Study of the force field of scheelite

By KAZUAKI IISHI

Department of Mineralogical Sciences and Geology, Faculty of Literature and Science, Yamaguchi University

(Received 11 September 1972 and in revised form 31 December 1973)

Auszug

Die Methode der G- und F-Matrizen wurde zum Studium des Kraftsystems in Scheelit angewendet. Die Aufspaltung der intramolekularen Schwingungen und die Gitterschwignungen werden beide durch die interatomaren Wechselwirkungen erklärt. Die erhaltenen interatomaren Kraftkonstanten von nichtgebundenen Sauerstoffpaaren in Scheelit folgen näherungsweise einem 6-12-Lennard-Jones-Ansatz. Behandlung mit Normalkoordinaten liefert eine vollständige Diskussion der intramolekularen Normalschwingungen und der Gitterschwingungen.

Für das tetraedrische Ion WO_4^{2-} (Symmetrie T_d) erfolgt die Schwingung $v_2(E)$ bei höherer Frequenz als die Schwingung $v_4(F_2)$, entgegen dem üblichen Verhalten. Dies wird erläutert durch Berechnung und Vergleich der Normalschwingungen und der Schwingungsformen verschiedener Arten tetraedrischer Ionen wie SiO_4^{4-} , PO_4^{3-} , SO_4^{2-} , MO_4^{2-} und WO_4^{2-} . Die Zuordnung der Schwingungen wird auch theoretisch bestätigt.

Abstract

The G and F matrix method has been applied to the study of the force field of scheelite. The splitting of the intramolecular vibration bands and the lattice vibrations have been clarified at the same time through the intermolecular atom-atom interactions. The obtained interatomic force constants of nonbonded oxygen pairs in scheelite follow roughly the Lennard-Jones 6-12 law. The normal modes of the intramolecular vibrations and the lattice vibrations have been fully discussed on the basis of the normal-coordinate treatment.

For the tetrahedral ions $(T_d \text{ symmetry})$ of the WO²⁻₄, $v_2(E)$ is larger than $v_4(F_2)$, representing an opposite relation to the usual order. This has been explained by calculating and comparing the normal vibration and the modes of vibration for several kinds of the tetrahedral ions such as SiO⁴⁻₄, PO³⁻₄, SO²⁻₄, MOO²⁻₄ and WO²⁻₄. The assignment of the vibrations has also been theoretically confirmed.

Introduction

The infrared and Raman spectroscopies are generally thought to be the most useful method for analyzing the characteristics of the crystals. To obtain certain information with respect to the forces controlling the crystal structure or to determine the interatomic or interionic forces in the lattice through calculation of the frequencies the spectroscopies play an important role. Recent progress in the study of the lazer Raman spectroscopy and of the far-infrared interferometry makes it possible to analyse the comparatively complicated structures of anisotropic crystals using the method of polarized radiation. Large values of the magnitude of splitting are found in experiments of scheelite.

In the present paper the G and F matrix method has been applied to the crystals under consideration and the results derived are compared with the observed values of the intramolecular vibration splitting and lattice frequency. This result gives important informations regarding the interatomic forces of this crystal. The dynamics of the molecules and ions in the crystalline environment have been examined by comparing their state in the crystals with their behaviors in free conditions.

I. The tetrahedral ions

First, the molecules in an isolated state without being affected by the surrounding conditions such as the neighbors, the crystalline environment and so on are disputed. The molecule in question is classified into the point group T_d . Its symmetry species and characters are given in Table 1.

As its potential function, the Urey-Bradley force field (SHIMANO-UCHI, 1963) was used as follows:

$$V = \frac{1}{2} \sum K_i (\Delta r_i)^2 + \frac{1}{2} \sum H_{ij} r_i r_j (\Delta \alpha_{ij})^2 + \frac{1}{2} \sum F_{ij} (\Delta q_{ij})^2 + \frac{1}{4} \varkappa$$
 (terms due to internal tensions).

Here K, H and F are the stretching, bending and repulsive force constants, respectively. The first-order repulsive force constant F' is estimated -0.1 F.

The calculated values of frequency were converged to those observed through the least-squares method presented by SHIMANOUCHI and SUZUKI (1964). The measure of fitness (S) and the dispersions of force constants (σ_i) were calculated. The displacement of each atom

	Raman	$\alpha_{xx} + \alpha_{yy} + \alpha_{zz}$	Ł	$\alpha_{xx} + \alpha_{yy} - 2\alpha_{zz}, \ \alpha_{xx} - \alpha_{yy}$	f	$\alpha_{xy}, \alpha_{yz}, \alpha_{xz}$	over-all translations of the Bravais
ymmetry	Infrared	f	Ļ	4 44	6 41	M_x, M_y, M_z	s, T_i : number of
or T _{a s.}	n_i	1	0	Ţ	0	63	species
table f	$R_{i'}$	0	0	0	1	0	the <i>i</i> th
iaracter	$T_{i'}$	0	0	0	0	0	ted to 1
le 1. <i>Cl</i>	T_i	0	0	0	0	1	om rela
Tab	N_t	1	0	1	1	ç	f freedd
	$3C_2$	1	1	ର	-1	1	grees o
	$6S_4$	1	-1	0	1	-	er of de
	$6 \sigma_d$	1	-	0	1	Ħ	oquinu
	$8 C_3$	1	1	-1	0	0	en, N_i :
	E	1	T	61	e	en	orbidd
	T_d	A_1	A_2	B	F_1	F_2	f. 1

It proposes, Y_i : number of the translational lattice modes, R_i' : number of the rotational lattice modes, n_i : number of the normal modes of the intramolecular vibration.

