4	9	ა ე	002.10	202.71	30.48 0
-2	9	3	387.92	334.01	27.02 0
0	9	3	492.88	507.59	32.18 0
-3	10	3	316.39	272.05	30.17 0
-1	10	3	207.56	203.21	33.17 o
1	10	3	652.93	752.24	46.27 o
-3	13	3	153.36	156.38	51.35 o
3	-13	4	149.85	201.89	51.89 o
-1	-11	4	314.36	275.07	34.78 o
0	-11	4	116.49	125.89	31.56 o
-1	-10	4	215.88	193.66	31.12 o
1	-10	4	211.59	221.06	35.43 o
3	-10	4	299.76	297.18	33.30 o
5	-10	4	374.72	333.79	43.37 o
-4	-9	4	186.19	168.85	34.48 o
-1	-9	4	448.27	444.08	27.58 o
0	-9	4	451.00	523.17	31.11 0
1	_9	4	213.98	234.08	27.54 0
6	_9	4	377 54	450 13	72 67 0
_1	-8	4	463 71	478 87	28 45 0
-1	-0		273 65	317 76	20.45 0
2	-0	4	158 30	103 03	22.71 0
2	-0	4	430.30	493.03	29.07 0
4	-0	4	125.00	174.25	36.77 0
-2	-/	4	135.35	125.06	25.06 0
-1	-/	4	510.00	506.78	41.50 0
0	-/	4	484.75	421.78	23./6 0
T	-7	4	470.72	395.12	20.27 0
2	-7	4	532.07	472.96	21.60 o
3	-7	4	255.19	183.34	31.09 o
-6	-6	4	165.74	155.10	43.10 o
-2	-6	4	842.35	835.55	46.02 o
-1	-6	4	515.65	491.28	25.29 o
0	-6	4	203.88	176.91	20.99 o
1	-6	4	224.23	218.02	16.97 o
4	-6	4	1356.27	1136.79	42.44 o
6	-6	4	293.42	254.11	55.99 o
-7	-5	4	309.38	235.89	58.95 o
-5	-5	4	862.75	736.83	38.42 o
-3	-5	4	969.73	858.10	37.21 o
-2	-5	4	196.40	154.11	22.10 o
-1	-5	4	2449.95	2134.97	37.65 0
Ô	_5	4	182.56	153.22	20.09 0
1	_5	4	1033.47	1004.16	25.96 0
2	-5		282 12	297 70	20.63.0
2	_5 _5	т Л	202.IJ 178 02	407 72	20.03 0
د ۸	-0 5	4 1	310 67	222 10	20.92 0
4		4	31U.0/	JJZ • 40	JJ.27 0
5	-5 -	4	2/2.03	240.5/	43.3/0
6	-5	4	1/0.23	188.23	54.JI O

-6	-4	4	79.37	111.60	34.63 o
1	-4	4	112.33	106.85	13.52 o
3	-4	4	59.58	73.99	14.04 o
4	-4	4	709.34	816.83	44.74 o
-3	-3	4	74.16	67.36	15.97 o
-2	-3	4	101.92	106.38	13.64 o
-1	-3	4	124.07	98.95	15.99 o
0	-3	4	706.18	693.29	20.59 o
1	-3	4	594.72	683.26	17.15 o
2	-3	4	661.36	664.73	16.83 0
3	-3	4	168.83	171.21	16.07 0
_7	-2	4	283 85	258 95	39 83 0
_5	_2	-1 /	567 16	512 43	30 43 0
_3	-2		3337 87	2061 67	31 76 0
-2	-2		106 92	126 03	12 65 0
-2 1	-2	4	2017 19	2470 00	12.05 0
-1	-2	4	2917.10	2470.09	23.32 0
1	-2	4	/02.15	712.80	10.55 0
T	-2	4	615.81	583.86	22.43 0
2	-2	4	882.16	//4.55	12.69 0
3	-2	4	185.17	208.39	19.89 0
4	-2	4	378.22	331.20	33.40 o
5	-2	4	227.43	294.50	65.78 o
7	-2	4	239.10	355.34	91.66 o
-7	-1	4	236.98	170.62	39.02 o
-6	-1	4	559.05	528.31	37.60 o
-4	-1	4	484.18	406.47	28.21 o
-3	-1	4	320.66	330.54	16.95 o
-1	-1	4	4884.00	4738.73	29.87 o
0	-1	4	4966.72	4771.76	36.56 o
1	-1	4	566.79	641.91	33.39 o
2	-1	4	1806.29	1772.66	30.60 o
4	-1	4	2689.65	2818.38	64.44 o
5	-1	4	322.65	341.81	68.93 o
-4	0	4	298.05	354.06	27.89 o
-2	0	4	79.21	73.30	11.06 0
-1	0	4	1684.45	1849.90	19.28 0
2	0	4	32.40	40.54	12.38 0
3	Ő	4	1315.04	1579.88	28.27 0
5	0	4	674 74	848 27	51 83 0
7	0	-1 /	208 36	33/ 29	91.03.0
_7	1		200.30	385 10	/9 82 0
-7	1		838 03	955 95	29 / 8 0
-J 2	1	4	75 25	09 11	13 52 0
-2	1	4	1260 15	1260 11	21 09 0
-1	1	4	222 24	250.22	12 60 0
1	1	4	322.34	339.23	
1 7	1	4	120.05	149.40	9.91 0
-/	2	4	1/4./9	136.81	38./1 0
-6	2	4	282.63	288.93	35.11 0
-4	2	4	641.43	674.70	30.42 0
-3	2	4	125.68	118.31	17.07 o
-2	2	4	8611.00	7573.50	54.40 o
0	2	4	3582.85	4317.50	38 . 90 o
2	2	4	1435.36	1400.37	23.09 o
3	2	4	986.10	832.19	31.43 o
4	2	4	367.50	353.73	53.78 o
-6	3	4	312.97	253.24	31.01 o
-5	3	4	216.15	184.59	25.68 o
-3	3	4	791.11	789.42	25.28 o
-2	3	4	1099.94	945.45	24.46 o
-1	3	4	1530.39	1635.95	26.82 o
1	3	4	1207.85	1240.04	25.15 o

