The structure of hessite, Ag, Te-III

By ALFRED J. FRUEH, JR.

Geological Museum, University of Oslo, Oslo, Norway*

With 3 figures

(Received March 9, 1959)

Auszug

Als Raumgruppe eines einheitlichen Hessitkristalls (Ag₂Te-III) von Bótes, Transsylvanien, wurde $P2_1/c$ gefunden; die Gitterkonstanten wurden zu a = 8,09, b = 4,48, c = 8,96 Å, $\beta = 123^{\circ}20'$ bestimmt. Die Elementarzelle enthält 4 Ag₂Te. Alle Atome befinden sich in allgemeinen Lagen; ihre Parameter sind:

> x = 0,018, y = 0,152, z = 0,371 für Ag(I), x = 0,332, y = 0,837, z = 0,995 für Ag(II), x = 0,272, y = 0,159, z = 0,243 für Te.

Symmetrie und Dimensionen der Zelle stimmen nicht mit den Literaturangaben überein. Es wird angenommen, daß die früheren Untersuchungen an verzwillingten Kristallen durchgeführt wurden.

Abstract

The space group of a single crystal of naturally occurring hessite (Ag₂Te-III) from Bótes, Transylvania, was found to be monoclinic $P2_1/c$; the cell constants were determined as follows: a = 8.09, b = 4.48, c = 8.96 Å, $\beta = 123^{\circ}20'$. There are 4 (Ag₂Te) per cell, and all atoms lie on the following fourfold general positions: Ag(I) at x = 0.018, y = 0.152, z = 0.371; Ag(II) at x = 0.332, y = 0.837, z = 0.995; and Te at x = 0.272, y = 0.159, z = 0.243.

This cell and the symmetry differ from those previously reported for hessite in the literature. It is believed that the other recent determinations have been based upon misleading data from twinned crystals.

^{*} Present address: McGill University, Montreal, Canada.

Introduction

The mineral hessite, Ag_2Te , and its polymorphs have been the subject of several crystallographic investigations. Results have been conflicting and confusing. Part of the confusion arises out of the notation used to identify the different polymorphs. In this paper the notation used by KRACEK and KSANDA¹, utilizing Roman numerals, will be followed. The polymorph whose stability range lies between 690° to $802^{\circ}C$ and the melting point will be referred to as Ag_2Te -I. The polymorph stable between 105° to 145° and 690° to $802^{\circ}C$, listed as α -hessite or α -Ag₂Te in many texts, will be called Ag₂Te-II. The polymorph stable from room temperature up to 105° to $145^{\circ}C$, called β -Ag₂Te in earlier literature, will be labeled Ag₂Te-III. These labels should not be confused with the notation used by ROWLAND and BERRY², where Ag₂Te "type I" and "type II" refer to morphological examples.

A conflict exists in that the symmetry and unit-cell dimensions reported by three different investigators for Ag_2 Te-III do not agree; nor does the lattice type arrived at by two workers for Ag_2 Te-II. There has been no crystallographic study of Ag_2 Te-I reported in the literature.

Ag₂Te-III: hessite

The most recent crystallographic investigation of the roomtemperature polymorph, Ag₂Te-III, is that of ROWLAND and BERRY². From material synthesized from aqueous sodium-sulfide solution in a graphite-lined steel bomb at several different temperatures from 350° to 490° C, crystals were obtained from which morphological data and some single-crystal x-ray data could be taken. It is to be noted that the temperatures utilized were at least 200° C above the stability range of Ag₂Te-III at normal pressures. Unless the effect of the pressure that existed within the steel bomb was to increase the stability range of Ag₂Te-III by more than 200° , it seems unlikely that the morphology of the crystals grown under these conditions represents the morphology of the Ag₂Te-III phase. However, as the powder diffraction record of the products of these runs was identical with that of natural

¹ F. C. KRACEK and C. J. KSANDA, A paper on the Ag – Te system; in preparation.