Study of the force field of scheelite

4. Kristallogr. Bd. 141, 1/2

Kazuaki Iishi

in vibration is describable in terms of the transformation matrix L_x from the Cartesian coordinates X to the normal coordinates Q:

$$X = L_x Q \tag{1}$$

and calculated as the eigenvector for $M^{-1} F_x$ matrix:

$$M^{-1} F_x L_x = L_x \Lambda. \tag{2}$$

In this paper, the values for the optically active frequency were calculated on the basis of the mass-adjusted Cartesian symmetry coordinate (MANN *et al.*, 1954). Since the mass-adjusted Cartesian displacement is physically more significant, L_{xm} is calculated as follows:

$$X_m = M^{1/2} X, (3)$$

$$X_m = L_{xm}Q, \qquad (4)$$

$$L_{xm} = M^{1/2} L_x. (5)$$

Results

The calculated and observed values (MÜLLER and KREBS, 1967) of frequency, the determined force constants and the Jacobian matrix for WO_4^{2-} , MO_4^{2-} , SO_4^{2-} , PO_4^{3-} and SiO_4^{4-} free ions are shown in Table 2. It is remarkable that the observed data coincide with the calculated ones. The weighed sum of the squared deviations S and the dispersion of the force constants σ are nearly equal to zero. L_{xm} matrix derived from the determined set of the force constants is aligned in Table 3. The modes of vibration for v_1 and v_2 are the same in the case of each tetrahedral ion as there is no relation to the central atom of the tetra-

Table 2. Calculated and observed values of frequency (cm⁻¹), force constants^{*} and Jacobian matrix of some XO_4 type ions with T_d symmetry

 SiO_4^{4-} free ion

		Frequ	iencies	Force constants				
Spee	cies	Obs.	Calc.	K 3.7135	H 0.1918	F 0.6523	× 0.6641	
4.		810	<u>810</u>	0.063		0.25		
A1	ν_1	619	019	0.003	U	0.25	0	
\boldsymbol{E}	v_2	340	340	0	0.188	0.075	-0.025	
T	v_3	906	906	0.108	0.116	0.042	0.047	
T,	ν_4	527	527	0.001	0.199	0.102	0.080	

* Dimension of force constants is mdyn/Å for K, H and F, and mdyn \cdot Å for \varkappa .

Study of the force field of scheelite

Table 2. (Continued)

 PO_4^{3-} free ion

		Frequ	iencies	Force constants				
Spec	vies	Obs.	Calc.	K 5.0090	H 0.2983	F 0.8211	× 0.4862	
A_1	ν_1	938	938	0.063	0	0.25	0	
\boldsymbol{E}	ν_2	420	420	0	0.188	0.075	-0.028	
T	ν_3	1017	1017	0.105	0.089	0.046	0.040	
Ľ	V4	567	567	0	0.208	0.097	0.093	

SU_4 free ion	SO_4^{2-}	\mathbf{free}	ion
-----------------	-------------	-----------------	-----

		Frequ	iencies	Force constants				
Spec	ies	Obs.	Obs. Calc.		$\begin{array}{c c} H\\ 0.4203\end{array}$	F 0.7686	× 0.5745	
A ₁ E F	ν ₁ ν ₂ ν ₃	983 450 1105	$983 \\ 450 \\ 1105$	0.063 0 0.103	0 0.188 0.094	$0.25 \\ 0.075 \\ 0.043$	0 0.030 0.045	

MoO_4^{2-} free ion	
-----------------------	--

		Frequ	iencies		Force constants				
Spec	vies	Obs.	Calc.	<i>K</i> 4.7263	H 0.1532	F 0.7018	× -0.1815		
A_1	ν_1	894	894	0.063	0	0.25	0		
\boldsymbol{E}	ν_2	381	381	0	0.188	0.075	-0.023		
77	ν_3	833	833	0.076	0.004	0.072	0.001		
Ľ	v_4	318	318	0.001	0.177	0.058	0.065		

WO_4^{2-} free ion

		Frequ	iencies	Force constants				
Spe	cies	Obs.	Calc.	$egin{array}{c} K \ 5.0336 \end{array}$	H 0.1213	F 0.7841	× -0.0183	
A_1	v_1	931	931	0.063	0	0.25	0	
\boldsymbol{E}	v_2	373	373	0	0.188	0.075	-0.022	
ы	vs	833	833	0.069	0	0.079	0	
Ľ	v_4	320	320	0.001	0.154	0.049	0.055	
	-4	1 320	1 520	0.001	1 0.101	0.010	,	

3*

					f		2		;	e C		
		Si	04-		ž	04	NO 1	<u>_4</u>	MC	04	Å	04
	r_1	v_2	<i>v</i> 3	<i>P</i> 4	<i>v</i> 3	24	<i>v</i> 3	<i>P</i> 4	<i>v</i> 3	v_4	<i>v</i> 3	v_4
ž	c	c	- 0.58	0 35		- 0.38	- 0.56	-0.37	- 0.31	-0.41	-0.23	-0.35
1.		>		00.0						11.0		
y_1	•	0	0	0	0	0	•	0	0	0	0	0
2 <mark>1</mark>	0	0	-0.41	-0.25	-0.39	-0.27	-0.39	-0.26	-0.22	-0.29	-0.16	-0.25
x_2	0	0.5	0.04	0.36	0.03	0.37	0.04	0.37	-0.04	0.43	-0.05	0.45
<i>u</i> 3	0	0	0	0	0	0	0	0	0	0	0	0
22 2	0.5	0	0.35	-0.27	0.37	-0.24	0.36	-0.25	0.46	-0.07	0.48	-0.01
x_3	0.47	0.17	0.34	-0.13	0.36	-0.10	0.36	-0.11	0.42	0.08	0.43	0.14
y_3	0	0	0	0	0	0	0	0	0	0	0	0
23	-0.17	0.47	-0.43	0.43	-0.10	0.43	- 0.08	0.43	-0.19	0.42	-0.21	0.43
x_4	-0.24	0.33	0.19	0.12	0.19	0.13	0.20	0.13	0.19	0.25	0.19	0.30
y_4	-0.41	0.29	0.26	-0.43	0.29	-0.41	0.27	-0.42	0.40	-0.30	0.42	-0.27
24	-0.17	-0.24	0.14	0.08	0.14	0.09	0.14	0.09	0.13	0.18	0.14	0.21
x_5	-0.24	-0.33	0.19	0.12	0.19	0.13	0.20	0.13	0.19	0.25	0.19	0.30
y_5	0.41	-0.29	-0.26	0.43	-0.29	0.41	-0.27	0.42	-0.40	0.30	-0.42	0.27
25	-0.17	-0.24	0.14	0.08	0.14	0.09	0.14	0.09	0.13	0.18	0.14	0.21

Table 3. $L_{\pi m}$ matrix of some XO_4 tetrahedral ions

Kazuaki Iishi

Study of the force field of scheelite

Fig. 1. Modes of vibration for the tetrahedral XY_4 ion $(SiO_4^{4-} \text{ and } WO_4^{2-})$

hedron. The L_{xm} data of r_1 and r_2 are given only in relation to SiO_4^{4-} . In the case of SiO_4^{4-} and WO_4^{2-} , the displacement vectors along x, y, and z axes of each atom are illustrated in Fig.1. Here the data of L_{xm} matrix are used for each frequency.

