Verfeinerung der Struktur des Zinkhydroxidchlorids II, Zn₅(OH)₈Cl₂ · 1H₂O

Von RUDOLF ALLMANN

Mineralogisches Institut der Universität Marburg

(Eingegangen am 12. Dezember 1967)

Abstract

Using a three-dimensional set of 267 independent structure factors estimated from Weissenberg films, the structure of $Zn_5(OH)_8Cl_2 \cdot 1H_2O$ has been refined. Space group $R\overline{3}m$, a = 6.34, c = 23.64 Å, Z = 3. A three-dimensional Fouriersynthesis showed that the water molecules statistically occupy one of six possible sites about 0.4 Å off the ideal position in 0 0 $\frac{1}{2}$. The structure consists of brucite-like main layers $[Zn_3(OH)_8]^{2-}$ with $^{1}/_4$ unoccupied octahedral sites [Zn-O = 2.08 and 2.17 Å, O-O = 2.82 (shared edge), 3.04, 3.10, and 3.18 Å], and of interlayers $[2Cl \cdot 1H_2O]^{2-}$ (Cl-Cl = 3.66, Cl-H₂O between 3.28 and 4.05 Å). The remaining zinc atoms are situated in tetrahedral sites between these two layers, above and below the empty octahedral sites of the main layer (Zn-O = 1.94, Zn-Cl = 2.31 Å, O-O = 3.24, O-Cl = 3.38 Å). The *R* value dropped to $14.0^{0}/_{0}$. With exception of the bonds to H₂O (± 0.12 Å), the accuracy of all bond lengths is about ± 0.02 Å.

Auszug

Unter Benutzung von 267 unabhängigen Strukturfaktoren (ohne Absorptionskorrektur), die aus Weissenberg-Aufnahmen geschätzt waren, wurde eine drei-dimensionale Verfeinerung der Struktur des $Zn_5(OH)_8Cl_2 \cdot 1H_2O$ vorgenommen. Raumgruppe $R\overline{3}m$; a = 6,34, c = 23,64 Å; Z = 3. Eine dreidimensionale Fouriersynthese ergab, daß das Kristallwasser statistisch eine von sechs möglichen Lagen besetzt, die um 0,4 Å von der Ideallage in 00 ½ entfernt liegen. Die Struktur besteht aus brucitähnlichen Hauptschichten [Zn₃(OH)₈]²⁻, in denen ein Viertel der Oktaederplätze unbesetzt ist [Zn-O = 2.08 und 2.17 Å. O-O = 2,82 (gemeinsame Kante); 3,04; 3,10 und 3,18 Å], und aus Zwischenschichten $[2Cl \cdot 1H_2O]^{2-}$ (Cl-Cl = 3,66; Cl-H₂O zwischen 3,28 und 4,05 Å). Zwischen diesen beiden Schichtarten befinden sich die restlichen Zn-Atome ober- und unterhalb der leeren Oktaederplätze in tetraedrischer Umgebung (Zn-O = 1.94; Zn-Cl = 2.31 Å; O-O = 3.24; O-Cl = 3.38 Å). Der endgültige R-Wert beträgt $R = 14,0^{0}/_{0}$. Die Genauigkeit der Abstände beträgt \pm 0,02 Å mit Ausnahme der Abstände zu dem ungeordneten Wassermolekül (+0.12 Å).

Einleitung

Vor einiger Zeit wurde von SILVERMAN (1956; NOWACKI und SILVER-MAN, 1956a, b, c; 1957a, b; 1961) aus zweidimensionalen Filmdaten die Struktur des Zinkhydroxidchlorids II, Zn₅(OH)₈Cl₂ · 1H₂O bestimmt: Raumgruppe $R\bar{3}m$; $a = 6,34 \pm 0,01$, $c = 23,64 \pm 0,02$ Å; Z=3; $D_m = 3,292$, $D_x = 3,341$ g · cm⁻³. Vorher hatte schon LOTMAR (1946) die Gitterkonstante (a= 6,34, c = 23,60 kX) und die Raumgruppe dieser Verbindung richtig bestimmt und dabei festgestellt, daß sich die Gittergeraden des reziproken Gitters parallel [001]* in vier Gruppen einteilen lassen, die für laufendes l die gleiche Intensitätsabfolge zeigen, je nachdem ob h k = g g oder nicht und ob h-k = 3n oder nicht.