3	3	4	1962.55	1684.85	56.50 o
5	3	4	1107.82	883.03	82.47 o
-6	4	4	330.15	268.00	38.81 o
-4	4	4	281.81	269.89	26.29 o
-1	4	4	313.09	392.91	22.00 o
2	4	4	250.61	230.60	21.43 o
-6	5	4	69.04	110.62	35.56 o
-4	5	4	779.41	894.15	36.45 o
-3	5	4	177.89	252.54	27.02 0
-1	5	4	356.94	452.79	24.49 0
-7	6	4	167.21	188.46	50.41 0
-6	6	4	160 62	174 18	38 20 0
_1	6	1	267 05	362 83	32 92 0
	6		305 12	336 86	24 45 0
-5	6	4	58 02	76 47	17 73 0
-2	6	4	1466 90	1640 60	22 26 0
-1	6	4	1400.80	1040.00	33.300
1	0	4	959.49	1035.60	20.75 0
3	6	4	940.59	998.61	41.13 0
-6	/	4	256.49	243.90	48.08 0
-4	7	4	149.19	140.39	32.35 0
-2	7	4	622.61	610.36	22.44 o
-1	7	4	284.97	255.55	21.32 o
0	7	4	45.68	58.18	19.24 o
1	7	4	259.60	278.60	29.52 o
4	7	4	572.60	501.80	82.25 o
-5	8	4	215.05	148.36	38.28 o
-4	8	4	285.08	237.01	35.63 o
-3	8	4	187.68	152.89	27.73 o
-1	8	4	283.13	261.77	24.51 o
0	8	4	92.24	95.33	22.59 o
-3	9	4	92.53	132.37	26.05 o
-1	9	4	428.11	398.25	28.13 o
0	9	4	140.94	140.02	34.47 o
-4	10	4	145.92	146.21	38.66 o
-3	10	4	121.61	145.96	28.53 o
-1	10	4	132.91	145.86	32.66 0
2	10	4	234.94	246.26	42.34 0
_3	11	4	503.91	449.96	42.69 0
_1	11	1	131 31	143.67	37 52 0
- 3	_12	- 5	146 42	145.07	37.00 0
-5	-12	5	297 40	270 47	37.00 0
-1	-12 12	5	207.49	270.47	12 07 0
1 2	-12	5	2/1./9	251.51	42.07 0
Z 1	-11	5	299.01	200.51	41.30 0
4	-11	5	248.00	207.34	39.01 0
-3	-9	2	303.98	385.95	27.39 0
-1	-9	5	6/6.36	681.29	29.14 0
1	-9	5	388.64	348.92	29.05 0
-5	-8	5	183.16	181.63	36.03 0
-4	-8	5	233.51	256.84	31.28 o
-2	-8	5	212.66	211.05	21.79 o
0	-8	5	1127.35	1154.59	33.53 o
1	-8	5	142.91	123.75	24.41 o
2	-8	5	1297.99	1270.03	35.20 o
4	-8	5	320.04	372.49	54.71 o
6	-8	5	356.03	338.26	89.48 o
-1	-7	5	312.56	305.46	33.41 o
0	-7	5	188.44	179.06	26.89 o
3	-7	5	331.14	318.34	43.77 o
5	-7	5	452.99	382.81	80.71 o
-5	-6	5	460.75	447.11	43.49 o
-4	-6	5	113.64	104.59	24.90 o

-3	-6	5	273.57	261.88	27.53 o
-1	-6	5	176.85	195.55	22.90 o
1	-6	5	294.60	271.31	21.83 o
-5	-5	5	300.67	327.24	40.52 o
1	-5	5	45.38	53.87	16.26 o
4	-5	5	544.07	591.67	66.67 o
6	-5	5	445.17	459.59	86.85 o
-7	-4	5	94.06	167.01	43.49 o
-6	-4	5	110.19	139.23	34.18 o
-5	-4	5	298.12	338.48	32.27 o
-4	-4	5	91.28	130.15	23.95 o
-3	-4	5	353.05	322.81	23.44 0
-2	-4	5	518.74	456.88	20.87 0
_1	_4	5	505.92	493.54	21.93 0
0	_4	5	955.31	907.42	27.43 0
1	_4	5	1411 34	1373 25	25 88 0
2	_1	5	105 07	101 83	12 37 0
2	_1	5	1085 27	880 72	38 60 0
5	-4	5	916 79	640 37	91 42 0
7	-4	5	524 97	200 20	02 20 0
6	-4	5	120 /0	290.00	93.20 0
-0	- J 2	5	120.49	102.90	29.00 0
-4	-3	5	763.93	089.09	29.71 0
-3	-3	5	213.03	203.35	16.49 0
-2	-3	5	1036.90	922.80	20./3 0
1	-3	5	82.55	89.45	11.88 0
2	-3	5	195.92	227.44	19.36 o
3	-3	5	87.31	64.80	15.58 o
-6	-2	5	121.11	135.52	32.70 o
-4	-2	5	441.54	389.97	21.59 o
-3	-2	5	313.29	278.68	16.63 o
-2	-2	5	1693.80	1531.51	21.88 o
0	-2	5	1002.33	944.45	21.05 o
1	-2	5	282.29	328.33	17 . 11 o
2	-2	5	1497.17	1391.13	48.81 o
4	-2	5	691.15	551.82	40.56 o
-7	-1	5	378.67	381.24	41.72 o
-5	-1	5	128.35	157.65	27.47 o
-4	-1	5	980.88	944.95	42.21 o
-3	-1	5	99.24	86.51	18.13 o
-2	-1	5	687.49	610.67	17.36 o
-1	-1	5	3071.21	3310.61	30.02 o
3	-1	5	1417.66	1730.82	49.20 o
7	-1	5	347.17	558.63	96.93 o
-3	0	5	173.97	199.87	18.27 o
-2	0	5	1224.65	1487.04	23.39 o
3	0	5	204.72	184.50	18.49 o
4	0	5	481.79	547.49	49.77 o
5	0	5	115.26	160.94	41.37 0
6	0	5	492.29	706.32	91.57 0