Discussion

A) The assignment of vibration bands

The assignment of $v_2(E)$ of WO_4^{2-} ion was ambiguous to its very low intensity. BUSEY and KELLER (1964) assigned correctly this vibration band by examing the infrared spectra of Na₂WO₄ (crystal) bearing a spinel structure with the site symmetry T_d . According to their results, for the tetrahedral ion of $WO_4^{2-} v_2(E) > v_4(F_2)$ and $v_1(A_1) > v_3(F_1)$, which represents an inversion of the usual order for the tetrahedral ions such as SO_4^{2-} , PO_4^{3-} and SiO_4^{4-} etc. These inversion of frequency of v_2 and v_4 or v_1 and v_3 are explained below from the viewpoint of the obtained modes of vibration and the obtained Jacobian matrix.

a) The relation $v_1 \ge v_3$

As far as SiO_4^{4-} is concerned, the Jacobian matrix of the force constants K, H and \varkappa are fairly large for v_3 compared with v_1 . On the other hand, the force constant F has a stronger effect upon v_1 than upon ν_3 , but the absolute value of K is very large. Consequently the frequency values of v_3 becomes larger than that of v_1 . Different effects of each force constant on frequency are clarified through examination of the modes of vibration shown in Fig.1. On account of the displacement of oxygen only along Si-O bond vectors, a distortion of the angle is not derived from the change of each atom and hence the force constants K and F only affect v_1 as the potential energy. In the case of v_8 the Si atom also moves as oxygen atom and therefore the force constant K gives the effect largely on v_3 than v_1 . Distorsion of the angle O-Si-O is ascribed to the displacement of Si atom. Thus the force constants H and \varkappa influence v_3 differently from v_1 . In the case of v_3 , the displacement of the central atom of tetrahedron diminishes the value of the Jacobian matrix of the repulsive force F.

In the case of WO_4^{2-} ion, the displacement vector of the tungsten atom in v_3 is less than that of the silicon atom in the case of SiO_4^{4-} (Fig. 1). It thus results that the values of the Jacobian matrix of the force constants K, H and \varkappa of v_3 are nearly equal to those of v_1 . Whether v_1 is larger than v_3 or not, therefore, may be determined by the value of the Jacobian matrix of the repulsive force constant F. Inspection of Table 2 suggests that the repulsive force affects rather v_1 than v_3 , and therefore v_1 is larger than v_3 .

b) The relation $v_2 \ge v_4$

The mode of v_4 vibration of WO₄²⁻ with the oxygen atoms vibrating in the direction nearly perpendicular the edge of the tetrahedron apparently differs from that for SiO₄⁴⁻ with the oxygen atoms vibrating nearly along the edges of tetrahedron. The values of the Jacobian matrix related to the repulsive force constant F for v_4 is larger than that for v_2 in the case of SiO₄⁴⁻. The effect of the repulsive force constant F for v_4 is less than that for v_2 in the case of WO₄²⁻. However the inverse relation of v_4 and v_2 is most effectively influenced by the value of the internal molecular tension \varkappa . As is shown in Table 2, the tetrahedral ions such as SiO₄⁴⁻, PO₄³⁻, SO₄²⁻ etc. indicate the relatively large value of \varkappa whereas their central atoms are rather less in weight. On the other hand, the values of \varkappa in the case of the tetrahedra of WO₄²⁻ and MO_4^{2-} etc. with the heavy central atoms are very small or negative. Moreover, the Jacobian matrix of \varkappa has a negative value for v_2 and a positive value for v_4 . Because of this situation, v_4 is larger than that of v_2 for SiO_4^{4-} , PO_4^{3-} and SO_4^{2-} etc. and vice versa for WO_4^{2-} and MO_4^{2-} etc.

B) The repulsive force constant and the interatomic distance

The Lennard-Jones type of the potential is:

$$U = -A'/r^6 + B'/r^{12}, (6)$$

where U is the potential energy, A' and B' the constants for the attractive and repulsive terms respectively, and r the interatomic distance. The non-bonded force constant F is given as:

$$F = d^2 U/dr^2 = -42 A'/r^8 + 156 B'/r^{14} = -A/r^8 + B/r^{14}.$$
 (7)

Based on this assumption, LEVITT (1969) obtained 231 mdyn \cdot Å⁷ for A and 530,000 mdyn \cdot Å¹³ for B through site-group analysis in the case of fluorapatite. If these values are now valid, 1.89, 1.16, 0.55, 0.26 and 0.22 mdyn/Å are obtained for SO_4^{2-} , PO_4^{3-} , SiO_4^{4-} , MoO_4^{2-} and WO_4^{2-} respectively, although these values are of course variable to some extent. The obtained repulsive force constants are very different from those obtained based on the assumption of the Lennard-Jones type of potential. Furthermore, there is no reasonable relation between the oxygen \cdots oxygen distance and the repulsive force constants. The unreasonability of the obtained repulsive force constants can perhaps be solved by introducing another force constant $p(\Delta r, \Delta r')$ related bond-bond interaction. The addition of the correction term p to the Urey-Bradley force field, however, amounts to five of the force constants to be determined, whereas four kinds of the fundamental frequency can be observed. This problem will be discussed after the site-group and factor-group analyses of scheelite.

II. The site-symmetry treatment of scheelite

A) The observed data

The values of frequency for the infrared active vibrations have been determined by BARKER (1964) through measurement of the infrared reflectivity of single crystals. The species B_u inactive for infrared

* The values of frequency in parentheses are solution data from BUSEY and KELLER (1964).

Table 5. External vibrations in scheelite

Rotatory	Translatory
$\begin{array}{ccc} A_g & 218 \ {\rm cm^{-1}} \\ B_u & 213 \\ E_g & 275 \\ E_u & 202 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Fig. 2b. Internal mode in CaWO₄

and Raman are assigned on the basis of their infrared active data under the condition of the sheared strain (Scorr, 1968a). The Raman spectra were investigated by RUSSELL and LOUDON (1965), PORTO and SCOTT (1967), and KHANNA et al. (1968). As has been stated already in the tetrahedral ion section, $v_2(A_u)$ and $v_4(A_u)$ together with $v_2(B_g)$ and $v_4(B_g)$ were often misassigned. The data of the frequency o scheelite were reassigned by SCOTT (1968 b) based on the data given by PORTO and SCOTT for the Raman effect and those given by BARKER for the infrared absorption. This paper is based on the assignment given by Scott.

The observed values of the internal and external vibration in association with the assignment are listed in Tables 4 and 5. The values

of the frequency for the infrared and Raman are averaged to obtain the data of the site-group analysis. The complete scheme of the vibration level for CaWO₄ is given in Figs. 2a and 2b, showing the observed splitting of the crystal field and some of the degeneracies of frequency for the free ions.