² J. F. ROWLAND and L. G. BERRY, The structural lattice of hessite. Amer. Mineral. **36** (1951) 471-479.

hessite, there is little doubt that the internal structure at room temperature was that of Ag_2 Te-III.

From one of these crystals exhibiting orthorhombic morphology, ROWLAND and BERRY obtained Weißenberg and rotation films that lead to the following unit-cell and space group: orthorhombic *Immm*; a = 16.28, b = 26.68, c = 7.55 Å. But here again it must be pointed out that since the crystals were grown at temperatures above the stability field of Ag₂Te-III, there is a possibility that, during the transformation, twinning took place that resulted in additional symmetry and an apparent cell larger than that which would be exhibited by a true single crystal.

ROWLAND and BERRY's cell does not agree with that described by TOKODY^{3,4}. TOKODY found Ag₂Te-III to be monoclinic with a cell size of a = 6.57, b = 6.14, c = 6.10 Å, $\beta = 61^{\circ} 15'$. From the cell content of 3 (Ag₂Te) he concluded that the space group must be Pm, P2, or P2/m. However, this cell was determined principally from the powder diffraction record, and to index all the reflections it was necessary to consider that some reflections were due to β radiation. Powder photographs taken on natural samples during the present investigation indicate that the lines considered by TOKODY to be due to β radiation were clearly due to CuK α . Thompson⁵ also reports that the powder pattern of hessite could not be indexed on the monoclinic elements of TOKODY.

Structure determination

Small crystals of hessite from Bótes, Transylvania, obtained both from the U. S. National Museum (U. S. N. M. No. R 9556) and from the Harvard University Museum (No. 99348), were found to contain small inclusions of petzite⁶. By fracturing these small crystals at liquid nitrogen temperatures, it was possible to obtain fragments of hessite free from any petzite. The diffraction record of these fragments showed them to be single, undeformed crystals. The x-ray powder diagram

³ L. TOKODY, Über Hessit. Z. Kristallogr. 82 (1932) 154-157.

⁴ L. Токору, Berichtigung zu meiner Mitteilung "Über Hessit". Z. Kristallogr. 89 (1934) 416.

⁵ R. M. THOMPSON, The telluride minerals and their occurrence in Canada. Amer. Mineral. **34** (1949) 342–382.

⁶ A. J. FRUEH, The crystallography of petzite, Ag₃AuTe₂. Amer. Mineral. 44 (1959), in press.

I	d	Ι	d	Ι	d	I	d
2	3.16	2	2.14	2	1.445	1	1.127
5	2.98	2	2.116	8	1.393	1	1.115
5	2.87	1	2.022	6	1.302	3	1.104
10	2.30	1	1.930	1	1.280	1	1.077
8	2.24	1	1.773	1	1.245	1	1.050
2	2.18	1	1.693	2	1.192	7	1.001

Table 1

prepared from some of these fragments, using $\text{Fe}K\alpha = 1.937$ Å, is tabulated in Table 1. It can be seen that this pattern is in close agreement with the hessite pattern reported by ROWLAND and BERRY².

Fig. 1. Patterson projections of hessite on (010) and on plane perpendicular to [100]

The space group symmetry was determined as monoclinic $P2_1/c$, The cell constants measured from Buerger precession photographs, using MoK α radiation, were as follows: a = 8.09, b = 4.48, c = 8.96 Å. $\beta = 123 \circ 20'$. By using the specific gravity of 8.21 as determined by THOMPSON⁵, and the cell volume of 271.4 Å³ as computed from the above dimensions, it is ascertained that the cell contains 4 (Ag₂Te).

Intensity data for the *b* axis zero, first, second, third and fourth levels were gathered by an equi-inclination Geiger-counter spectrometer, using Mo $K\alpha$ radiation. The data were corrected for Lorentz and polarization factors by the accepted method⁷.