-5	1	5	431.79	470.33	24.29 0
_4	1	5	143.75	161.60	25.36 0
-3	1	5	465.78	534.75	22.47 0
_2	1	5	379 13	355 94	17 10 0
_1	1	5	1549 78	1700 1/	28 8/ 0
-1	1	۲ ۲	501 10	1122 • 14 671 16	20.04 U
0	1	5	JUL.49	102 00	12 10 -
2	1	5	150 70	103.90	12.12 0
ა F	1 1	Э Г	100.12	12/./0	37.70 O
-5	2	5 -	224.00	210.13	23.12 0
-4	2	5	13/.44	126.04	22.84 0
-3	2	5	209.06	214.32	20.23 0
0	2	5	124.43	148 . 80	12.38 O

1	2	5	2321.85	2201.96	28.61 o
2	2	5	133.75	129.09	14.48 o
3	2	5	646.18	701.33	58.14 o
5	2	5	533.78	521.65	72.32 o
-8	3	5	318.68	279.18	61.32 o
-6	3	5	1040.60	1047.97	39.73 o
_4	3	5	395.87	316.29	26.83 0
_2	3	5	817 88	848 58	25 17 0
_1	3	5	2509 31	2572 64	39 63 0
0	3	5	886 70	106/ 78	26 65 0
2	2	5	132 03	175 24	20.05 0
2	ר ר	5	452.95	475.24	23.28 O
د ۸	с С	5	325.10	430.13	54.98 0
4	3	5	42/./2	456.54	64.05 0
-/	4	5	157.24	200.21	49.07 0
-5	4	5	402.04	435.70	35.87 0
-1	4	5	3777.69	4227.49	51.25 o
0	4	5	64.83	74.20	21.43 o
4	4	5	182.24	205.71	61.61 o
-2	5	5	150.80	176.99	24.29 o
-1	5	5	153.29	162.86	31.59 o
2	5	5	626.72	643.66	41.01 o
3	5	5	364.09	396.82	33.31 o
4	5	5	321.22	333.85	71.84 o
-6	6	5	298.11	254.33	40.53 o
-4	6	5	121.18	99.79	31.03 o
-3	6	5	174.80	132.94	23.38 o
-2	6	5	243.49	236.75	20.78 o
1	6	5	134.63	114.10	31.91 0
2	6	5	128.71	102.92	28.59 0
_7	7	5	277 02	207 64	60 52 O
_5	7	5	723 30	597.33	13 29 0
_3	7	5	561 32	/03 01	30 70 0
-5	7	5	000 02	493.91	30.70 0
-1 1	7	5	999.02 452 45	160 20	29.00 0
1	7	5	452.45	400.30	33.04 0
3	/	5	1/1./2	193.95	34.00 0
-2	8	5	259.45	246.37	30.62 0
0	8	5	1062.74	1123./1	37.58 0
T	8	5	66.96	115.20	32.30 0
2	8	5	269.01	321.02	36.65 O
-5	10	5	214.16	179.62	55.55 o
-3	10	5	308.77	290.48	35.81 o
-1	10	5	157.22	215.29	34.53 o
-2	11	5	360.04	277.39	50.19 o
0	11	5	264.03	168.40	47.87 o
2	11	5	259.05	173.18	51.49 o
0	-12	6	111.38	134.79	40.37 o
2	-12	6	350.96	310.16	45.65 o
-2	-11	6	83.88	94.57	30.28 o
0	-11	6	93.43	99.27	27.37 o
1	-11	6	146.74	177.33	39.53 o
3	-11	6	93.19	175.67	41.66 o
-3	-10	6	79.27	82.25	26.78 o
-2	-10	6	385.26	384.70	28.14 0
0	-10	6	178.57	177.87	30.45 0
-2	_9	6	103.06	110.27	23.48 0
<u>د</u>	_0	6	156 63	132 /3	27 05 0
2	_0	6	350 01	355 21	36 87 0
2	_9	6	105 01	167 55	37 68 0
ר בי	-9	6	102 76	165 50	11 07 0
-⊃ ^	-0	U C	1/0 70	1/2 40	44.07 O
-4	-×	o c	148./U	142.60	30.93 0
-2	-8	0	104.21	110.12	21.J/ O

-1	-8	6	137.60	128.49	22.07 o
0	-8	6	227.02	258.94	26.20 o
1	-8	6	423.62	428.91	30.98 o
2	-8	6	155.65	163.37	29.89 o
3	-8	6	234.82	204.74	42.79 o
5	-8	6	287.97	209.40	58.24 o
-4	-7	6	633.59	632.78	33.16 o
-2	-7	6	703.95	670.44	27.09 0
0	-7	6	344.91	359.14	24.79 0
1	_7	6	128.87	154.84	26.84 0
2	_7	6	669 31	673 44	26.83.0
2	_7	6	287 85	276 55	32 85 0
2	- 1	6	207.03	210.00	27 27 0
2	-0	6	11/ 99	147 54	19 15 0
2	-0	6	114.00	147.04	40.45 0
-3	-5	6	140 62	294.13	20.80 0
-2		0	140.03	134.76	23.91 0
0	-5	6	287.27	2/8.55	27.91 0
1	-5	6	109.07	93.75	18.86 0
3	-5	6	497.98	471.04	52.64 o
5	-5	6	517.43	396.61	76.53 o
-8	-4	6	136.32	151.47	48.11 o
-6	-4	6	406.10	370.16	37.21 o
-4	-4	6	2018.64	1895.18	41.81 o
-2	-4	6	133.98	127.40	22.20 o
0	-4	6	1955.34	1733.68	33.29 o
1	-4	6	1627.84	1427.94	25.86 o
2	-4	6	1571.21	1496.02	36.85 o
5	-4	6	353.51	342.70	68.92 o
-5	-3	6	151.02	129.84	28.97 o
-4	-3	6	79.31	134.79	25.12 0
-3	-3	6	1202.89	1118.61	26.22 0
-2	-3	6	126 93	128 90	15 57 0
_1	_3	6	2758 01	2346 79	12.09 0
-1	-3	6	21/3 01	2240.75	42.09 0
2	-5	6	1/11 56	1/10 76	40.00 0