Die Verbindung besteht aus brucitähnlichen Hauptschichten $[Zn_3(OH)_8]^{2-}$, in denen ein Viertel der Oktaederplätze nicht besetzt ist, und aus Zwischenschichten $[2Cl \cdot H_2O]^{2-}$. Die restlichen zwei Zn einer Formeleinheit befinden sich in Tetraederlücken zwischen den beiden Schichten ober- und unterhalb der leeren Oktaederplätze der Hauptschicht. Damit enthält diese Verbindung Zink sowohl in oktaedrischer als auch in tetraedrischer Umgebung.

Die Fourierprojektion $\varrho(x,z)$ (NOWACKI und SILVERMAN, 1961, Abb. 8 und 9) ergab neben den Zn-, Cl- und OH-Lagen eindeutig die Anwesenheit eines Moleküls Kristallwasser (pro Formeleinheit) im Punkte 0 0 $\frac{1}{2}$. Allerdings hat das dazugehörige Fourier-Maximum [Nr. 6 in $\varrho(x,z)$] ein seltsames, hantelförmiges Aussehen, das stark für ein statistisches Herausrücken der Wassermoleküle aus ihrer Ideallage in 0 0 $\frac{1}{2}$ spricht. Vor allem, um nähere Auskunft über dieses Herausrücken der Wassermoleküle zu erhalten, wurde die vorliegende dreidimensionale Strukturverfeinerung vorgenommen. Daneben sollten auch die Lagen der anderen Atome überprüft werden, besonders die der OH-Gruppen, da von diesen in der Projektion $\varrho(x,z)$ immer zwei aufeinanderfallen.

Wegen näherer Einzelheiten, die die Synthese und Analyse geeigneter Einkristalle von Zinkhydroxidchlorid betreffen, siehe SILVER-MAN (1956).

Intensitätsbestimmung

Für die Intensitätsmessung standen mir die Weissenberg-Aufnahmen von J. N. SILVERMAN zur Verfügung [Multiplefilme der Schichten (h1l)-(h4l)], die mir freundlicherweise von Herrn Prof. W. NOWACKI zur Intensitätsschätzung überlassen wurden.

Die Schätzung erfolgte in der gleichen Art, wie bei NOWACKI und SILVERMAN (1961) beschrieben. Als Filmfaktor wurde $f = 4.4/\cos \mu$ benutzt. Die so ermittelten Intensitäten von 379 Reflexen wurden ohne Absorptionskorrektur in Strukturfaktoren umgerechnet und an die (h0l)-Werte angeglichen. Danach wurden die Werte symmetriegleicher Strukturfaktoren unter Einschluß der 114 bei NOWACKI und SILVERMAN angegebenen absoluten (h0l)-Werte F_{beob} (ohne Absorptionskorrektur) gemittelt (Tab. 1a). In Tab. 1a sind außerdem für die Gittergeraden (001), (501), (601) und (701) die Originalwerte von No-WACKI und SILVERMAN angegeben, da diese auf den zur Verfügung stehenden Filmen nicht vorhanden waren. Um die Gleichheit der Intensitätsabfolge in den vier von LOTMAR (1946) beschriebenen Gruppen besser erkennen zu können, wurden die Gittergeraden der einzelnen Gruppen in Tab.1a nebeneinander aufgeführt. Insgesamt standen für die vorliegende Verfeinerung 267 unabhängige Reflexe zur Verfügung, von denen 8 unter der Beobachtungsgrenze lagen (in Tab. 1a als 0 angegeben).