⁷ M. J. BUERGER and G. KLEIN, Correction of x-ray diffraction intensities for Lorentz and polarization factors. J. Appl. Physics **16** (1945) 406-418.

The positions of all the atoms were located (Fig. 1) from Patterson projections on (010) and on the plane perpendicular to [100], with the aid of a Harker-Patterson section $P(x, \frac{1}{2}, z)$. From these positions signs were calculated and combined with observed intensities to make electron-density projections on (010) and on the plane perpendicular to [100] (Fig. 2). These projections confirmed the validity of the initial positions, and further refinement was accomplished by least-squares utilizing the Service Bureau Corporation's (IBM) NY-XR2 program.

Fig. 2. Electron-density projections of hessite on (010) and on plane perpendicular to [100]

All atoms are located on the fourfold general positions: x, y, z; $\overline{x}, \overline{y}, \overline{z}; \overline{x}, \frac{1}{2} + y, \frac{1}{2} - z; x, \frac{1}{2} - y, \frac{1}{2} + z$. The final refined parameters are listed in Table 2. In Table 3 the intensities from all reflections as

	x	y	z
Ag _i Ag _i Te	$\begin{array}{c} 0.018 \\ 0.332 \\ 0.272 \end{array}$	$0.152 \\ 0.837 \\ 0.159$	$0.371 \\ 0.995 \\ 0.243$

Tabl	e 2
------	-----

calculated from these parameters are compared with those observed. The final standard discrepancy factor R for the three-dimensional data is 0.157; and the final isotropic temperature factors are:

$$B_{Ag_{II}} = 2.02, \ B_{Ag_{II}} = 2.75, \ \text{and} \ B_{Te} = 1.07$$

Table 3

h k	1	$\sin \theta$	Fcalc.	Fobs.	/ h k l	sin heta	Pcalc.	Fobs.	h k	1	$\sin \theta$	P _{calc} .	Fobs.	h k 1	$\sin heta$	F _{calc.}	Pobs.
1 0	0	.053	61	71	908	.413	- 21	39	4 1	3	.195	- 14	28	218	.344	21	28
2 0	0	.105	- 97	114	10 0 8	.449	- 1	-	51	3	.234	- 10	-	318	.331	- 38	36
30	0	.158	307	300	11 0 8	.487	47.	51	61	3	.277	132	142	418	. 328	59	59
50	0	.263	- 40	59	1 0 10	.449	- 1	-	8 1	3	.371	- 21	-	618	. 345	- 37	32
6 0	0	.315	49	55	2 0 10	.427	23	-	9 1	3	.420	34		718	. 364	- 7	-
70	0	.368	83	79	3 0 10	.411	- 45	51	10 1	3	.470	42	43	8 1 8	.390	132	122
8 0	0	.420	38	36	4 0 10	.401	- 99	99	0 1	4	.206	- 2	-	918	.421	26	32
0 0	2	.095	- 31	35	5010	.397	22	-	1 1	4	.237	- 30	36	10 1 8	.456	- 39	36
2 0	2	.131	- 45	103	7 0 10	.401	-134	1 30	3 1	4	.275	- 52	83	12 1 8	. 534	52	51
30	2	. 224	83	91	8 0 10	.428	- 48	51	4 1	4	.361	29	47	0 1 9	.435	17	-
4 0	2	.274	- 93	99	9 0 10	.450	52	47	5 1	4	.408	- 58	67	1 1 9	.466	- 45	43
50	2	. 325	51	43	10 0 10	.478	- 62	63	6 1	4	. 456	42	43	2 1 9	.500	- 23	39
6 0	2	. 376	133	138	11 0 10	.512	- 79	87	71	4	.510	61 15	71	119	.409	- 30	-
1 0	2	.079	- 76	75	5012	478	- 76	79	2 1	4	.178	5	-	319	. 374	- 13	-
2 0	2	.095	52	55	6 0 12	.477	- 7	-	31	4	.186	-151	138	419	.367	16	-
30	2	.132	4	-	7012	.480	24	-	4 1	4	.206	- 44	43	519	.368	15	-
4 0	2	.177	-237	237	8012	.489	- 17	-	51	4	.238	84	83	619	. 375	- 13	-
50	2	.225	- 17	- 01	9012	.504	- 37	47	6 1 7 1	4	.276	-128	118	719	. 390	- 15	51
70	2	. 325	-158	162	210	.132	- 90	95	8 1	4	. 362	62	67	919	.437	24	-
8 0	2	.377	- 95	99	310	.175	75	75	<u>9</u> 1	4	.409	- 27	-	10 1 9	.468	- 28	-
<u>9</u> 0	2	.428	59	67	4 1 0	.225	- 21	16	10 1	4	.457	- 97	95	11 1 9	.500	17	-
10 0	2	.480	- 35	39	510	.274	-158	154	0 1	5	.250	88	91	12 1 9	.538	39	39
0 0	4	.191	130	118	610	. 325	19	32	11	5	.282	- 37	39	0 1 10	.482	- 2	- 30
2 0	4	.263	-244	245	810	.428	- 99	99	3 1	5	.359	96	103	1 1 10	.456	- 30	-
30	4	.306	14	32	910	.480	- 39	47	4 1	5	.402	6	-	2 1 10	.434	91	87
4 0	4	.352	6	-	0 1 1	.092	23	-	5 1	5	.448	- 19	-	3 1 10	.418	57	59
50	4	.400	-102	107	1 1 1	.119	-192	197	6 1	5	.494	43	55	4 1 10 E 1 10	.408	- 43	39
5 0 T 0	4	.449	- 53	43	211	.158	- 79	67	1 1	25	.228	- 27	24	5 1 10	. 405	50	30 71