1	-5	6	20 26	01 /0	03.200
-4	-2	6	09.30 511 31	01.49 574.04	22.17 0
1	-2	0	JII.ZI	574.94	21.40 0
T	-2	0	1/1.92	215.24	13.86 0
4	-2	6	519.05	533.09	38.64 0
-4	-1	6	853.43	954.67	26.62 0
-3	-1	6	121.33	114.43	17.24 o
0	-1	6	1622.32	1770.79	26.94 o
4	-1	6	331.24	316.31	41.27 o
6	-1	6	246.75	316.69	85.45 o
-5	0	6	1262.46	1284.47	30.82 o
-3	0	6	1474.16	1352.67	31.60 o
-2	0	6	53.44	48.69	12.97 o
-1	0	6	1968.44	1642.96	26.28 o
1	0	6	4862.55	4525.05	46.95 o
3	0	6	979.77	850.44	52.91 o
6	0	6	215.87	251.52	82.51 o
-5	1	6	281.21	259.77	23.36 o
-4	1	6	242.30	200.38	23.35 0
-3	1	6	332.46	333.79	20.29 0
-2	1	6	53.69	55.79	15.05 0
0	1	6	2231 03	2210 63	28 88 0
2	1 1	6	1800 16	1760 10	20.00 0
∠ ∧	1	6	205 140	1/00.12 262 06	52 00 -
4 6	1	0	500 20	203.90 520 41	04 14 -
6	Ţ	0	509.20	238.41	94.14 O
-6	2	6	203.20	2/8.82	32.75 0
-5	2	6	126.94	112.25	25.55 O

-4	2	6	142.70	160.02	26.32 o
-3	2	6	203.38	193.68	24.02 o
-2	2	6	120.82	156.86	17.59 o
-1	2	6	73.58	76.29	19.71 o
-7	3	6	110.20	175.86	39.44 o
-3	3	6	2176.01	2383.02	42.18 o
3	3	6	278.31	381.72	55.18 o
-5	4	6	357.75	466.15	36.90 0
_4	4	6	318.69	401.96	31.23 0
_2	4	6	440 91	518 32	27 93 0
_1	- Л	6	271 90	293 92	25 76 0
-1	4	6	1400 47	1673 03	27.84.0
1	4	6	111 02	122.25	37.04 0
1	4	0 C	1002 50	1000 07	35.19 0
2	4	0	201 01	1098.07	40.45 0
3	4	6	201.01	269.13	59.97 0
4	4	6	1159.66	9/3.35	90.97 0
-7	5	6	180.28	172.53	47.23 0
-5	5	6	490.30	457.52	38.21 o
-4	5	6	140.04	116.41	31.24 o
-1	5	6	166.83	151.26	33.45 o
0	5	6	164.43	153.98	26.22 o
1	5	6	329.67	365.65	28.12 o
2	5	6	57.30	123.92	34.64 o
-5	6	6	298.53	297.87	38.38 o
-3	6	6	289.84	246.81	26.34 o
-2	6	6	340.08	325.27	27.43 o
-1	6	6	450.86	446.23	28.97 o
0	6	6	80.03	85.54	23.21 o
1	6	6	148.49	131.20	34.80 o
_4	7	6	119.62	147.14	34.12 0
_2	. 7	6	373 37	422 71	27 27 0
1	7	6	82 91	138 85	31 05 0
_5	, 8	6	273 38	314 68	40 83 0
-2	8	6	133 61	153 31	20.68 0
-2	0	6	155.01	115 22	29.00 0
-1	0	6	294.00	113.33	20.11 0
1	0	0	364.09	494.08	30.13 0
1	8	6	109.79	126.28	33.44 0
3	8	6	227.09	288.23	48./2 0
-6	9	6	169.03	179.63	58.31 O
-4	9	6	287.55	251.44	44.21 o
-2	9	6	93.39	129.43	36.03 o
-2	10	6	291.31	237.15	43.67 o
1	-13	7	92.33	145.38	36.81 o
-4	-11	7	109.82	177.69	40.09 o
0	-11	7	99.89	113.47	28.07 o
2	-11	7	201.60	195.47	42.47 o
-3	-10	7	113.79	157.65	27.54 o
-1	-10	7	119.94	133.21	27.62 o
1	-10	7	313.47	352.60	39.35 o
3	-10	7	372.05	421.25	43.98 o
-4	-8	7	340.56	364.83	37.87 o
-2	-8	7	495.31	518,91	24.93 0
_1	-8	7	137.22	157.89	22.83 0
Ô	_8	, 7	273.74	327 42	32.00 0
2	R	, 7	136 38	120 08	32 38 0
2	-0 0	7	174 50	200 50	15 10 0
ט ב	-0 7	7	125 24	200.00	42.01 0
-5 1	- /	7	1410 60	203.13	43.91 0
L F	-/	/ 7	1410.09	15/2.11	40.03 0
5	-/	/	292.18	33/.93	/9.0/ 0
-3	-6	7	68.97	86.95	23.29 o
-2	-6	7	274.25	243.50	27.36 o

-1	-6	7	354.81	333.04	26.17 o
2	-6	7	452.70	432.46	29.62 o
4	-6	7	485.24	531.19	67.05 o
-6	-5	7	135.96	141.95	43.42 o
-5	-5	7	172.14	193.58	39.24 o
-4	-5	7	261.08	269.76	30.39 o
-3	-5	7	111.37	103.05	22.05 o
-2	-5	7	128.04	143.00	24.07 o
1	-5	7	118.91	80.50	24.03 o
2	-5	7	116.19	115.11	32.13 o
-3	-4	7	648.03	613.82	25.16 o
-2	-4	7	105.59	108.48	22.21 o
-1	-4	7	2983.59	2754.11	46.25 o
0	-4	7	105.10	76.62	19.02 o
1	-4	7	1292.39	1219.89	32.70 0
3	_4	7	599.66	644.03	54.53 0
-8	-3	7	155.78	172.19	47.57 0
_4	-3	, 7	560 94	546 97	28 14 0
_3	-3	7	1062 94	1116 02	34 57 0
_2	_3	7	614 14	596 14	25 09 0