Strukturverfeinerung

Die Strukturfaktoren der Tab. 1a wurden für eine Verfeinerung der von Nowacki und Silverman (1961) angegebenen Parameter benutzt (Spalte *a* der Tab. 2). Außer den variierbaren Atomkoordinaten wurden der Angleichungsfaktor *k* ($F_{\text{beob.}} = k \cdot F_{\text{ber.}}$) und für jedes Atom der isotrope Temperaturfaktor *B* verfeinert. Der Startparameter für *k* (bezogen auf die primitive Zelle mit einer Formeleinheit als Inhalt) war 3,00, da Nowacki and Silverman (1961) ihre absoluten Werte auf die dreifach-primitive Zelle bezogen hatten. Für die Verfeinerung wurden die Atomformfaktorkurven für Zn²⁺, Cl⁻ und Ovon HANSON und POHLER (1966, persönliche Mitteilung) benutzt. In drei Zyklen fiel der *R*-Wert von 18,3⁰/₀ auf 14,0⁰/₀ (Parameter der Spalte *b* in Tab. 2). Dabei stieg der Temperaturfaktor für das Wassermolekül auf B = 5,2 Å².

Mit den berechneten Vorzeichen (dieselben wie in Tab. 1*b*) und den Werten der Tab. 1*a* wurde danach eine drei-dimensionale Fouriersynthese $\varrho(x, y, z)$ berechnet. Diese zeigte deutlich ein Aufspalten des Fouriermaximums für das Wassermolekül in sechs Lagen (-x, x, z)mit $x \sim 0.04$ und $z \sim 0.494$ (siehe Fig. 1*a* bis *d*). Das Integral über dieses verschmierte Maximum ergab aber dieselbe Elektronenzahl $(\sim 7e)$ wie das über ein OH^I-Maximum, d.h. pro Formeleinheit ist wirklich ein ganzes Kristallwasser-Molekül vorhanden. Da die Atome

Absorptionskorrektur)
(ohne
Strukturfaktoren
be obach teten
der
Liste
1a.
Tabelle

	2.5	56	46	72	21							17	16	1	24																
				_																											
	<u>5</u> 2	0	60 60	75	29							53	20	2	34																
	3 3	69 69	69	103	32	6	27					6.1	28	-	50	51	65	76	42	9				27							
	14	88 88 88	808	117	38	8	25	126				34	40	0	57	53	85	89	55	0	$15 \\ 15$										
32	$\overline{14}$	198	82	109	35	15	25	125				15	41	0	76	65	102	102	54	9 u 9	16	9	0								
3n)	03	121	91	150	52	22	29	134	10	12		05	53	0	65	61	92	98	53	18 96	16	12	12	47	60						
h k (h-k) =	$0\overline{3}$	1 Ξ	105	151	57	15	24	135	ũ	9		2 3	53	21	79	90	122	125	64	14	24 24	0	6	68	131	82	55				
	11	$152 \\ 132$	101	194	62	35	36	181	10	13	$k \neq 3n$	31	67	15	111	119	155	171	75	11	26 ± 26	9	2	69	$139 \\ 0.1$	91	63	9 0	28		
	44	110 65	32								h k (h-	h k (h-	1 2	96	14	136	134	196	198	107	10	32	13	11	79	142	94	64	15	34	19
	0 6	157	207	0	95	87						0 1	103	27	141	137	181	173	112	16	±3 51	14	2	85	153	96	67	10	40	30 57	
	$0 \overline{6}$	101	52	0	06	92						42	127	138	31	116	21	75	06	130	$101 \\ 105$	135	80	52	12			10			
	2 2	276 103	104	27	148	121	150	42	141			0.4	156	154	35	150	25	91	112	154	106	131	86	54	18	0	19	47			
	0.0	- 199	131	112	227	191	207	42	155	110 106		$0\overline{2}$	185	219	19	223	24	148	156	209 951	159	198	109	74	25	4	94	81	149	$121 \\ 144$	
7	3	0 %	9	6	12	15	18	21	24	27 30	-	9	- 1	57	- 4	5	- 7	8	- 10	11	14	-16	17	-19	20 99	777	23	-25	20	- 28	