B) Calculation

A normal-coordinate analysis of the WO_4^{2-} group in scheelite has been carried out based on the molecular parameters (Table 6) calculated from x-ray data (ZALKIN and TEMPLETON, 1964). The symmetry elements are one fourfold rotation-reflection axis, S_4 , and two twofold axes. The present analysis is related to an XY_4 molecule with S_4 symmetry similar to that revealed in Fig. 3. The character table is shown in Table 7.

The angle α on the side of the S_4 axis is slightly larger than the angle β lying skew to the same axis. It thus follows that in this molecules the bending force constants H_{α} and H_{β} and the repulsive force constants F_{α} and F_{β} are added to the stretching-force constant K and the internal tension \varkappa .

Table 6. Molecular parameters used in calculation of the values of frequency of WO_4^{2-} (S₄-site symmetry)

r(W = O)[1,2] $q_{\alpha}(O \cdots O)[3,5]$ $q_{\beta}(O \cdots O)[2,3]$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	113°27′ 107°56′
	$Z(S_4, C_2)$	

Fig. 3. Schematic representation of the WO_4^{2-} ion with S_4 symmetry

Study of the force field of scheelite

Table 7. Symmetry species and the characteristics of the WO_4^{2-} ion in the scheelite structure*

S_4	E	S_4	C_2	S_4^3	N_i	T_i	T'_i	R_i'	n_i	Infrared	Raman
A	1	1	1	1	3	0	0	1	2	f	$\alpha_{xx} + \alpha_{yy}, \alpha_{zz}$
В	1	1	1	1	4	1	0	0	3	M _z	$\alpha_{xx} - \alpha_{yy}, \alpha_{xy}$
E	1 1	$\overset{i}{-i}$	$-1 \\ -1$	$-i\atop i$	4	1	0	1	2	(M_x, M_y)	$(\alpha_{yz}, \alpha_{zx})$

* The notation is the same as is given in Table 1.

Results and discussion

The results of the calculated frequency and the force constants together with their Jacobian matrix are shown in Table 8. The coincidence of the observed values of frequency with the calculated ones is considered as very good. The weighted sum of squared deviations S is estimated 0.00012, the average of frequency deviation $0.60/_0$ and the maximum deviation 3.9 cm^{-1} respectively. On the basis of these force constants determined in set I the frequency variation and the frequency splitting from T_d symmetry to S_4 site symmetry are clarified as follows.

The values of v_2 and v_4 are regulated mainly by bending-force constant for the O-W-O angle and the repulsive-force constant for

		Frequ	iencies	_		Force	constants	3	
Species		Obs.	Calc.	K 4.580	$egin{array}{c} H_{lpha} \ 0.0328 \end{array}$	F_{lpha} 0.8243	$egin{array}{c} H_{eta} \ 0.2181 \end{array}$	$egin{array}{c} F_{eta} \ 0.7505 \end{array}$	× 0.0306
	v 1	903	903.2	0.062	0	0.088	0	0.162	0
A	v_2	348	350.4	0	0.125	0.045	0.058	0.025	-0.020
	ν_3	808	804.8	0.068	0	0.094	0	-0.009	0
B	v_2	418	414.1	0	0	0	0.192	0.080	-0.021
	v_4	286	284.9	0.001	0.155	0.044	0	0	0.052
77	v_3	795	797.9	0.069	0	0.004	0	0.082	0
Ľ	v_4	359	361.1	0.001	0	0	0.153	0.050	0.051

Table 8. Calculated and observed values of frequency (cm^{-1}) , force constants^{*} and Jacobian matrix of WO_4^{2-} ion in scheelite

* Dimension of force constants is mdyn/Å for K, H, and F, and mdyn \cdot Å for \varkappa .

Table 9. Calculated and observed values of frequency (cm⁻¹) and force constants^{*} of WO_4^{2-} in scheelite

1	Set I	Set II	Set III
K	4.5830 ± 0.0720	6.2835 ± 0	5.8502 ± 0.0447
H_{α}	$0.0328 \overset{-}{\pm} 0.0172$	0.3341 ± 0	$0.3130 \stackrel{-}{\pm} 0.0045$
F_{α}	0.8243 ± 0.0519	-0.0261 ± 0	0.0832 (fixed)
H_{β}	0.2181 ± 0.0149	0.6602 ± 0	0.4802 ± 0.0046
F_{β}	0.7505 ± 0.0378	$-$ 0.3059 \pm 0	0.1484 (fixed)
ะ่	0.0306 ± 0.0134	-0.0214 ± 0	-0.0401 ± 0.0127
p		0.7424 ± 0	0.5021 ± 0.0277

	Obs.	Calc.	Devia- tion	Calc.	Devia- tion	Calc.	Devia- tion
A	903 cm ¹ 348	903.2cm ⁻¹ 350.4	0 º/o 0.7	$903.0{ m cm^{-1}}$ 348.0	0 º/o 0	903.0 cm ⁻¹ 349.8	0 º/0 0.5
В	808 418 286	804.8 414.1 284.9	-0.4 -0.9 -0.4	808.0 418.0 286.0	0 0 0	$795.1 \\ 415.0 \\ 285.2$	-1.6 -0.7 -0.3
E	795 359	797.9 361.1	0.4 0.6	795.0 359.0	0 0	806.9 360.6	$\begin{array}{c} 1.5\\ 0.5\end{array}$
Root-mean-square deviation Weighted sum of squared deviations		0.00	.5	()	0. 0.00	 .9 ⁰/₀ 0033

* Dimension of force constants is mdyn/Å for K, H, F and p, and mdyn · Å for \varkappa .

the O···O non-bonded oxygen atom. The latter value in the site symmetry S_4 ($F_{\alpha} = 0.7732 \text{ mdyn/Å}$ and $F_{\beta} = 0.7545 \text{ mdyn/Å}$) is nearly equal to that in the free ion (0.7841 mdyn/Å). Furthermore, $v_2(A, 348 \text{ cm}^{-1})$ and $v_4(B, 286 \text{ cm}^{-1})$ are mainly in relation to H_{α} regarding the bending-force constant in contrast to $v_2(B, 418 \text{ cm}^{-1})$ and $v_4(E, 359 \text{ cm}^{-1})$ concerned mainly with H_{β} . That the values in the former case are smaller than those in the latter is attributed to $H_{\alpha} < H_{\beta}$. The average of $H_{\alpha}(0.0328 \text{ mdyn/Å})$ and $H_{\beta}(0.2181 \text{ mdyn/Å})$ in the site symmetry is nearly equal to the value of H(0.1213 mdyn/Å) in the free ion.