-2	-3	7	72 75	113 68	23.09.0
1	-5	7	1019 /3	071 93	27.48
2	-5	7	2555 52	2160 59	27.40 0
Z 1	-3	7	2333.33	041 40	91.53 0
4	-3	7		502 20	70.02 0
07	-3	7	517.57	202.20	92.30 0
-/	-2	7	223.50	320.85	45.57 0
-3	-2	7	582.16	642.74	24.90 0
-1	-2	/	/25.32	883.13	26.16 0
1	-2	/	1/2.40	141.20	14.59 0
2	-2	7	316.23	356.95	37.48 0
5	-2	/	151.86	209.66	66.79 0
-5	-1	7	155.86	133.29	23.16 0
-4	-1	7	221.54	190.22	21.11 o
-3	-1	7	700.66	664.57	24.49 o
-1	-1	7	551.14	479.93	19.11 o
0	-1	7	1221.90	1229.87	26.25 o
1	-1	7	652.96	625.21	48.69 o
2	-1	7	166.42	177.81	39.20 o
-5	0	7	395.14	356.57	24.22 o
-4	0	7	307.47	310.33	20.11 o
-3	0	7	548.29	474.76	35.30 o
0	0	7	2885.71	2431.85	31.39 o
1	0	7	39.11	36.38	11.66 o
4	0	7	274.18	203.17	45.48 o
6	0	7	721.13	821.30	106.51 o
-7	1	7	179.67	191.32	39.28 o
-5	1	7	575.39	566.21	26.51 o
-3	1	7	2105.34	1944.86	42.52 o
-1	1	7	193.88	201.71	18.22 o
0	1	7	799.21	762.90	22.19 o
1	1	7	340.69	334.64	24.24 o
2	1	7	786.52	856.70	37.69 o
3	1	7	390.13	354.33	33.73 o
-6	2	7	107.90	161.05	30.22 o
-5	3	7	112.19	122.72	33 . 56 o
-2	3	7	191.85	191.37	24.23 o
0	3	7	516.00	521.59	27.15 o
2	3	7	326.17	347.71	37.13 o
3	3	7	301.10	389.38	61.75 o
4	3	7	525.46	484.69	74.55 o
-7	4	7	376.93	411.63	54.47 o

-5	4	7	414.89	450.65	39.15 o
-4	4	7	184.56	160.98	30.63 o
-3	4	7	199.80	206.59	27.50 o
-2	4	7	312.61	263.84	29.00 o
-1	4	7	305.36	294.08	28.08 o
0	4	7	105.19	99.15	32.75 o
1	4	7	322.19	285.81	35.61 0
2	4	7	262 96	249 84	57 41 0
_6	5	7	158 75	133 67	38 77 0
_1	5	7	10/0 03	016 5 <i>1</i>	<i>41</i> 77 0
-4	5	7	1014 50	910.54	20 00 0
-2	5	7	122 60	157 70	
-1	С	7	132.69	1020 74	28.98 0
0	5	/	986.11	1020.74	40.38 0
T	5	/	159.70	167.86	27.19 0
2	5	7	211.87	203.62	59.43 o
3	5	7	187.65	221.28	65.73 o
-3	6	7	138.08	85.58	27.98 o
1	6	7	719.32	810.06	47.42 o
2	6	7	96.02	180.99	41.13 o
3	6	7	312.52	421.28	46.81 o
-5	7	7	83.83	138.37	38.79 o
-3	7	7	60.32	97.72	28.95 o
-6	8	7	261.69	205.40	58.36 o
-4	8	7	489.94	452.35	47.15 o
-2	8	7	411.69	341.23	33.72 o
0	8	7	303.15	227.48	48.99 0
2	8	7	146.14	150.33	38.43 0
_1	9	, 7	511 46	424 58	50 43 0
1	0	, 7	364 26	363 70	12 54 0
2	9	7	159 05	100 08	42.J4 O
1	10	7	130.93	190.90	59.00 O
-1	12	/	234.34	106.06	88.99 U
-1	-11	8	156.49	180.00	29.88 0
3	-11	8	293.41	285.20	45.38 0
-2	-10	8	103.89	117.26	25.86 0
-1	-10	8	228.81	267.32	29.49 o
0	-10	8	130.45	141.79	36.81 O
4	-10	8	310.67	367.16	65.38 o
-3	-9	8	269.20	278.23	31.31 o
-1	-9	8	268.38	290.58	27.72 o
2	-9	8	155.69	175.32	36.80 o
1	-8	8	261.21	273.89	33.09 o
2	-8	8	206.84	191.65	35.31 o
3	-8	8	239.37	232.23	47.89 o
-3	-7	8	302.75	304.19	28.47 o
-1	-7	8	194.89	231.54	28.98 o
2	-7	8	560.22	513.42	45.45 o
-5	-6	8	253.25	280.29	43.94 0
-3	-6	8	897.10	870.67	30.85 0
_1	-6	8	546 91	558 35	30,46,0
-1	-6	8	117 08	115 / 8	31 48 0
1	-0	0	202 12	221 40	27 45 0
т С	-0	0	272.12 212 10	321.49 202 05	J . 45 0
ک م	-0	ð	213.10	292.95	10.95 0
4	-6	8	199.94	234.94	63.43 O
-2	-5	8	/01.69	604.44	27.30 0
-1	-5	8	189.17	174.24	28.18 o
0	-5	8	1008.36	850.54	36.57 o
2	-5	8	484.05	500.71	67.36 o
4	-5	8	257.09	186.38	57.84 o
-2	-4	8	109.87	93.16	22.41 o
2	-4	8	245.48	298.91	30.25 o
3	-4	8	123.97	180.38	44.68 o

5	-4	8	219.48	200.69	66.86 o
-5	-3	8	741.12	913.34	52.58 o
-1	-3	8	775.54	742.34	27.57 o
1	-3	8	641.47	566.19	38.25 o
2	-3	8	213.51	156.42	49.25 o
3	-3	8	202.99	223.17	50.77 o
-7	-2	8	148.62	133.99	42.96 0
_4	-2	8	415.11	394.83	25.42 0
