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Auszug

Die Kristallstruktur von Lorandit ThAs2S4, III del' AsS3-Tetraeder zu
spiraJformigen Ketten parallel [010] angeordnet und die Ketten durch TI-Atome
verbunden sind, wird bestatigt und bis zu R = 0,09 verfeinert. Die Gitter-
konstanten sind a = 12,28 A, b = 11,30 A, c = 6,10 A, fJ = 104 ° 5'; Z = 4.
Raumgruppe ist P21ja. Die S-Atome werden von den As- und TI-Atomen in

den Ecken schwach deformierter Tetraeder umgeben. S-Atome, die aufeinander-
folgende As-Atome in del' Kette verbinden, haben auBerdem noch zwei TI-Atome
zu Nachbarn. Jedes S-Atom, das nul' an ein As-Atom gebunden ist, hat drei
niichste TI-Nachbarn; sein Abstand zum As-Atom ist auffallend klein (2,08
und 2,20 A entsprechend den zwei nicht-aquivalenten As-Atomen del' Struktur).

Jedes TI-Atom liegt einer del' AsS3-Pyramidenketten naher als den iibrigen;
die S-Umgebung del' Tl-Atome bildet deformierte tetragonale Pyramiden mit
TI in del' Spitze.

Lage und Ausbildung del' Spaltbarkeit hangt unmittelbar von Zahl und Typ

del' Bindungen zwischen den Ketten ab. Die kurzen (As-S)-Abstiinde weisen
darauf hin, daB diese Bindungen bis zu einem gewissen Grad den Charakter
von n-Bindungen haben. Die geringe Differenz del' Elektronegativitaten von
TI und S, die scheinbare Wechselwirkung zwischen benachbarten TI-Atomen
und del' Vergleich mit Tl-haltigen organischen Verbindungen legen die An-
nahme nahe, daB zwischen den TI-Atomen und den AsS3-Ketten kovalente
Krafte bestehen.

Abstract

Lorandite (TbAs2S4) is monoclinic with a = 12.28(1) A, b = 11.30(1) A,

c= 6.101(6)A,fJ = 104°51(2/),spacegroupP21/a,Z = 4. The crystal structure,
consisting of spiral chains of AsS3 pyramids oriented parallel to [010] and con-
nected by TI atoms, has been confirmed and refined by full-matrix least-squares
analysis of three-dimensional diffractometer data to give a value of the con-
ventional residual index of 0.09. The positions of the S and As atoms are mark-
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x y z

Tl(l) in 4e 0.051 0.313 0.160
Tl(2) in 4e 0.101 0.056 0.732
As(l) in 4e 0.190 0.820 0.237
As(2) in 4e 0.151 0.585 0.554
S(l) in 4e 0.125 0.320 0.750
S(2) in 4e

I

0.150 0.580 0.200
S(3) in 4e 0.125 0.790 0.510
8(4) in 4e 0.200 0.030 0.200
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edly different from those reported in the literature. The present study has shown
that the bonds from the two non-equivalent As atoms to the non-bridge S are
quite short (2.08 A and 2.20 A), that each S is tetrahedrally coordinated to

As and Tl and that each Tl position is more closely related to one AsS3 pyramid
chain than to adjacent chains, the nearest-neighbor 8 environment of each
being a distorted square-pyramidal configuration.

The development of cleavage in lorandite is directly related to the number
and type of the interchain bonds. It is suggested that the short As non-bridge
8 distances in this mineral and in other sulfosalts indicate some degree of n-bond-
ing character in these bonds. Finally, the small difference in the electronegativi.

ties of Tl and S, the apparent bonding interaction between adjacent Tl atoms
and comparisons with Tl-bearing organic compounds suggest the that Tl atoms
are bound by covalent forces to the AsS3-pyramid chains.

Introduction

The sulfosalt lorandite, TbAszS4, is found in low-temperature
mineral assemblages in association with orpiment, realgar, pyrite
and certain other sulfide minerals; the most familiar locality being
Allchar, Macedonia. It has monoclinic symmetry with a = 12.27 A,
b = 11.34 A, c = 6.11 A, {3 = 104°12' (HOFMANN, 1933), space group
P 21/a, Z = 4. The mineral is deep red and, because of the prominent
development of cleavage [(100) excellent, (2"01)very good, (001) good],
it appears flexible in hand specimen, separating easily into cleavage
lamellae and fibres (DANA'S System ot mineralogy, 1946).