As far as the frequency variation and the frequency splitting from T_d symmetry to S_4 site symmetry are concerned, the explanation given

above is believed qualitatively correct. As referred to already, the values of non-bonded force constants ($F_{\alpha} = 0.8243$ and $F_{\beta} = 0.7505$ mdyn/Å) are however unreasonably highly estimated with those obtained by introducing 231 mdyn \cdot Å⁷ for A and 530,000 mdyn \cdot Å¹³ for B, respectively, to the Lennard-Jones potential expressed in equation (7), wherefrom F_{α} and F_{β} are calculated as 0.0832 and 0.1484 mdyn/Å respectively. The bond-bond interaction potential p is considered as the correction term in set II. The calculated values of the frequency well coincide with those observed, as shown in Table 9. However, the values of the non-bonded force constants ($F_{\alpha} = -0.0261$ mdyn/Å and $F_{\beta} = -0.3059 \text{ mdyn/Å}$) are negative and accordingly unreasonable. In set III, therefore, the non-bonded force constants F_{α} and F_{β} are tentatively fixed as 0.0832 and 0.1484 mdyn/Å respectively. The coincidence of the observed values of the frequency with those calculated is quite acceptable though a little worse than in the set I and set II. The force constants of set III are physically reasonable differing from the other cases.

It should be borne in mind here that the neglect of the lattice effects and other interaction force constants have some influences both on the magnitude of the derived force constants and on the trends which they follow. The factor-group method is most effective to treat the behavior of the vibration of the crystals concerned. Therefore the perfect factor-group analysis is adopted on the basis of the treatment related to the Bravais unit cell for clarifying the relationship between the observed band splitting and the lattice frequency. The analysis gives the information about the intermolecular forces as is shown in the following.

III. The factor-group treatment of scheelite

The unit cell of CaWO₄ belonging to the space group C_{4h}^6 contains four molecules. The crystal structure of scheelite has been refined on the basis of x-ray diffraction data for its single crystal by ZALKIN and TEMPLETON (1964) and of the neutron diffraction data by KAX *et al.* (1964), the results of which are in excellent agreement. The *b* axis projection of the unit cell in question is illustrated in Fig. 4.

The primitive or Bravais cell is defined as the smallest unit in which each pair of two atoms become nowhere equivalent. In this case, Bravais unit cell contains only two CaWO₄ "molecules" or 12 atoms. The selection rule is deducible from the symmetry in the corresponding point group C_{4b} . Six species of symmetry are given in Table 10. The modes are dividable into the "internal" and the "external" types and the latter furthermore into the "rotatory" and the "translatory" types.

The potential-energy matrix is constructed of the intramolecular potential and the intermolecular potential part. For the intramolecular potential of each molecule, the same potential used for the site-group analysis is assumed. For the intermolecular potential, we assumed

Fig. 4. Crystal structure of CaWO₄

quadratic potential for five kinds of $0\cdots 0$ distances $q_1^{0\cdots 0}$, $q_2^{0\cdots 0}$, $q_3^{0\cdots 0}$, $q_4^{0\cdots 0}$ and $q_5^{0\cdots 0}$ which are smaller than 3.2 Å, one kind of W \cdots W distances $q_1^{w\cdots w}$ and of Ca \cdots Ca distances $q_1^{ca\cdots ca}$, two kinds of Ca-0 distances r_1^{ca-0} and r_2^{ca-0} (set I, Fig.4 and Table 11). The distances larger than those used in this treatment are not taken into consideration because the corresponding force constants are too small to give significant effect on the frequency of vibration.

As has frequently been assumed (DEVLIN, 1963, 1964), the attractive forces between the non-bonded atoms are not negligible. Thus, the functions of the bending and non-bonded force constants appear

	Raman	$\alpha_{xx} + \alpha_{yy}, \alpha_{zz}$	$\alpha xx - \alpha yy, \ \alpha xy$	$(\alpha_{yz}, \alpha_{zx})$	f	ţ	ų
tructure*	Infrared	f	ų	ų	M_z	ţı	(M_x, M_y)
veelite s	n_i	73	ŝ	67	ŝ	ବ୍ୟ	67
the sch	$R'_{\mathbf{i}}$	1	0	1	0	1	Ť,
stics of	$T'_{\boldsymbol{t}}$	0	67	~		0	H
acteris	$T_{\mathbf{t}}$	0	0	0	1	0	Ħ
the chan	N_{t}	က	ю	ъ	5	ಣ	5
ies and	S_4	1	-	· · · ·	1	H	•• ••
ry spec	a^{y}	1	1		-1	ī	1 1
ymmet	S_{4}^{3}	Fi	-	·• ·•	-1	1	
. The s	••		1		-	1	
ble 10	C_4^3	H H	1	•· •·	1	1	•• ••
Ta	C_2	-	1		1	1	- -
ļ	C_4	1	-1	·• ·•	1	-1	·• ·•
	E	Ħ	1		1	1	
	C_{4h}	A_{g}	B_g	E	A_u	B_u	n H

* The notation is the same as is given in Table 1.

r(W-O)[3,5]	1.788 Å	$q(W\cdots W)[3,4]$	$3.868 \mathrm{~\AA}$
$r_1(Ca-O)[2,5]$	2.438	$q(Ca\cdots Ca)[1,2]$	3.868
$r_2(Ca-O)[2,10]$	2.479	$q_1(W\cdots Ca)[2,4]$	3.707
$q_{\alpha}(O\cdots O)[5,8]$	2.985	$q_2(W\cdots Ca)[1,4]$	3.868
$q_{eta}(O \cdots O)[5,6]$	2.880	$\alpha (O - W - O) [5, 3, 8]$	$113^{\circ}27^{\prime}$
$q_1(O \cdots O)[5, 12]$	2.767	$\beta(O-W-O)[5,3,6]$	$107^{\circ}56'$
$q_2(O\cdots O)[5,9]$	2.874	$\phi_1(O-Ca-O)[5,1,12]$	$68^{\circ}30'$
$q_3(O\cdots O)[6,9]$	2.938	$\phi_2(O - Ca - O)[6, 1, 9]$	$73^{\circ}24'$
$q_4(O \cdots O)[6', 10']$	3.036	$\phi_3(O-Ca-O)[6,1,10']$	$76^{\circ}18'$
$q_5(O\cdots O)[6,7']$	3.142	$\phi_4(O-Ca-O)[6,1,7']$	80°8′

Table 11. Molecular parameters used in calculation of frequency of scheelite

to be quite similar to each other and difficult to be separated. Therefore, the bending force constants h for the O—Ca—O angle deformation are taken into account in the second calculation (set II).