_2	_2	8	2947 56	2684 24	11 19 0
-2	-2	8	1300 73	1150 17	28 72 0
1	-2	0	162 02	127 22	20.72 0
1 2	-2	0	102.92	1061 10	29.90 0
Z	-2	8	1209.96	1001.18	60.52 0
4	-2	8	400.94	408.91	40.45 0
-2	-1	8	148.60	129.87	22.06 0
-1	-1	8	130.67	104.83	17.42 o
1	-1	8	514.30	454.40	32 . 86 o
-7	0	8	185.64	180.88	40.94 o
-5	0	8	200.39	209.55	23.75 o
-4	0	8	193.40	169.05	20.02 o
-3	0	8	637.75	611.16	26.95 o
-1	0	8	355.72	326.22	24.74 o
0	0	8	228.80	200.91	17.35 o
-8	1	8	126.80	182.36	56.13 o
-3	1	8	59.15	72.33	19.12 o
-7	2	8	141.36	169.01	40.93 o
-4	2	8	448.71	505.26	27.38 o
-3	2	8	373.81	422.72	23.61 0
-2	2	8	127.38	139.46	25.44 0
_1	2	8	984.85	1072.96	31.21 0
1	2	8	768 13	817 67	56 86 0
3	2	8	1041 73	981 04	78 04 0
5	2	0	164 74	207 27	37 77 0
-0 4	2	0	04.74	207.27	37.77 0
-4		0	01.47	91.75	24.07 0
-0	4	0	162.40	124.70	39.12 0
-4	4	8	004.30 520 10	724.96	40.34 0
-2	4	8	530.18	528.55	36.79 0
-1	4	8	109.94	142.44	28.58 0
0	4	8	845.60	824.26	47.02 o
-5	5	8	170.31	234.52	37.72 o
-3	5	8	423.62	495.40	37.99 o
-2	5	8	154.66	201.20	32.91 o
-1	5	8	263.84	338.46	33.00 o
-8	6	8	257.25	293.61	61.84 o
-3	6	8	176.56	186.74	36.89 o
-2	6	8	97.55	122.99	33 . 12 o
-1	6	8	122.36	155.88	27.53 o
2	6	8	276.86	364.11	73.97 o
-3	7	8	490.49	461.08	35.13 o
-2	7	8	203.56	147.73	30.20 o
-1	7	8	70.43	113.08	31.37 o
-3	8	8	186.20	171.15	33.24 o
-1	8	8	304.40	218.27	36.67 0
1	8	8	273.07	226.78	52.85 0
3	R	8	274.83	312.08	61.89 0
_5	10	8	208.96	199.36	55.60 0
_1	_1 ?	0	70 00	116 03	37 97 0
- T	-10 _10	9	105 07	165 22	13 00 0
2	-12 10	ע ה	152 01	103.23	4J.JJ U
د- 1	-10	9	702.01	192.00 221 77	22 0/ -
-1	-10	9	320.84	334.// 150 77	33.94 O
Ţ	-10	9	110.54	159.77	38.51 0
2	-9	9	282.37	322.95	40.18 O

4	-9	9	286.83	311.67	99.79 o
1	-8	9	85.69	106.06	32.69 o
-3	-7	9	420.69	484.28	33.30 o
-2	-7	9	137.87	117.46	27.31 o
-1	-7	9	233.61	265.10	26.87 o
-2	-6	9	965.02	925.36	32.33 o
-1	-6	9	175.64	172.92	29.02 o
0	-6	9	797.53	770.18	46.38 o
1	-6	9	142.96	193.79	62.94 0
2	-6	9	445.89	489.28	73.76 0
4	-6	9	883.44	940.06	103.34 0
_3	-5	9	65 02	81 36	26 01 0
_2	-5	9	158 60	164 10	24 70 0
_1	-5	0	323 13	368 03	32 54 0
-1	-5	9	152 95	208 56	52.54 O
1	-5	9	133.03	200.00	64 15 0
1 2	-5	9	203.47	515.50 621 27	04.15 0
ى د	-5	9	437.00	031.27	62.27 0
-0	-4	9	183.79	290.85	54.66 0
-5	-4	9	169.96	195.12	4/.13 0
-4	-4	9	182.18	219.32	28.34 0
-2	-4	9	55.27	90.95	22.28 o
-4	-3	9	147.83	132.50	23.31 o
-2	-3	9	1364.56	1298.02	35.15 o
0	-3	9	974.33	949.65	65.05 o
1	-3	9	169.23	121.20	37.91 o
2	-3	9	455.20	433.55	56.26 o
-5	-2	9	163.69	154.17	33.51 o
-3	-2	9	333.25	309.53	23.58 o
-2	-2	9	512.35	431.71	24.13 o
-1	-2	9	269.09	244.05	20.05 o
0	-2	9	326.27	319.37	49.23 o
5	-2	9	646.78	591.14	84.11 o
-6	-1	9	376.60	367.45	33.60 o
-4	-1	9	241.87	216.35	23.31 o
-2	-1	9	589.81	534.60	28.38 o
-1	-1	9	395.53	337.30	20.42 o
0	-1	9	239.33	204.82	30.92 0
4	-1	9	170.27	176.19	53.48 0
_1	0	9	578.48	556.09	31.81 0
0	0	9	153 31	197 67	45 41 0
2	0 0	9	236 32	256 03	45 05 0
_7	1	0	108 17	1/2 80	40.41 0
- /	1	9	00.27	111 24	28 77 0
-0	1	9	228 65	255 74	25.10 0
-4	1	9	230.03	255.74	25.40 0
-1	1	9	522 00	970.05	56.02 0
1	1	9	523.90	472.23	56.30 0
3	1	9	454.76	377.07	65.18 0
-8	2	9	1/7.96	231.79	59.91 0
-6	2	9	346.44	393.25	40.11 0
-4	2	9	390.44	362.09	27.18 0
-3	2	9	113.09	102.26	22.26 O
-2	2	9	798.45	697.77	34.42 o
-1	2	9	289.37	261.80	35.17 o
1	2	9	345.70	339.25	51.71 o
3	2	9	243.77	280.11	60.48 o