Table 1. Positional parameters of ZEMANN and ZEMANN

The crystal structure of lorandite was determined from hOl and hkO
reflections (ZEMANN and ZEMANN, 1959), giving the positional pa-
rameters in Table 1, and consists essentially of spiral chains of AsSa
pyramids oriented parallel to [010] and linked together by irregularly
coordinated TI atoms. KNOWLES (1965) reported on a refinement of
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the structure based on three-dimensional intensity data, suggesting
that the S and As positions were poorly defined in the original study
and that the TI atoms appeared to be in twofold coordination with S.

Experimental

The present study was made on material from Allchar obtained
through David New Minerals, Hamilton, Montana. Some difficulty
was encountered in obtaining a single crystal from the hand specimen
because the mineral deforms very readily when handled so that
crystals reduced to a suitable size invariably have bent or twisted
cleavage surfaces. The crystal selected was a tabular (010) cleavage
fragment bounded by plane surfaces, 0.003 cm thick with a calculated
volume of 0.11 . 10-6 cm3; it was mounted on the b axis to minimize
possible errors in the absorption correction. Reflections recorded on
precession camera films of the crystal did not show any evidence of
deformation. The systematic absences on these films confirmed the
accepted space group for lorandite, P 2I/a. The lattice parameters,
obtained by least-squares refinement of twelve centred reflections of
the crystal on a four-circle diffractometer, are a = 12.276(12) A,
b = 11.299(2) A, c = 6.101(6) A, fJ = 104°5'(2')-the standard devia-
tions are in parentheses-and compare quite favourably with published
data.

The x-ray intensity data for the structure analysis were taken on
a Picker facs 1 four-circle diffractometer system at the University of
Western Ontario. All hkl and hkl reflections with 20 ~ 450 were
measured using a scintillation detector, Zr-filtered MoKa (A =
0.7107 A) radiation and the 20-scan technique: 40 second stationary
background counts, peak-base widths of 2.00 20 (uncorrected for dis-
persion) and a scanning rate of 0.5 ° per minute. The resulting data
were processed by a data-correction routine which corrected for back-
ground, Lorentz and polarization effects, and absorption, and assigned
standard deviations (a) to the corrected data based on the summed
variances of the counting rates of the peaks and associated back-
grounds. Transmission factors for the absorption correction were cal-
culated by the analytical method of DE MEULENAERand TOMPA (1965)
using a value for the linear absorption coefficient of 485.6 cm-I. The
calculated transmission factors varied from 0.10 for 316 to 0.22 for
12 2 1. Each reflection whose intensity was less than the associated
background plus 3a was given zero intensity. The final data list con-
tained 1078 reflections of which 404 were "unobserved".
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Crystal-structure investigation
At this stage in the investigation the author was unaware that the

structure had been confirmed by KNOWLES (1965), and it was con-
sidered desirable to redetermine the structure independently of the
earlier work.

The structure factors were converted to normalized structure
factors, E, using program FAME (R. B. K. DEWAR, Illinois Institute
of Technology, Chicago), and, since the structure must be centro-
symmetric, the phases of those normalized structure factors with
E ;;;. 1.5 were assigned by a reiterative application of SAYRE'S equation
using program REL 1 (adapted from R. E. LONG,Ph. D. Thesis, Universi-
ty of California, Los Angeles, 1965). E maps, prepared from the solution
with the largest consistency index (0.998), clearly indicated twoTI posi-
tions, two probable and one possible As positions and various possible S
positions. A value of the conventional residual index, R, of 0.33 was
obtained using a trial set from these positions. A Fo Fourier synthesis
resolved all the positional ambiguities, giving a set of atomic positions
which resulted in a lowering of the residual index to 0.23 and which
proved to be equivalent to the accepted structure of lorandite; the As
and S atoms being associated to form spiral chains of AsSa pyramids
oriented parallel to [010] (Figs.1a and 1b) with two nonequivalent
TI atoms seemingly irregularly coordinated between them.