2 0	4	.159	-306	268	411	.252	- 98	107	31	5	.216	13	-	2 1 11	.480	37	51
30	4	.168	89	83	511	. 302	-102	103	τ 1	5	.227	28	28	3 1 11	.463	52	55
τ ο	4	• .191	- 58	59	611	.353	24	32	51	5	.252	25	32	4 1 11	.451	- 18	-
50	4	.224	-212	209	711	.404	- 12	-	51	5	.283	- 14	24	5 1 11	.445	6	-
50	4	.264	- 42	59 20	811	.455	- 57	59	71	5	. 320	- 45	47	5 1 11 <u>4</u> 1 12	. 445	11	-
80	4	. 354	- 28	32	211	.119	-108	110	<u>9</u> 1	5	.404	13	-	5 1 12	.486	14	-
<u>9</u> 0	4	.401	- 53	55	311	.159	- 39	39	10 1	5	. 449	- 52	55	6 1 12	.484	- 74	71
10 0	4	.450	- 27	24	411	.204	- 5	-	0 1	6	.296	- 94	91	020	.159	-161	189
11 0	4	.503	37	51	511	.253	15	32	1 1	6	.327	68	71	120	.167	- 6	-
1 0	6	.285	- 18	12	711	. 353	- 35	43	3 1	6	. 402	-105	91	320	.222	- 95	107
2 0	6	.354	46	43	811	.404	29	39	4 1	6	.444	8	-	4 2 0	.263	- 48	59
30	6	. 394	19	39	911	.455	29	43	5 1	6	.489	5	-	520	.307	21	36
4 0	6	.437	- 81	83	0 1 2	.124	97	107	6 1	6	.502	- 40	47	620	.353	- 14	-
1 0	6	.260	16	16	112	.153	333	308	1 1	6	.272	-196	181	720	.400	- 28	233
30	6	.238	58	55	312	.238	- 28	32	3 1	6	.251	- 2	-	121	.180	30	32
4 0	6	.245	- 80	67	412	.285	151	150	4 1	6	.257	-180	170	2 2 1	.209	- 15	20
50	6	.261	122	122	512	.334	69	63	51	6	.273	- 42	55	321	.246	- 82	83
20	6	.286	174	170	112	.112	-125	118	61	6	.297	26	39	4 2 1	.287	- 52	51
70	6	.319	- 68	63	212	.124	271	249	7 1	6	. 528	- 42	63	521	378	- 0	47
50	6	. 396	157	146	412	.194	- 66	75	<u>9</u> 1	6	.404	- 22	-	721	.426	- 22	-
10 0	6	.439	16	-	512	.239	57	59	10 1	6.	.446	25	36	8 2 1	.475	- 39	36
11 0	6	.484	- 32	43	612	.286	114	118	0 1	7	.342	- 18	-	921	.530	44	39
0 0	8	.380	164	154	712	.335	31	36	1 1	7	.373	12	-	1 2 1	. 165	-162	-
10	8	.411	- 45	55 51	113	.103	109	99	21	7	.408	- 30	4)	321	.210	-146	154
30	8	.485	55	71	213	.233	- 4	-	T 1	7	.317	-102	154	421	.246	-236	237
T o	8	.354	- 19	-	313	.276	6	-	2 1	7	.299	- 20	-	521	.288	43	51
20	8	.334	- 28	-	413	. 322	24	-	31	7	.290	33	28	521	.332	- 7	36
30	8	.322	177	162	513	. 370	31		4 1	7	.290	-109	110	721	. 379	-143	150
50	8	. 318	- 49	51	713	.469	- 25	43	6 1	7	.318	37	36	921	.476	20	32
60	8	.335	58	59	113	.145	- 57	55	7 1	7	. 344	- 39	47	10 2 1	.530	- 29	36
70	8	.356	78	83	213	.146	74	79	8 1	7	.374	- 79	39	0 2 2	.185	9	-
8 0	8	.382	17	28	313	.164	201	205	1 1	8	.363	47	47	1 2 2	.206	15	-