420

	2.5	57 = -36 = -43 = -80 = -27 =			0.7	29 13 44					
$h \ k \ (h-k=3 n)$	$\overline{2}\overline{5}$	-46 54 83 33			53						
	3 3	$-50 \\ -50 \\ -101 \\ 36$	- 11 - 23		61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	14	$egin{array}{c} 81 \\ - 62 \\ - 74 \\ -115 \\ 43 \end{array}$	-924105	$h \ k \ (h-k eq 3n)$					34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\overline{14}$	-54 - 66 - 66 - 113 - 38	$\begin{array}{c} - & 16 \\ - & 28 \\ -102 \end{array}$				15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	0 3	-114 - 79 - 83 - 152 - 152 - 50	-22 - 35 - 128 - 15 - 15		$0\overline{5}$	$\begin{smallmatrix} & -5.2 \\ & -7.0 \\$					
	$0\overline{3}$	$- rac{-}{90} - rac{-}{256}$	$\begin{array}{c} - & 13 \\ - & 31 \\ - & 130 \\ - & 6 \\ 11 \end{array}$		2 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	11	$egin{array}{c} 154 \\ -115 \\ - 93 \\ -187 \\ 65 \end{array}$	$egin{array}{cccc} -&23\\ -&37\\ -&146\\ -&4\\ 13 \end{array}$		31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	44	181 80 40					12	$\begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ &$	PT		
	0 6	$221 \\ 99 \\ 50 \\ - 14 \\ 105$	88		0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41				
	$0 \overline{6}$	$-{99}{50} -{13}{105}$	88		4 2	$ \begin{array}{c} 148\\ 255\\ 255\\ 21\\ 221\\ 221\\ 221\\ 235\\ 21\\ 235\\ 222\\ 235\\ 235\\ 235\\ 235\\ 235\\ 235$					
	2 2	${391 \\ 175 \\ 85 \\ - 26 \\ 168$	$139 \\ 145 \\ 37 \\ 110 \\ 110 \\$		0 4	$\begin{array}{c} 188\\ 182\\ 154\\ 154\\ 154\\ 123\\ 255\\ 253\\ 133\\ 169\\ 187\\ 11\\ 1\\ 13\\ 289\\ 13\\ 1\\ 1\\ 1\\ 288\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$					
	0.0	$(685) \\ 249 \\ -140 \\ -79 \\ 225$	$181 \\ 196 \\ 49 \\ 138 \\ 99 \\ 95$		$0\overline{2}$	$\begin{smallmatrix} 235\\262\\22\\222\\232\\232\\232\\232\\232\\171\\171\\172\\2339\\172\\172\\172\\172\\172\\172\\172\\172\\172\\172$	156				
	9	0 & 9 e 81	15 18 24 30 30		9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29				

Tabelle 1b. Berechnete Strukturfuktoren $k \cdot F_c (k = 2,663, bezogen auf eine Formeleinheit)$

421

alle auf Spiegelebenen liegen, enthält der Fourierschnitt $\varrho(-x, x, z)$ Maxima aller sechs unabhängigen Atome (Fig. 2).