4	2	9	474.58	344.06	68.92 o
-5	3	9	298.42	247.97	36.06 o
-4	3	9	147.68	166.82	31.90 o
-3	3	9	463.12	415.94	35.55 o
-1	3	9	874.31	760.56	36.52 o
0	3	9	98.62	91.70	27.50 o

1	3	9	378.77	424.34	56.33 o
-1	4	9	137.96	167.19	31.03 o
0	4	9	244.52	205.88	39.64 o
2	4	9	229.47	323.93	63.77 o
-8	5	9	238.45	285.13	63.34 o
-4	5	9	177.97	189.49	35.28 o
-3	5	9	102.88	171.50	36.04 o
-2	5	9	77.07	125.39	33.46 o
-1	5	9	116.13	154.21	33 . 15 o
2	5	9	238.74	305.82	74.37 o
-7	6	9	175.34	223.32	60.46 o
-5	6	9	157.02	150.79	42.05 o
-3	6	9	1091.59	1036.32	50.85 o
-1	6	9	480.60	426.83	41.88 o
3	6	9	190.15	230.50	56.79 o
-2	7	9	213.88	151.52	32.79 o
0	7	9	244.82	204.34	47.78 o
2	7	9	284.16	282.98	60.95 o
-5	9	9	246.53	297.45	59.14 o
-3	9	9	220.71	270.40	39.75 o
-2	10	9	275.03	224.06	53.81 o
2	10	9	186.56	235.61	75.76 o
0	-13	10	144.02	193.50	40.33 0
0	-9	10	143.51	229.75	49.23 0
1	-9	10	135.97	160.18	38.85 0
_4	-8	10	277.34	259.87	44.95 0
-2	-8	10	267.08	234.69	31.66 0
0	-8	10	161.22	165.96	44.60 0
1	-8	10	147.56	175.79	46.37 0
_1	-7	10	74.69	88.25	26.72 0
2	_7	10	199 77	307 51	79 16 0
2	_7	10	285 32	262 07	80 98 0
_4	-6	10	160.29	195.49	39,97 0
_2	-6	10	82 83	99 25	26 75 0
_1	-6	10	153 17	189 80	33 32 0
1	-6	10	231 68	374 14	74 67 0
3	-6	10	195 40	323 49	79 26 0
_4	-5	10	401 81	499 57	40 92 0
	-5	10	275 03	264 38	27 43 0
0	-5	10	922 25	958 66	50 07 0
1	-5	10	229 35	314 30	71 58 0
_3	_4	10	261 44	237 79	27 63 0
_1	_4	10	760.24	650.18	34,17 0
1	_4	10	899.93	748.16	74.01 0
1	-3	10	221.76	215.79	52.81 0
4	-3	10	229.83	254.51	67.80 0
_8	-2	10	157 75	180 79	53 29 0
-6	-2	10	466.71	484.41	41.95 0
_4	_2	10	149 90	176 47	27 98 0
_2	_2	10	389 64	373 89	2/ 98 0
_1	_2	10	339 26	345 52	30 61 0
0	_2	10	257 84	262 35	36 60 0
_7	1	10	87 07	173 10	40 85 0
-6	1	10	110 65	125 93	32 30 0
	 1	10	110.03	125.95	33 18 0
_1	-1 _1	10	1938 00	2000 21	56 38 0
2 - T	_1	10	285 25	3/18 0/	52 40 0
_6	۰ ۲ –	10	53.33	96 25	31 45 0
_5	0	10	61 45	116 10	30 75 0
_2	n N	10	108 35	124 69	26.81 0
0	0	10	383.86	419.20	59.09 0
-	~				

2	0	10	471.19	383.98	54.69 o
4	0	10	432.09	327.88	66.97 o
-6	1	10	131.73	132.03	36.23 o
-4	1	10	108.16	99.97	25.06 o
-2	1	10	104.65	106.47	28.07 o
-7	2	10	125.57	181.41	56.61 o
-5	2	10	645.06	595.51	33.82 o
-3	2	10	379.74	319.78	35.54 o
-1	2	10	738.09	617.25	35.98 o
1	2	10	828.03	744.39	67.57 o
-5	3	10	181.96	213.80	36.89 0
-4	3	10	43.58	98.40	32.22 0
-2	3	10	433.15	411.10	35.19 0
0	3	10	963.14	1031.55	50.45 0
-5	4	10	122.30	121.11	38.43 0
-5	- 5	10	136.68	154.05	42.74 0
-3	5	10	305.60	351.67	44.12 0
-2	5	10	105 02	113 71	36 27 0
_1	5	10	312 58	319 88	37 61 0
-1	6	10	359 10	260 07	34 75 0
-2	6	10	354 95	258 78	76 50 0
_2	7	10	1/0 02	138 12	34 87 0
-2	7	10	226 96	160 20	39 35 0
-1	/ 0	10	220.90	110.20	39.33 0
-5	0	10	95.70	152 14	19 22 0
-2	0 1 0	10	90.50	102 14	40.33 0
-4	-12	11	100.73	102.14	50.42 O
2	-1Z	11	100.33	1/9.25	49.20 0
-1	-11 11	11	120.20	221.72	43.91 0
T	-11	11	138.20	222.93	
-4	-9	11	170.09	227.49	48.05 0
-1	-8	11	2/3.00	324.17	39.46 0
1	-8	11	383.45	549.76	88.08 0
3	-8	11	343.06	489.33	96.99 0
-4	-0	11	192.07	228.01	40.62 0
-2	-6	11	134.02	135.80	29.26 0
-3	-5	11	249.88	236.45	31.57 0
-1	-5	11	396.85	359.92	34.21 0
1	-5	11	780.80	800.24	82.46 0
-5	-4	11	167.75	173.63	39.14 o
-4	-4	11	200.84	173.96	27.48 o
0	-4	11	476.97	443.17	68.03 o
1	-4	11	136.94	204.20	63.41 o
2	-4	11	531.96	443.90	75.88 o