Table 3 (continued)

h k l	$\sin heta$	Fcalc.	F _{obs} .	h k l	$\sin\theta$	F _{calc} .	P _{obs} .	h k l	$\sin\theta$	F _{calc.}	F _{obs.}	h k l	$\sin \theta$	F _{calc} .	F _{obs} .
222	.237	- 31	32	.2 2 7	.431	- 51	51	1 3 2	.272	44	47	2 4 1	.329	- 69	63
322	.275	- 27	- 39	327	.467	25 84	- 87	1 3 2	.250	35	- 39	341	.345	63 114	51 83
522	. 361	- 16	-	1 2 7	. 346	- 41	39	332	.272	35	28	541	.397	- 34	36
622	.408	- 47	47	227	.329	1	-	4.32	.296	5	-	641	.431	- 6	-
222	.185	- 20	-	327	. 321	60 24	59 28	632	. 363	21	-	741 042	. 331	29	71 32
322	.206	- 6	-	527	.330	- 21	- 28	732	.403	11	-	1 4 2	.343	7	-
422	.237	76	67	627	.347	- 47	51	832	.445	- 1	32	242	. 363	- 45	51
622	.317	- 35	43	827	.399	28	28	133	.296	-121	114	442	.419	- 19	36
722	.362	54	47	927	.432	- 80	83	2 3 3	.323	9	-	542	.454	- 27	32
822 922	.409	- 26	36 36	10 2 7	.470	- 28	20	333	. 355	- 33	- 28	642	.492	- 52	- 51
023	.213	43	39	0 2 8	.412	- 57	55	5 3 3	.432	- 46	36	242	.331	- 26	31
1 2 3	.238	6	16	1 2 8	.441	- 15	-	633	.475	7	-	342	.343	16	-
323	.308	- 41	39	228	. 474	- 18	- 39	133	.267	37 80	45	4 4 2 5 4 2	. 389	0	-
4 2 3	.350	60	67	1 2 8	. 388	12	-	233	.267	- 83	79	642	.419	- 24	-
523	. 394	-107	110	228	.370	16	-	333	.277	-234	217	742	.454	64	71
723	.488	26	39	528 428	.355	- 01	55 36	4 3 3 5 3 3	. 324	29	24	143	.363	- 9	-
1 2 3	.200	-167	158	5 2 8	.359	22	36	633	.356	-170	170	243	.385	108	107
223	.200	- 75	75 20	628	. 371	- 18	16 36	733	.393	- 59	55	343	.413	13	-
423	.238	- 2	-	029	.456	- 87	87	334	.291	- 22	36	543	.480	55	55
523	.271	- 22	-	1 2 9	.432	- 24	32	434	.305	- 5	-	643	.515	46	47
723	.309	- 54	59 43	229	.412	-102	36 99	534	.327	- 22	- 39	143	.339	74	39
8 2 3	.395	63	63	4 2 9	. 392	-110	103	0 3 5	. 336	-109	110	044	.369	- 35	39
923	.442	- 45	43	529	.392	47	39	1 3 5	.360	59	59	144	.388	46	43
11 2 3	.540	65	63	729	. 399	- 31	39 114	235	. 389	-132	138	144	. 358	95	95 79
024	.247	- 55	51	829	.433	- 13	-	4 3 5	.460	- 3	-	244	.354	104	83
124	.274	38 81	16 245	929	.458	19	-	535	.502	33	43	344	.358	- 17	-
324	.345	- 12	43	11 2 9	. 526	- 45	47	2 3 5	.311	40	39	544	. 388	• 78	63
424	.386	- 7	63	1 2 10	.476	- 1	-	335	.311	- 5	-	045	.396	35	-
524	.430	34 72	63	2 2 10 $\overline{3} 2 10$.455	- 11	-	435	. 320	- 40 - 37	43	145	.416	- 41 - 45	47
224	.224	94	95	¥ 2 10	.431	34	24	635	. 361	26	28	1 4 5	.382	- 22	24
324	.231	- 40	36	5 2 10	.428	- 11	-	735	.390	59	55	245	.375	-115	99
524	.275	68	87	7 2 10	.451	- 10	39	036	. 371	- 19	28 -	45	.382	36	36
624	.308	10	16	5 2 11	.466	- 24	24	1 3 6	. 396	0	-	545	.397	-102	91
025	.285	- 43	43	6 2 11 7 2 11	.466	- 14	- 51	236	.426	- 14	43	645 745	.417	- 49	55 36
2 2 5	. 346	80	75	8 2 11	.484	31	32	037	.409	23	24	845	.473	- 27	-
325	. 384	6	-	9 2 11	.510	- 38	-	137	.388	137	130	945	.505	- 52	59
425	.425	- 12	-	$\frac{10}{11} 2 11$.531	17	28 51	$\frac{2}{3}$ $\frac{3}{7}$.374	- 52	-	346	. 396	- 48 - 10	-
625	.523	39	39	1 3 0	.243	- 14	-	437	. 367	143	138	4 4 6	.400	25	-
125	.266	51 234	- 217	230	. 260	- 6	-	537	.375	107	99	546	.410	- 54	63
325	.256	8	-	430	.317	- 11	28	737	.410	- 59	43	7,46	.449	24	39
425	.266	- 46	-	530	.354	- 21	36	837	.436	109	107	846	.476	- 10	-
525	. 286	102	197	031	.242	- 29	- 209	438	. 397	15	24 28	946	.509	- 64 - 50	63 47
725	. 348	- 52	51	2 3 1	.274	82	79	638	.411	0	-	147	.483	- 37	39
825	. 386	63	59	3 3 1	.303	- 91	91	738	.428	6	-	147	.441	26	39
925	. 326	94	-	431	. 338	122	118	838	.450	-150	35	247	.429	- 34	39
1 2 6	.354	10	-	6 3 1	.418	- 39	43	140	.321	- 27	27	4 4 7	.423	- 16	-
226	. 388	- 17	-	731	.462	9	-	240	. 334	24	24	547	.429	17	16
2 2 6	.291	- 35	28	1 3 1	.242	- 15	-	440	. 380	- 68	59	148	.475	- 00	-
326	.286	- 17		2 3 1	. 254	118	114	540	.411	11	-	248	.461	11	-
426	.291	- 39	24 28	331	.275	53 - 9	55	640 740	.447	- 12	-	348 448	.452	- 68 - 36	63 32
626	.327	- 59	-	531	. 338	- 27	28	0 4 1	. 320	102	95	349	.484	54	43
726	. 356	30	28	631	. 376	19	-	1 4 1	.329	- 20	-	4 4 9	.478	57	51
926	. 589	- 2	51	731	.418	- 45	51	241	. 368	- 7 39	47	549	.479.	- 35	-
0 2 7	. 369	89	83	931	.518	- 40	51	441	.397	30	32	749	.496	68	59
1 2 7	.397	74	75	032	.256	23	20	141	. 320	61	51				