In zwei weiteren Verfeinerungszyklen wurden für das H_2O die Koordinaten der Fouriersynthese eingesetzt, aber nicht variiert, da eine gleichzeitige Variation der Koordinaten und des Temperatur-

Fig. 1. Vier Fourierschnitte $\varrho(x; y; z = 87/180, 88/180, 89/180 \text{ und } 90/180)$ des Zinkhydroxidchlorids II. Die Konturlinien sind in 0 (gestrichelt), 2, 4, 6 (dünn), 10, 20, 30 und 40 $e/\text{Å}^3$ (dick) gezeichnet. Außerdem sind die Höhen der Fouriermaxima in $e/\text{Å}^3$ angegeben

Fig. 2. Fourierschnitt ρ (-x,x,z) des Zinkhydroxidchlorids II. Die Konturlinien sind in 0 (punktiert), 5 (punktiert-gestrichelt; nur für das H₂O-Maximum gezeichnet), 10, 20, 30 und 40 $e/Å^3$ gezeichnet. Außerdem sind die absoluten Maxima der einzelnen Atomlagen angegeben (133 $e/Å^3$ für Zn^I, 126 für Zn^{II}, 62 für Cl, 25 für OH^{II}, 24 für OH^I, 7 für H₂O)

faktors für H_2O unsinnige Werte ergab. $B(H_2O)$ ging auf 3,0 herunter, die übrigen Parameter änderten sich nur im Rahmen der angegebenen Standardabweichungen. In den beiden letzten Verfeinerungszyklen wurden schließlich die Koordinaten des H₂O variiert, aber $B(H_2O)$ festgehalten. Der *R*-Wert verbesserte sich dabei nicht weiter (14,0%) für alle 267 Reflexe, 13,7%/0 für die 259 beobachteten Reflexe), aber die Standardabweichungen wurden etwas kleiner. Die endgültigen Parameter sind in Tab.2, Spalte *c* angegeben. Die Lage des Wassermoleküls in Tab.2*c* stimmt recht gut mit den Ergebnissen der Fouriersynthese überein (Fig. 1). Läßt man das H₂O für die Berechnung der

Atom	Para- meter	<i>a</i>)	<i>b</i>)	c)
Zn^{I}	$\begin{cases} x \\ y \\ z \end{cases}$	$ \begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \end{array} $	$\frac{1}{2}$ 0 0	$\frac{1}{2}$ 0 0
Zn ^{II}	$\begin{cases} x\\ y\\ z \end{cases}$	$egin{array}{c} 0 \ 0 \ 0,0721 \pm 4 \end{array}$	$egin{array}{c} 0 \ 0 \ 0,0717 \pm 2 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0,0718 \pm 2 \ (= \pm 0,005 \text{\AA}) \end{array}$
Cl	$\begin{cases} x \\ y \\ z \end{cases}$	$\begin{matrix}0\\0\\0,1708\pm13\end{matrix}$	$egin{array}{c} 0 \ 0 \ 0,1694 \pm 4 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0,1694 \pm 4 \ (=\pm 0,010 \ \text{\AA}) \end{array}$
OHI	$\begin{cases} x\\ y\\ z \end{cases}$	$\begin{array}{ccc} -0,179 & \pm & 5 \\ 0,179 \\ 0,0532 \ \pm \ 13 \end{array}$	$egin{array}{cccc} -0,171&\pm&2\ 0,171\ 0,0505\pm&6 \end{array}$	$\begin{array}{rrr} -0.171 \ \pm \ 2 \ (= \pm \ 0.014 \ \text{\AA}) \\ 0.171 \\ 0.0506 \ \pm \ 5 \ (= \pm \ 0.013 \ \text{\AA}) \end{array}$
OH_{II}	$\begin{cases} x\\ y\\ z \end{cases}$	$egin{array}{c} 0 \ 0 \ 0,3820 \pm 13 \end{array}$	$0 \\ 0 \\ 0,3751 \pm 11$	$\begin{array}{c} 0 \\ 0 \\ 0,3748 \pm 10 \; (= \pm \; 0,023 \; { m \AA}) \end{array}$
$\mathrm{H}_{2}\mathrm{O}$	$\begin{cases} x\\ y\\ z \end{cases}$	$\begin{array}{c} 0\\ 0\\ \frac{1}{2} \end{array}$	$\begin{array}{c} 0\\ 0\\ \frac{1}{2} \end{array}$	$\begin{array}{ccc} -0.035 & \pm 18 \; (= \pm \; 0.12 \; \text{\AA}) \\ 0.035 & \\ 0.495 \; \pm 18 \; (= \pm \; 0.42 \; \text{\AA}) \end{array}$
$\begin{array}{c} \mathbf{Zn^{I}}\\ \mathbf{Zn^{II}}\\ \mathbf{Cl}\\ \mathbf{OH^{I}}\\ \mathbf{OH^{II}}\\ \mathbf{H_{2}O} \end{array}$	B B B B B B	$\begin{array}{c} 1,34 {\rm \AA}^2 \\ 1,34 \\ 1,34 \\ 1,34 \\ 1,34 \\ 1,34 \\ 1,34 \\ 1,34 \end{array}$	$egin{array}{c} 0,69\pm 0,09{ m \AA}^2\ 0,58\pm 0,10\ 0,95\pm 0,17\ 0,34\pm 0,24\ 0,37\pm 0,43\ 5,2\ \pm 1,3 \end{array}$	$egin{array}{l} 0,69\pm 0,09{ m \AA}^2\ 0,59\pm 0,10\ 0,89\pm 0,16\ 0,35\pm 0,23\ 0,27\pm 0,39\ 3,0\ \pm 2,2 \end{array}$
	k	3,00	$2,65\pm0,07$	$2,66 \pm 0,05$