The structure was refined further by full-matrix, least-squares
refinement using program RFINE (L. FINGER, Geophysical
Laboratory, Washington). RFINE minimizes the function
1.:w (IFo[-lFei)2, where w = 1jcr2, Fo is the observed and Fe the
calculated structure factor, and calculates a conventional residual
index, IJlFol-lFellj1.:lFol and a weighted residual index,
[1.: w (JFo) - JFei)2j.EWFo2]lj2. The scattering curves for Tl and As
were taken from CROMERand MANN (1968) and that for S2- computed
for a nine parameter fit from data in the International tables for
x-ray crystallography, Vol. III; the anomalous dispersion coefficients
of CROMER (1965) for TI, As and S were included. Isotropic and
anisotropic thermal parameters were added successively to the
refinement. However, the values of the anisotropic thermal pa-
rameters for the S atoms were somewhat erratic and inconsistent,
suggesting that they were reflecting limitations in the data set rather
than true thermal motions of the atoms, and the refinement was
limited to anisotropic thermal parameters for TI and As atoms and
isotropic thermal parameters for S atoms. The values of the conven-
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tional and weighted residual indices obtained for the non-zero inten-
sities used are all isotropic, 0.105 and 0.114, and anisotropic Tl and As
and isotropic S, 0.094 and 0.098. According to the procedure for
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Fig. 1. The crystal structure oflorandite projected parallel to a) c axis, b) b axis;

TI: large open circles with the height in the projection indicated, As: small
stippled circles, S: small open circles

testing weighted residuals (HAMILTON, 1965), the value of the residual
index for the latter refinement is significant, compared to that using
isotropic thermal parameters only, at the 0.005 level. The positional



Posi-

I

Bll (B) B22 B33 B13
tion

x y z

Tl(1) 0.0519(3) 0.3121(4) 0.1619(6) 2.6(2) 2.1(2) 1.3(2) 3.4(6)
Tl(2) 0.1009(3) 0.0560(4) 0.7357(7) 3.0(2) 2.1(2) 1.3(2) 4.1(6)
As(1) 0.1960(8) 0.8353(9) 0.2266(15) 2.7(5) 1.5(5) 0.7(4) 1.8( 1.5)
As(2) 0.1361(8) 0.5865(8) 0.5320(16) 3.3(5) 1.3(5) 1.3(5) 7.2( 1.6)
8(1) 0.131 (2) 0.316(3) 0.721(5) 3.3(6)
8(2) 0.147(2) 0.553(2) 0.183(4) 1.6(4)
8(3) 0.174(2) 0.786(2) 0.577(4) 2.2(5)
8(4) 0.183(2) 0.038(2) 0.272(4) 1.7(5)
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Table 2. Positional and thermal parameters (standard deviations in parentheses)

and thermal parameters, and associated standard deviations for this
refinement are given in Table 2.

The refinement was terminated when the changes to the positional
and anisotropic thermal parameters were in the sixth places and the
ratios of the changes in these parameters to the errors in the parameters
were less than 0.005. The observed and calculated structure factors
are given in Table 3. The refined structure was checked with F 0 and
F 0- Fe Fourier maps; no significant residual peaks were detected.

Discussion of the structure

The positional parameters determined in the present study show
marked discrepancies from those reported in the original work (ZEMANN
and ZEMANN, 1959). As expected, the discrepancies are least for the
heavy Tl atoms and greatest for the lighter S atoms. Thus, although
the structure was outlined correctly, the bond distances and bond
angles reported for the spiral chains of ASS3 pyramids have
little relation to the actual values. The ranges of the interatomic
distances quoted by KNOWLES (1965) are similar to those of the
present study, suggesting that the positional parameters of the two
refinements would be quite comparable.

Some interatomic distances and bond angles of interest are given
in Tables 4 and 5 respectively (the atom identification labels are
consistent with the usage in Fig. 2; atoms marked by an asterisk are
located in adjacent unit cells). The As-S bonds which form bridge
bonds between the AsS3 pyramids are similar in length (2.29 A to
2.32 A) to the average bridge bond (2.31 A) obtained from a survey
of well refined sulfosalt structures (TAKEUCHI and SADANAGA,1969).
However, the non-bridge As-S bonds are somewhat shorter (2.08 A
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Table 3. Observed and calculated structure factors
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Table 4. Interatomic distances in lorandite

(standard deviations in parentheses)

As(1)-S(1) 2.08(1) A TI(1)-S(1) 3.31(3) A TI(2)-S(1) 2.97(3) A
As(1)-S(3) 2.29(3) TI(1)-S(1)* 3.07(3) TI(2)-S(2) 3.014(5)
As(1)-S(4')* 2.32(3) TI(1)-S(2') 2.96(2) TI(2)-S(3') 3.93(3)
As(2)-S(2) 2.20(2) TI(1)-S(2"') 3.19(2) TI(2)-S(4) 3.19(2)
As(2)-S(3) 2.30(3) TI(1)-S(3) 3.36(1) TI(2)-S(4)* 3.23(2)
As(2)-S(4) 2.32(1) TI(1)-S(3"') 3.69(2) TI(2)-S(3"') 3.89(1)