Results and discussion

The values of the force-constants for set I and set II are given in Table 12. The calculated values of frequency (v_{calc}) together with the observed ones (v_{obs}) are listed in Table 13. The fact is that the

	Set I	Set II
$K(W-O) H_{\alpha}(O-W-O) F_{\alpha}(O\cdots O) H_{\beta}(O-W-O) F_{\beta}(O\cdots O) k_{1}(Ca-O) k_{2}(Ca-O) h_{1}(O-Ca-O) j_{1}(O\cdots O) j_{2}(O\cdots O) j_{3}(O\cdots O) j_{4}(O\cdots O) $	$\begin{array}{c} \text{Set I} \\ \hline 5.330 (\text{fixed}) \\ 0.163 \pm 0.016 \\ 0.063 \pm 0.040 \\ 0.225 \pm 0.014 \\ 0.145 \pm 0.021 \\ 0.481 \pm 0.011 \\ 0.049 \pm 0.004 \\ 0 (\text{fixed}) \\ 0.207 \pm 0.006 \\ 0.189 \pm 0.004 \\ 0.071 \pm 0.004 \\ 0.010 \pm 0.005 \end{array}$	$\begin{array}{c} \text{Set II} \\ \hline 5.350 (\text{fixed}) \\ 0.152 \pm 0.015 \\ 0.071 \pm 0.009 \\ 0.240 \pm 0.012 \\ 0.142 \pm 0.016 \\ 0.353 \pm 0.014 \\ 0.130 \pm 0.011 \\ -0.118 \pm 0.008 \\ 0.247 \pm 0.012 \\ 0.154 \pm 0.011 \\ 0.090 \pm 0.013 \\ 0.049 \pm 0.024 \end{array}$
$f_5(O\cdots O)$ $f(W\cdots W)$	$-\begin{array}{c}-0.062 \pm 0.005 \\ 0.005 \pm 0.005\end{array}$	$\begin{array}{c} 0.021 \pm 0.011 \\ 0 \qquad \text{(fixed)} \end{array}$
$f_1(Ca\cdots W)$ $f_2(Ca\cdots W)$ $f(Ca\cdots Ca)$	$0.165 \pm 0.007 \ - 0.091 \pm 0.009 \ 0.054 \pm 0.002$	$\begin{array}{c} 0.161 \pm 0.005 \\ 0.065 \pm 0.010 \\ 0.032 \pm 0.004 \end{array}$
π^* p(W-0, W-0)	$0.004 \pm 0.014 \\ 0.495 \pm 0.025$	$\begin{array}{c} 0.021 \pm 0.008 \\ 0.493 \pm 0.018 \end{array}$

Table 12. Force constants of scheelite (mdyn/Å)

* Dimension of \varkappa is mdyn · Å.

		$\mathbf{Set} \ \mathbf{I}$	Set II
	$v_{\rm obs}$	Vcalc	Vcale
Intram	olecular vibration		
	912 (v_1)	901 cm ⁻¹	$909 \ {\rm cm^{-1}}$
A_g	$336(\nu_2)$	341	332
Ð	893 (v1)	903	894
B_u	360 (v ₂)	357	367
	838 (v3)	785	795
B_{g}	$401 (\nu_2)$	401	400
	336 (v4)	329	328
	778 (v3)	781	774
A_u	$435 (\nu_2)$	420	430
	237 (v4)	240	242
T	797 (v ₃)	801	800
Eg	409 (v4)	426	409
77	793 (v ₃)	789	789
E_u	309 (v4)	305	306
Transla	tory vibration		
	210 (B_g)	215	209
	195 (E_g)	188	182
	$180 (A_u)$	177	173
	143 (E_u)	144	143
	117 (E_g)	117	122
	84 (B_{g})	84	87
Rotato	ry vibration		
	275 (E_g)	268	268

Table 13. Observed and calculated values of frequency of scheelite

calculated data for both sets indicate the sufficient coincidence with observed ones except for $v_3(B_g, 838 \text{ cm}^{-1})$. But the data for the set I are not suitable for the force field of scheelite since the oxygen... oxygen repulsive force constants are not physically reasonable. The physically significant relationship between the interatomic distance

216

 $\mathbf{214}$

211

Z. Kristallogr. Bd. 141, 1/2

218 (A_g)

213 (B_u)

202 (E_u)

4

219

217

KAZUAKI IISHI

Table 14. Jacobian mat	rix –
------------------------	-------

	K(W-O)	$H_{\alpha}(0-W-O)$	$F_{\alpha}(0\cdots 0)$	$H_{\beta}(0-W-0)$	$F_{\beta}(0\cdots 0)$	$k_1(Ca-O)$	$k_2(Ca-O)$	$h_1(O-Ca-O)$
	5.350	0.152	0.071	0.240	0.142	0.353	0.130	- 0.118
		1						[
$v_1(A_g, 912)$	0.062	0.000	0.087	0.000	0.163	0.030	0.014	0.009
$v_1(B_u, 893)$	0.062	0.000	0.085	0.000	0.105	0.029	0.015	0.080
$v_{s}(A_{a}, 336)$	0.000	0.112	0.041	0.052	0.023	0.005	0.026	0.049
$v_2(B_u, 360)$	0.000	0.103	0.040	0.048	0.018	0.027	0.048	0.010
$v_{2}(B_{g}, 401)$	0.000	0.020	0.005	0.166	0.069	0.011	0.000	0.016
$v_2(A_u, 435)$	0.000	0.016	0.006	0.155	0.064	0.055	0.032	0.045
$v_3(B_q, 838)$	0.069	0.003	0.080	0.000	0.009	0.032	0.013	0.009
$v_3(A_u, 778)$	0.069	0.002	0.083	0.000	- 0.010	0.026	0.015	0.074
$v_3(E_g, 797)$	0.070	0.000	-0.004	0.003	0.071	0.025	0.015	0.069
$v_3(E_u, 793)$	0.070	0.000	-0.004	0.002	0.072	0.027	0.013	0.007
$v_4(B_g, 336)$	0.000	0.102	0.043	0.018	0.007	0.050	0.027	0.010
$v_4(A_u, 237)$	0.000	0.127	0.046	0.028	0.012	0.004	0.028	0.032
$v_4(E_g, 409)$	0.000	0.000	0.000	0.139	0.057	0.021	0.007	0.094
$v_4(E_u, 309)$	0.000	0.000	0.000	0.150	0.059	0.019	0.015	0.014
$T'(B_u, 210)$	0.000	0.024	0.008	0.008	0.003	0.027	0.035	0.074
$T'(E_g, 195)$	0.000	0.000	0.000	0.000	0.000	0.006	0.019	0.025
$T'(A_u, 180)$	0.000	0.010	0.003	0.010	0.004	0.036	0.004	0.101
$T^{r}(E_{u}, 143)$	0.000	0.000	0.000	0.002	0.000	0.003	0.059	0.063
$T'(E_g, 117)$	0.000	0.000	0.000	0.008	0.003	0.005	0.000	0.015
$T(B_{g}, 84)$	0.000	0.006	0.002	0.000	0.000	0.000	0.003	0.011
$R'(E_g, 275)$	0.000	0.000	0.000	0.003	0.002	0.026	0.063	0.021
$R'(A_g, 218)$	0.000	0.013	0.006	0.006	0.001	0.028	0.022	0.002
$R'(B_u, 213)$	0.000	0.022	0.009	0.010	0.004	0.007	0.000	0.102
$R'(E_u, 202)$	0.000	0.000	0.000	0.000	0.000	0.035	0.018	0.008