Tabelle 2. Tabelle der Parameter in drei Stadien der Verfeinerung

a) Startparameter nach Nowacki und Silverman (1961) ($R = 18,3^{\circ}/_{\circ}$)

b) Parameter nach drei Verfeinerungszyklen (H₂O fest in 0 0 $\frac{1}{2}$) ($R = 14,0^{0}/_{0}$)

c) Endgültige Parameter nach sieben Verfeinerungszyklen ($R = 14,0^{0}/_{0}$)

Strukturfaktoren weg, so steigt R auf 14,6%/0. Wegen der fehlenden Absorptionskorrektur kommt den berechneten Temperaturfaktoren nur eine relative Bedeutung zu.

Verglichen mit dem Ergebnis der Fouriersynthese (Fig. 1) ist die Standardabweichung für $z(H_2O)$ mit relativ $\pm 0,018$ und absolut $\pm 0,42$ Å zu groß. Für die Berechnung der Abstandsfehler in Tab. 3 wurde deshalb für alle drei Koordinaten des H₂O einheitlich $\pm 0,12$ Å eingesetzt.

Strukturbeschreibung

Neben dem Aufspalten der Lage des H_2O — dieses liegt statistisch auf einer von sechs Lagen, die um 0,4 Å von der Ideallage in 0 0 $\frac{1}{2}$ entfernt sind — sind die wichtigsten Änderungen gegenüber Nowackı und SILVERMAN (1961) die Erniedrigung der z-Parameter für OH^I und OH^{II} und das Heranrücken des x-Parameters von OH^I an den Idealwert für eine dichteste Packung (x = 1/6).

Die absoluten Verschiebungen der Atomschwerpunkte gegenüber den Ausgangslagen nehmen mit fallender Ordnungszahl zu und betragen für: Zn^I 0,000, Zn^{II} 0,007, Cl 0,033, OH^I 0,107, OH^{II} 0,170 und H₂O 0,402 Å. Ein Grund für die Ungenauigkeiten der zweidimensionalen Daten ist das Übereinanderfallen je zweier OH-Maxima in der $\varrho(xy)$ -Projektion. Zum anderen wirkt sich der Abbruchseffekt ($d_{\min} = 0,77$ Å) in der xy-Projektion viel stärker aus als in der dreidimensionalen Fouriersynthese. Durch den Abbruchseffekt werden vor allem leichte Atome betroffen (in diesem Falle die OH-Gruppen), die in der Nähe schwerer Atome liegen (Zn^I und Zn^{II}). Der Abstand Zn-O ($\sim 2,0$ Å) beträgt in der Projektion nur ungefähr 1,4 Å und die Sauerstoffmaxima kommen daher ungefähr auf das 2. Abbruchsminimum der benachbarten Zinkmaxima zu liegen [vgl. Fig. 2 dieser Arbeit mit Fig. 8 und 9 bei NOWACKI und SILVERMAN (1961)].