Tl(1)-S(4) 3.48(2) TI(2)-S(4") 3.63(1)
S(1)-S(3) 3.35(2) TI(1)-TI(2)* 4.032(6) TI(2)-TI(2") 3.541(6)
S(1)-S(4')* 3.38(3)
8(2)-S(3) 3.52(3)
8(2)-S(4) 3.47(2)
S(3)-S(4')* 3.42(3)
S(3)-S(4) 3.31(3)

Table 5. Bond angles in lorandite

(standard deviations in parentheses)

S(1)-As(1)-S(3') 100.2(1.1)0 As(1)-S(1)-TI(1) 101.1(1.0) 0

S(1)-As(1)-S(4')* 100.5(1.2) 0 As(1)-S(1)-TI(1)* 113.2(1.2)
S(3)--As(1)-S(4')* 95.9(1.0) As(1)-S(1)-TI(2) 103.2(1.2)
S(2)-As(2)--S(3) 102.9(1.1) TI(1)-S(1)-TI(1)* 145.6(0.9)
8(2)-As(2)--S(4) 100.5(0.9) TI(1)-S(1)-TI(2) 90.6(0.8)
S(3)--As(2)-S(4) 91.5(0.9) TI(1)*-S(1)-TI(2) 83.7(0.8)

As(2)-S(2)-TI(1') 109.9(0.9)
8(1)-TI(1)-S(1)* 145.6(0.9) As(2)-S(2)-TI(1"')* 94.7(0.9)
S(1)-TI(1)-S(2')* 85.9(0.7) As(2)-S(2)-TI(2) 98.1(0.8)
8(1)-TI(1)-S(2"') 131.1(0.7) TI( 1') -S(2) - TI( 1"')* 100.4(0.6)
S(1)-TI(1)-S(3) 60.3(0.6) TI(1')-S(2)-TI(2) 133.9(0.8)
S(1)*-TI(1)-S(2')* 79.6(0.8) TI(1"')*-S(2)-TI(2) 113.2(0.8)
S(1)*-TI(1)-S(2"') 76.7(0.7) As(1)-S(3)--As(2) 101.1(1.1)
S(1)*-TJ(1)-S(3) 85.6(0.7) As(1)-S(3)-TI(1) 95.2(0.8)

S(2')*-TI(1)-S(2"') 79.7(0.6) As(1)-S(3)-TI(2')* 98.4(0.8)

S(2')*- TI( 1)-S(3) 73.9(0.6) As(2)-S(3)-TI(1) 107.1(0.9)
S(2"')-TI(1)-S(3) 150.4(0.6) As(2)-S(3)-TI(2')* 148.6( 1.0)
8(1)-TI(2)-S(2) 83.3(0.7) TI(1)-S(3)-TI(2')* 95.2(0.6)
S(1)-TI(2)-S(3') 147.1(0.7) As(1')-S(4)-As(2) 102.1(1.0)
S(1)-TI(2)-S(4) 88.2(0.7) As(1')-S(4)-TI(2) 87.3(0.8)
S(1)-TI(2)--S(4)* 94.8(0.7) As(1')-S(4)-TI(2)* 102.3(0.9)
S(2)-TI(2)-S(3') 72.8(0.6) As(2)-S(4)-TI(2) 122.5(0.9)
S(2)-TI(2)-S(4) 67.5(0.6) As(2)-S(4)-TI(2)* 89.9(0.8)
S(2)-TI(2)-S(4)* 77.0(0.6) TI(2)-S(4)-TI(2)* 143.8(0.8)
S(3')-TI(2)-S(4) 62.2(0.6)
S(3')-TI(2)-S(4)* 101.3(0.6)
S(4)-TI(2)-S(4) 143.8(0.8)
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and 2.20 A) than the average for bonds of this type (2.26 A) for other
sulfosalt structures. The bond angles within the chains are within the
ranges for bridged As8a pyramids in sulfosalts, although the 8(3)-
As(1)-8(4) and 8(3)-As(2)-8(4) bond angles are significantly smaller
(95.9° and 91.5°) than the remainder, which fall in the range 100°
to 103°.