The structure of hessite is illustrated in Figs. 3a and 3b. There are two structurally different types of silver atoms. One (Ag_I) is surrounded by four tellurium atoms at 2.87, 2.91, 3.04 and 2.99 Å, making a somewhat distorted tetrahedron. The average Ag—Te distance of this tetrahedron is 2.95 Å. The other type of silver atom (Ag_{II}) has five close tellurium neighbors at 3.04, 3.01, 2.95, 2.90 and 2.85 Å, again giving an average Ag—Te distance of 2.95 Å. Each Te atom has nine

Fig. 3. The structure of hessite, Ag_2 Te-III. (a) Orthographic projection. (b) Clinographic projection

fairly evenly spaced silver atoms around it. Although little significance can be attached to the average bond length, it is interesting to note that in the gold-silver telluride, sylvanite (AuAgTe₄), the silver atom has six tellurium neighbors, two at 2.69, two at 2.96, and two at 3.20 Å, again averaging 2.95 Å⁸. In petzite (Ag₃AuTe₂) the silver is tetrahedrally coordinated to two tellurium atoms at 2.90 Å and two at 2.95 Å⁶.

It should also be pointed out that in the other gold and gold-silver tellurides every tellurium atom has one close tellurium neighbor, but in hessite there are no tellurium — tellurium distances closer than 4.26 Å.

⁸ G. TUNNEL and L. PAULING, The atomic arrangement and bonds of the gold-silver ditellurides. Acta Crystallogr. 5 (1952) 375–381.

Attempts to find the relations between this structure and the orthorhombic cell of ROWLAND and BERRY were unsuccessful. Although their orthorhombic cell is the cell best fitting the Weissenberg and rotation record of their crystal (hessite, type I), there still remain quite a number of reflections that do not fall on the reciprocal lattice points based on this cell. In so far as the powder diffraction records of the two crystals are identical, it is relt that their single crystal diffraction record was produced by a composite of several crystals of monoclinic Ag₂Te-III of different orientations. An investigation is presently under way on Ag₂Te-II and Ag₂Te-I, including a study of the transformation twinning and domain orientation resulting from cooling Ag₂Te-III to Ag₂Te-III. This may throw some light on the above relations.

Acknowledgments

This work was initiated at the University of Chicago as part of a research program on the crystal chemistry of the sulfides, made possible, in part, by a grant from the National Science Foundation. It was continued at the Geological Museum of the University of Oslo, with the support of the United States Air Force [Contract A. F. 61(052) - 178]. The author is indebted to Mr. GEORGE CHAO and Mr. DAVID NORTHROP for their technical assistance; to Dr. F. C. KRACEK for letting me see a prepublication copy of his paper on the Ag—Te system; and to Professor L. G. BERRY and Dr. J. F. ROWLAND for making their films available to me.