Durch diese Parameteränderungen (Tab. 2) werden die früheren Atomabstände z.T. erheblich geändert, die Struktur als solche bleibt aber die gleiche. Deshalb soll hier auf eine erneute ausführliche Strukturbeschreibung verzichtet und nur die sich aus Tab. 2*c* ergebenden Atomabstände und Bindungswinkel angegeben werden (Tab. 3). Die Indices ' und '' an den Atomsymbolen haben die gleiche Bedeutung wie in den Tab. 11 und 12 bei NOWACKI und SILVERMAN (1961). Die neuen Abstände stimmen besser mit den vergleichbaren Werten anderer Strukturen überein. Vor allem ist die nicht gemeinsame Oktaederkante OH^I—OH^I von dem unwahrscheinlich kleinen

$ m 1,94\pm2 m \AA$	OH^{I} — Zn^{I} — OH^{I}	91,1°
$2,\!31\pm 1$	OHI_ZnI_OHII	96,9
$egin{array}{c} 3,24 \pm 2 \ 3,38 \pm 2 \end{array}$	$\begin{array}{c} \mathrm{OH^{I}-Zn^{I}-OH^{I\prime}}\\ \mathrm{OH^{I}-Zn^{I}-OH^{II\prime}} \end{array}$	88,9 83,1
$^{113,6\circ}_{105,0}$	$\begin{array}{ll} \mathrm{H_2O-OH^{II}} & (1 \times) \\ \mathrm{H_2O-OH^{II^{\prime\prime}}} & (1 \times) \end{array}$	$2,87 \pm 12 { m \AA} 3,10 \pm 12$
	$\mathrm{OH^{II}-H_2O-OH^{II}''}$	$165,2^{\circ}$
	c) weitere Anionen-Abst	ände
${2,17\pm2{ m \AA}\over 2,08\pm2}$	$\begin{array}{c} \text{Cl-OH}^{I\prime\prime} & (3\times) \\ \text{Cl-Cl}^{\prime\prime} & (3\times) \end{array}$	$3,22 \pm 2 \text{ \AA}$ $3,66 \pm 1$
$egin{array}{rl} 3,10\ \pm\ 2\ 3,18\ \pm\ 2\ 3,04\ \pm\ 2\ 2,82\ +\ 3\ \end{array}$	$\mathbf{H}_{2}\mathbf{O-Cl} \begin{cases} (1 \times) \\ (2 \times) \\ (2 \times) \\ (1 \times) \end{cases}$	$3,28 \pm 12$ $3,48 \pm 12$ $3,87 \pm 12$ 4.05 ± 12
	$egin{array}{r} 1.94 \pm 2 { m \AA} \ 2.31 \pm 1 \ 3.24 \pm 2 \ 3.38 \pm 2 \ 113.6^\circ \ 105.0 \ 2.17 \pm 2 { m \AA} \ 2.08 \pm 2 \ 3.10 \pm 2 \ 3.18 \pm 2 \ 3.04 \pm 2 \ 2.82 \pm 3 \ \end{array}$	$ \begin{array}{c c} 1,94 \pm 2 \ {\rm \AA} \\ 2,31 \pm 1 \\ 3,24 \pm 2 \\ 3,38 \pm 2 \\ 113,6^{\circ} \\ 105,0 \\ 2,17 \pm 2 \ {\rm \AA} \\ 2,08 \pm 2 \\ 3,10 \pm 2 \\ 3,18 \pm 2 \\ 3,04 \pm 2 \\ 2,82 \pm 3 \end{array} \begin{array}{c c} {\rm OH^{I}-Zn^{I}-OH^{II}} \\ {\rm OH^{I}-Zn^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{II} \\ {\rm OH^{I}-Zn^{I}-OH^{I}-H^{I} \\ {\rm OH^{I}-Zn^{I}-OH^{I}-H^{I} \\ {\rm OH^{I}-Zn^{I}-OH^{I}-H^{I} \\ {\rm OH^{I}-Zn^{I}-OH^{I}-H^{I} \\ {\rm OH^{I}-Z$