In the present representation of the structure, each 8 atom is in
tetrahedral coordination (Fig.2); the bridge 8 atoms are coordinated
to two As and two TI whereas the non-bridge 8 atoms are coordinated

5(2')
5(3')

Tl(7~ - b

OTl ~As Os

Fig.2. Tl and S environments in lorandite; the structure is projected parallel
to c axis and rotated 5 ° about [100], dashed lines: interatomic distances greater
than 3.40 A, broken circles: atoms in unit cells above and below that represented

to one As and three Tl. Each tetrahedron is slightly distorted, but
most of the bond angles do not depart too greatly from the ideal
tetrahedral value.

Both TI atoms are coordinated on the sides of the As8a pyramid
chains, adjacent to recesses formed in the chains. Each TI position is
more closely related to one chain than to neighboring chains. Al-
though the 8 coordination polyhedra about the TI atoms do appear
irregular, closer inspection indicates many similarities in both posi-
tions. If an arbitrary limit of 3.40 A is placed on the TI-8 distances,
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each TI atom is in fivefold coordination with S forming a flattened
square pyramid. The bond distances and angles indicate considerable
distortion from this ideal arrangement (Table 5). The TI atoms are
located beneath the base of each pyramid allowing for possible inter-
actions with other TI atoms and with more distant S and As atoms
(Fig. 2). The closest TI-S distances are, for both TI(l) and TI(2),
to the non-bridge S atoms [S(l) and S(2)] and, these, presumably,
correspond to the twofold coordination proposed by KNOWLES. How-
ever, although these bond distances may represent the strongest
bonding interactions, the TI-S bond distances do show a gradational
increase between 2.96 A and 3.89 A making definition of the nearest-
neighbor coordination polyhedra quite arbitrary.

The environments of the TI atoms in lorandite are somewhat
similar to the probable environment of TI in the isomorphic sulfosalts,
hatchite (MARUMOand NOWACKI, 1967) and wallisite (TAKEUCHI and
OHMASA, 1968), in which the TI,Pb(2) positions are coordinated to
two S (with interatomic distances of 2.99 A and 3.14 A) and more
distant S and As. In hatchite the TI, Pb (2) positions approach each
other as close as 3.78 A. Short TI-Tl distances have been reported
also from the sulfides of thallium. Tl2S has a distorted Cd(OH)2
(06 type) structure, in which each TI is coordinated to three S, with
TI-S distances ranging from 2.61 A to 3.15 A, and to twelve TI with
TI-TI distances from 3.50 A to 4.63 A (KETELAARand GORTER, 1939).
In TIS, TI apparently exists in both the Tl+ and T13+ states (HAHN
and KLINGLER, 1949). The T13+ is in tetrahedral coordination, with
TI-S distances of 2.60 A, and the TI+ is in eightfold coord nation
with TI-S distances of 3.32 A; TI-TI distances are 3.40 A and 3.88 A.
In fact, in most of the investigated Tl-bearing sulfides and sulfosalts
the TI atoms have a tendency to interact with each other; in lorandite
the closest TI-TI distances are 3.54 A [TI(2)-TI(2)] and 4.03 A
[TI( 1)- TI(2)J.

The chains of AsSa pyramids are connected together in the lorandite
structure by the TI atoms. However the TI atoms are associated more
closely with one chain than with neighboring chains: of the ten
TI-S distances less than 3.40 A in each formula unit, seven are within

a single chain, only two connect directly chains lying within the
same (100) plane and one connects chains lying within the same
(201) plane: chains lying within the same (001) plane are connected
directly by a strong TI-TI interaction. Clearly, the most cohesive
bonding forces are within the chains (primarily As-S and TI-S ones),
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and the surfaces of weakness giving rise to cleavage in the crystals
should pass between the chains. The development of cleavage in the
mineral [(100) excellent, (201) very good, (001) good] is just that
predicted on the basis of the interchain bond distribution, since a (100)
cleavage requires the disruption of only two TI-8 bonds and one
TI-TI interaction per two formula units, a (201) cleavage requires the
disruption of four TI-8 bonds and one TI-TI interaction and a (001)
cleavage requires the disruption of six TI-8 bonds (Fig. 3).

o Tl e As Os

Fig. 3. The development of cleavage in lorandite

There are several interesting features in the structure of lorandite
which are helpful to an understanding of the nature of the chemical
bonding in the compound. These can be enumerated as follows:

(i) the relatively short As-non-bridge 8 bonds

(ii) the bond angles between the bridge 8 and As approach 900

(iii) the apparent tetrahedral environment of 8

(iv) the apparent fivefold coordination of both TI atoms by 8

(v) the close approach of the TI atoms to each other.