Italics indicate the important terms for frequency splitting.

and the values of the force constants is nowhere establishable. On the other hand, the force constants in the set II are physically reasonable except h_1^{o-ca-o} with the negative value. For examining and improving the negative value of h_1^{o-ca-o} , the deformation force constants h_2^{o-ca-o} , h_3^{o-ca-o} and h_4^{o-ca-o} (see Table 11) were furthermore introduced, but the suitable ones were not obtained. From the Jacobian matrix (set II) exhibited in Table 14, h_1^{o-ca-o} gives certain influences on the molecular vibrations $v_1(B_u)$, $v_2(A_u, E_g)$ and $v_4(E_g)$, the translatory vibrations A_u (180 cm⁻¹), B_g (210 cm⁻¹) and E_u (143 cm⁻¹) and the rotatory vibrations A_u (213 cm⁻¹). The physical meaning of h_1^{o-ca-o} with the negative value is ambiguous. In the case of the set II, the weighed sum of squared deviations S is 0.00327 and the average frequency deviation is 2.8% of the lattice vibrations, explain also the magnitude of the frequency splittings of intramolecular vibrations.

It is an important result for this study that the determined force constants are physically reasonable and follow the reasonable trends with respect to the molecular parameters. For example, it would be of scheelite in Å/mdyn · sec2

∮₁(0 … 0)	f ₂ (0…0)	f ₃ (0…0)	f4(00)	f5(00)	$f_1(Ca\cdots W)$	$f_2(Ca\cdots W)$	f(Ca…Ca)	×	p(W-0)
0.247	0.154	0.090	0.049	0.021	0.161	0.065	0.032	0.021	0.493
									}
0.010	0.026	0.007	0.220	0.023	0.000	0.000	0.000	0.000	0.187
0.042	0.000	0.042	- 0.005	0.019	0.000	0.000	0.000	0.000	0.187
0.016	0.150	- 0.003	0.020	0.041	0.000	0.000	0.000	- 0.018	0.000
0.085	0.000	0.136	0.015	0.006	0.000	0.000	0.000	-0.017	0.000
0.003	0.206	0.051	0.013	0.101	0.000	0.000	0.000	- 0.012	0.000
0.159	0.000	- 0.004	0.017	0.061	0.000	0.000	0.000	-0.012	0.000
0.010	0.025	0.035	0.201	0.023	0.000	0.000	0.000	0.000	- 0.069
0.041	0.000	0.007	- 0.005	0.017	0.000	0.004	0.000	0.000	-0.069
0.039	0.022	0.019	0.200	0.000	0.000	0.000	0.000	0.000	-0.070
0.010	0.000	0.023	-0.005	0.000	0.000	0.000	0.000	0.000	- 0.070
0.002	0.019	0.123	0.009	0.011	0.000	0.006	0.029	0.032	0.000
0.004	0.000	- 0.003	0.005	0.052	0.000	0.061	0.000	0.039	0.000
0.136	0.134	0.028	0.004	0.000	0.000	0.000	0.000	0.046	0.000
0.002	0.000	0.020	0.006	0.000	0.000	0.000	0.000	0.050	0.000
0.012	0.000	0.000	0.012	0.008	0.000	0.058	0.161	0.007	0.000
0.009	0.016	0.020	0.005	0.000	0.048	0.014	0.070	0.000	0.000
0.025	0.000	-0.003	0.005	0.013	0.000	0.000	0.000	0.002	0.000
0.009	0.000	0.058	0.006	0.000	0.013	0.006	0.000	0.000	0.000
0.009	0.009	0.000	0.024	0.000	0.002	0.010	0.005	0.003	0.000
0.004	0.000	0.023	0.012	0.001	0.000	0.000	0.025	0.002	0.000
0.028	0.069	0.065	0.004	0.000	0.009	0.004	0.016	0.000	0.000
0.005	0.073	0.000	-0.006	0.066	0.000	0.000	0.000	-0.002	0.000
0.092	0.000	0.060	0.000	0.106	0.000	0.000	0.000	-0.004	0.000
0.000	0.000	0.030	0.003	0.000	0.047	0.021	0.000	0.000	0.000

expected that as the Ca—O distance decreases, the corresponding interaction force constants would increase. The Ca—O distance of r_1 (Ca—O) is smaller than that of r_2 (Ca—O) and the obtained force constant of k_1^{ca-o} is larger than that of k_2^{ca-o} . Thus, the expected trend is followed in a qualitative manner. This trend is also satisfactorily kept in the case of the tungsten…calcium interaction ($f_1^{ca…w} = 0.16$ corresponding to $q_1^{ca…w} = 3.707$ and $f_2^{ca…w} = 0.07$ mdyn/Å corresponding to $q_2^{ca…w} = 3.868$ Å).