-5	-3	11	158.49	131.04	37 . 24 o
-3	-2	11	601.31	683.59	37.07 o
-2	-2	11	378.31	415.97	32.28 o
1	-2	11	295.33	283.01	55.31 o
-6	-1	11	165.69	148.71	38.00 o
-5	-1	11	121.41	187.71	32.77 o
-4	-1	11	111.80	135.87	35.19 o
-1	-1	11	230.44	209.97	57.16 o
0	-1	11	577.93	571.12	66.05 o
2	-1	11	377.25	279.91	60.12 o
-5	0	11	447.97	381.77	35.08 o
-1	0	11	258.28	164.29	36.10 o
0	0	11	160.94	191.95	57.23 o
1	0	11	309.79	281.94	57.86 o
-5	1	11	83.28	99.40	32.44 o
-4	1	11	250.97	236.21	31.46 o
-2	1	11	328.72	333.74	33.38 o
-1	1	11	115.84	119.89	36.56 o

0	1	11	276.11	266.37	59.18 o
-2	2	11	179.50	217.53	34.58 o
1	2	11	134.18	180.56	55.55 o
2	2	11	301.52	456.38	70.20 0
_5	2	11	311 91	396 77	11 98 0
-5	2	11	291 /2	327 36	39 20 0
-3	2	11	201.42	125 (2)	22 71 -
-2	3	11	//.30	135.62	33./1 0
0	3	11	445.55	522.03	46.34 o
-6	4	11	248.23	226.11	58.50 o
-4	4	11	328.33	406.14	44.83 o
-2	4	11	329.91	373.14	40.16 o
0	4	11	402.76	340.53	66.91 o
2	4	11	238.60	232.55	75.07 o
-2	5	11	141,21	115.85	38.05 o
_1	5	11	231.10	170.90	37.29 0
_6	7	11	205 12	180 27	59 75 0
-0	7	11	205.12	109.27	59.75 0
-4	7	11	340.55	410.13	57.98 0
-2	/	11	277.28	265.96	51.16 0
0	7	11	220.76	280.46	73 . 93 o
-1	8	11	193.98	219.37	68.06 o
1	8	11	309.67	324.31	78.16 o
-1	-9	12	182.29	207.58	55.77 o
-3	-8	12	152.48	161.12	42.68 o
2	-8	12	285.96	470.77	93.51 o
-3	-7	12	254.93	297.11	41.07 0
_1	_7	12	184 19	209 60	38 06 0
- 1	6	12	257 60	251 61	45 47 0
5	-0	12	237.09	202.00	40.70 0
-5	-4	12	230.00	203.00	40.79 0
-3	-4	12	480.27	465.18	39.27 0
-1	-4	12	133.75	145.69	28 . 19 o
0	-4	12	177.80	213.61	45.72 o
-1	-3	12	93.62	147.08	30.48 o
0	-3	12	418.15	428.74	67.23 o
-7	-1	12	186.10	159.63	51.06 o
-5	-1	12	132.97	136.01	41.53 o
-3	-1	12	99.02	112.72	34.78 o
-4	0	12	694.07	586.36	43.34 0
_2	0	12	531 57	464 53	72 36 0
-2	0	12	756 04	669 51	75 61 0
2	1	12	126.04	120 10	75.01 0
-3	1	12	120.30	139.10	30.07 0
1	1	12	696.37	683.05	//.// 0
3	1	12	375.12	356.35	79.87 o
-6	3	12	209.75	213.32	57.54 o
-4	3	12	247.34	351.06	43.16 o
-2	3	12	344.20	286.98	38.33 o
0	3	12	321.50	257.53	45.13 o
-4	4	12	160.75	135.84	43.51 o
1	4	12	390.78	328.68	78,67 0
_1	7	12	180 33	224 07	69 58 0
1	, 7	12	330 00	206 01	70 47 0
1 2	10	12	125 25	100 20	19.47 0
-2	-10	13	135.25	180.28	46.12 0
-2	-7	13	356.72	351.12	36.99 0
2	-7	13	389.61	443.51	90.47 o
-4	-3	13	135.78	168.04	33.73 o
3	-3	13	389.89	264.63	84.13 o
-4	-2	13	110.89	156.14	39.34 o
-4	-1	13	179.77	170.54	40.83 o
-3	-1	13	137.55	144.26	38.39 o
-3	0	13	110.52	174.03	50.84 o
1	n N	13	372.29	413.66	73.38 0
י ז	ñ	12	461 11	420 68	93 58 0
5	0	10		120.00	JJ.JU U

-4	1	13	141.28	181.50	41.66	о
-3	1	13	86.32	129.26	37.55	о
-2	1	13	164.12	183.97	35.85	о
-3	2	13	487.92	500.73	44.28	о
-1	2	13	167.24	168.86	47.13	о
-5	5	13	251.14	316.98	57.45	о
-3	5	13	204.09	187.17	52.07	о
-3	8	13	210.06	188.13	55.06	о
-2	-6	14	288.56	246.77	40.35	о
-1	-5	14	190.13	169.50	48.04	о
-6	-3	14	131.01	137.22	42.61	о
-4	-3	14	182.38	191.28	45.12	о
-2	-3	14	193.18	195.47	48.12	о
-3	-2	14	250.34	203.48	41.61	о
-1	-2	14	449.66	329.12	78.36	о
-3	1	14	519.19	479.69	59.71	о
-1	1	14	395.24	306.92	53.63	о
-2	2	14	158.29	125.12	40.74	о
-5	4	14	146.29	196.42	55.69	о
-3	4	14	131.76	150.91	49.95	о
-3	-6	15	139.17	222.93	48.99	о
-1	-6	15	224.14	296.83	54.91	о
0	-2	15	183.52	256.36	83.79	о
-5	-5	16	100.68	144.05	44.08	о
-2	2	16	178.82	251.77	79.91	0
-1	3	16	151.07	228.53	70.38	о