The electron configuration of the valency electrons of the con-
stituent atoms are TI-682 6pl, As-482 4p3, 8-382 3p4. It is generally
accepted that the bonding within the groups of As83 pyramids in
sulfosalts is covalent; the principal evidence for this being the small
difference in electronegativity of As (2.0) and 8 (2.5) and the similarity
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of the As-S distances with the accepted covalent-bond 'ength.
Assuming that the '1'1atoms exist in the common 1 + oxidation state,
each would donate the single 6p electron to form an effective As284--
ligand group, so that there are 36 electrons available for the 16 single
bonds required in each formula unit. A molecular orbital treatment
of this situation could involve sp3 tetrahedral hybrid orbitals on
both the As and 8 atoms, leading to six As-8 a bonds, ten '1'1-8
a bonds (or their ionic equivalents) and doubly occupied non-bonding
a orbitals on the As atoms. The short As-non-bridge 8 distances
clearly indicate some degree of multiple bonding. Now, the deve~op-
ment of dn-pn bonding is a marked feature of many compounds
and groups formed of combinations of the lighter members of the
chemical groups V and VI (COTTONand WILKINSON, 1966), leading
to shorter interatomic distances than expected for single bonds, and
we can refer these shorter As-8 distances to the overlap of the
"non-bonding" Sp3 hybrid orbital on the As atoms with the empty
dZ2 and dX2_y2 orbitals on the 8(1) and 8(2) atoms. This would
necessitate some modification of the concept of four symmetrical Sp3
tetrahedral hybrid orbitals on each As, so that the two orbitals bonded
to the bridge 8 would have a large p character-resulting in a bond
angle approaching 90°-and the orbital bonded to the non-bridge S
would have a large s character allowing the fourth to be essentially
a p orbital for n-bond formation with the d orbitals on the non-
bridge S. It follows that the short As-non-bridge S bonds in other
sulfosalts may reflect some degree of multiple-bond formation also.

The nature of the Tl-S bonds represents a more difficult problem.
A convenient explanation is to resort to the ionic model with '1'1+ions
coordinated to As2S4-- ligand groups; the '1'1+ions being preferentially
attracted toward the electron-rich areas of the ligands, i. e. toward the
lone pair electrons on the S atoms. The Tl-S distances for the structure
range over values similar to those reported for what is assumed to be
'1'1+coordinated with 8 in TbS and '1'18, and the average value for the
closer bonds is similar to the expected bond distance for such a model,
obtained from the sum of the ionic radius of '1'1+(1.40 A) and the
van der Waals' radius of S (1.85 A). The large variation in the nearest
Tl-S distances could be ascr.bed either to variation in the disposition
of the lone pair orbitals on the S atoms or to the polarizability of the
relatively large '1'1+ions.

However, the TI-C bonding in the compound TICaH5 has been
shown to be largely covalent (SHIBATA, BARTELL and GAVIN, 1964)
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and good arguments can be advanced in favor of the Tl-S bonding
in lorandite being largely covalent in character also. The principal
features suggesting covalency are the small difference in the electro-
negativities of Tl (1.8) and S (2.5) and the short Tl-Tl distances,
suggestive of bonding interactions between the Tl atoms. The Tl-Tl
distance in crystalline Tl is 3.457 A (BARRETT and MASSALSKI, 1966)
so that the short Tl(2)-Tl(2) distance in lorandite represents a bond
number approaching unity. It is clear from the earlier discussion
that Tl-Tl interactions are very common in compounds of Tl with
group VI elements. A closer analogy for the present purpose is tetra-
meric thallium methoxide (TIOCH3)4 in which the 0 is coordinated
tetrahedrally to three Tl and one CH3 group giving intramolecular
Tl-Tl distances of 3.84 A (DAHL, DAVIS, WAMPLER and WEST, 1962).

In the covalent model, then, recognizing the apparent fivefold coor-
dination of Tl, each Tl would form 8p3dx2_y2 square-pyramidal
hybrid orbitals to bond with the 8p3 hybrid orbitals on the S atoms.
The two (original 682) electrons residing on each Tl would be distributed
in different ways, partly occupying antibonding orbitals to the square-
pyramidal (j orbitals, effective to different extents in each internuclear
direction to explain the variation in Tl-S bond lengths, and partly
occupying a low-lying 6d or 78 orbital for interaction with neigh-
boring Tl atom(s) or for more feeble interactions with more distant
S and As atoms.
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