Tabelle 3. Atomabstände (in Å) und Bindungswinkel in Zn₅(OH)₈Cl₂ · 1 H₂O

Wert 2,93 auf 3,10 Å angestiegen und gleichzeitig hat sich die Tetraederkante $OH^{I}-OH^{I}$ von 3,41 auf 3,24 Å verkürzt. Die Abstände $Cl-OH^{I}$ sind länger geworden (von 3,09 auf 3,22 Å) und brauchen nicht mehr als Wasserstoffbindungen gedeutet zu werden. Das Wassermolekül behält eine Wasserstoffbindung (2,87 Å) zu OH^{II} , der andere Abstand $H_2O-OH^{II''}$ geht aber auf 3,10 Å herauf. Dafür nähert sich das Wassermolekül stärker (3,28 Å) einem seiner sechs benachbarten Chlorionen.

Zum Schluß möchte ich den Herren Prof. W. FEITKNECHT, Prof. W. Nowacki und Dr. J. N. Silverman für ihr Entgegenkommen und ihre Hilfe danken. Prof. W. Nowacki stellte die hier verwendeten Weissenberg-Aufnahmen zur Verfügung, Dr. J. N. Silverman überließ mir neben einem Exemplar seiner ungekürzten Dissertation eine Liste der Lorentz- und Polarisationsfaktoren der Schichten (*h*1*l*) bis (*h*4*l*). Die Schätzarbeiten übernahm dankenswerterweise Frl. S. HORSCHT. Die für die Rechenmaschine TR4 des Rechenzentrums der Universität Marburg verwendeten Rechenprogramme (von Dr. W. FISCHER modifizierte Programme von BUSING, MARTIN und LEVY, 1962; und von BLOCK und HOLDEN, 1959) schrieb Herr Dr. W. FISCHER von der Fortranin die Algol-Sprache um und änderte dabei das Verfeinerungsprogramm noch weiter ab (raumgruppenabhängiger Symmetrieteil). Mein Dank gilt auch Herrn Prof. E. HELLNER für die Möglichkeit, an seinem Institut diese Arbeit durchzuführen.

Literatur

- S. BLOCK and I. R. HOLDEN (1959), Three-dimensional Fourier summation program. U.S. Nat. Bureau of Standards.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1962), OR FLS, a Fortran crystallographic least-squares program, ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- H. P. HANSON and R. R. POHLER (1966) Hartree-Fock-Slater coherent scattering factors for ions. Acta Crystallogr. 21, 435.
- W. LOTMAR (1946), Zur Struktur des Zinkhydroxychlorids II. Helv. chim. Acta 29, 14-21.
- W. NOWACKI und J. N. SILVERMAN (1961), Die Kristallstruktur von Zinkhydroxychlorid II, Zn₅(OH)₈Cl₂ · 1 H₂O. Z. Kristallogr. 115, 21-51 (Nachträge: ibid. 115, 476 und 117, 238-240). - Kurzveröffentlichungen dieser Arbeit erfolgten in: Chimia 10 (1956) 269; Verhandl. der Schweiz. Naturf. Ges. Basel, 1956, 102-104; Angew. Chem. 68 (1956) 765; Acta Crystallogr. 10 (1957) 787; Fortschr. Min. 35 (1957) 53.
- J. N. SILVERMAN (1956), The crystal structure of zinc hydroxychloride II, $Zn_5(OH)_8Cl_2 \cdot 1H_2O$. Inaugural dissertation, Universität Bern.