Table 15. Frequency splittings of scheelite

	$\Delta v_{\rm obs}$	$\Delta \nu_{\rm calc}$
$v_1(A_g, B_u)$	$19 { m cm}^{-1}$	$15 { m cm^{-1}}$
$\nu_2 (A_g, B_u)$	24	35
$v_2 (B_g, A_u)$	34	30
$v_3(B_g, A_u)$	60	21
$v_3(E_g, E_u)$	4	11
$v_4 (B_g, A_u)$	99	88
$\nu_4 (E_a, E_u)$	100	103

4*

Kazuaki Iishi

	Interatomic distance	Force constant
q_1	2.767 Å	0.247 mdyn/Å
$\overline{q_2}$	2.874	0.154
q_{β}	2.880	0.142
$\overline{q_3}$	2.938	0.090
q_{α}	2.985	0.071
q_4	3.036	0.049
q_5	3.142	0.021

Table 16. Short-range oxygen \cdots oxygen distances and force constants in scheelite

It was pointed out by LEVITT (1969) that with decrease of the bond angles without any change between the bond distance the bond orbitals more and more increase overlapping. Thus, it is more difficult to give distortion for a smaller angle from its equilibrium position than for a larger angle. For this reason, as the angles decrease the bending-force constants should increase in magnitude. This tendency is really revealed in the bending-force constant H with change in O-W-O angle, as is conspicuous in Table 12.

The non-bonded force constants increase with decreasing of the non-bonded distance, as is shown in Table 16. Since the number of electrons about the nucleus of oxygen is intermediate between those about that of Ne and Ar, the repulsion forces for a given O...O distance is expected to be intermediate between those for Ne and Ar. From the data of FOWLER and GUGGENHEIM (1949), the constants A and B in the equation (7) are 34.9 mdyn \cdot Å⁷ and 55,380 mdyn \cdot Å¹³

Fig. 5. Non-bonded oxygen · · · oxygen forces

for Ne and 432.6 mdyn \cdot Å⁷ and 2,527,000 mdyn \cdot Å¹³ for Ar, respectively. As expected, the O····O curve falls between those for Ne···Ne and Ar···Ar, as is obvious in Fig.5. The determined values of repulsive-force constant of non-bonded oxygen atom in the present study are thus quite reasonable with regard to previous values for similar systems.

As has been stated above, all of the obtained values for the stretching, bending and non-bonded force constants seem of a reasonable magnitude and qualitatively allow the expected trends.

As the next step, the frequency splitting (Table 15) and the lattice vibrations (Table 13) are physically interpreted on the basis of the frequency mode (Figs. 6, 7 and 8) introduced from L_{xm} matrix and the Jacobian matrix (Table 14).

The observed magnitude of splitting for the totally symmetric stretching (v_1) is estimated 19 cm⁻¹. The calculated values of v_1 are 909 (A_g) and 894 cm⁻¹ (B_u) , the magnitude of its splitting being 15 cm⁻¹. The coincidence of the calculated values with the observed ones is satisfactory. As is clear from the Jacobian matrix in Table 14, this splitting is mainly attributed to the intermolecular $O \cdots O$ repulsion and the O—Ca—O deformation. Here, it is also important that the value of h_1^{o-ca-o} is negative. This splitting is clearly understood by inspecting the modes of vibration indicated in Fig. 6.

The calculated values of r_3 are 774 cm⁻¹ (A_u) and 795 cm⁻¹ (B_g) as well as 800 cm⁻¹ (E_g) and 789 cm⁻¹ (E_u) , the magnitude of their splitting being estimated 21 and 11 cm⁻¹ respectively. The corresponding observed values are 60 and 4 cm⁻¹. The calculated values coincide with the observed ones unsatisfactorily for the former splitting but fairly well for the latter. The degree of the observed splitting of $r_3(A_u)$ and $r_3(B_g)$ of $r_3(E_g)$ and $r_3(E_u)$ cannot be explained through reference to only the intermolecular interactions. Such a large magnitude of splitting between 778 cm⁻¹ (A_u) and 834 cm⁻¹ (B_g) in scheelite, the ionic crystal, is therefore attributed presumably to the appreciable amount of the electrostatic force. This electrostatic force is considered to be caused by a macroscopic polarization due to an in-phase displacement of the ions in the crystal $(A_u$ -type), being not involved in the infrared inactive B_g -type vibrations. This situation is obviously shown in the mode of vibration of $A_u(778 \text{ cm}^{-1})$ and $B_g(838 \text{ cm}^{-1})$.

The calculated values of r_2 are $332 \text{ cm}^{-1} (A_g)$ and $367 \text{ cm}^{-1} (B_u)$ together with $400 \text{ cm}^{-1} (B_g)$ and $430 \text{ cm}^{-1} (A_u)$, the magnitude of splitting being 35 and 30 cm⁻¹. The corresponding values observed

Fig. 6. The "internal" modes of vibration of scheelite

ъ İ Study of the force field of scheelite

Fig.7. The "external" modes of vibration of scheelite (translatory)

Fig. 8. The "external" modes of vibration of scheelite (rotatory)

are 24 and 34 cm⁻¹. Both cases for splitting are mainly in connection with different effect of the intermolecular potential caused by vibrations (see Fig.6). In other words, $f_1^{\circ\cdots\circ}$, $k_1^{\operatorname{ca-o}}$ and $k_2^{\operatorname{ca-o}}$ have large effect on the infrared active vibrations B_u and A_u on one hand and $f_2^{\circ\cdots\circ}$ on the Raman active vibrations A_g and B_g on the other.

Of all the intramolecular vibrations, the asymmetric WO_4 stretching and deformation vibration (v_4) shows the largest splitting. The

observed values of frequency for v_4 are 336 cm⁻¹(B_g) and 237 cm⁻¹(A_u) as well as 409 cm⁻¹(E_g) and 309 cm⁻¹(E_u). The degree of splitting in both cases is very conspicuous (estimated about 100 cm⁻¹) and their calculated values also scatter largely. Concord of the calculated values with the observed ones is marked. The large-scaled splitting of v_4 is also ascribed to the intermolecular interactions. The intermolecular forces k_1^{ca-o} , $f_2^{o\cdots o}$, $f_3^{o\cdots o}$ largely affect on $B_g(v_4)$, while the intermolecular force h_1^{o-ca-o} yields the negative effect on $A_u(v_4)$. $B_g(v_4)$ frequency is thus estimated 100 cm⁻¹ in magnitude larger than that for $A_u(v_4)$. The large splitting between $E_g(v_4)$ and $E_u(v_4)$ is brought about intensely by the intermolecular interaction forces $f_1^{o\cdots o}$ and $f_2^{o\cdots o}$, as is obviously deducible from the Jacobian matrix (Table 14) and the modes of vibration (Fig. 6).

The data of the observed and calculated values for the external vibrations are in excellent harmony with each other, as is given in Table 13. As is clear from the Jacobian matrix, all of the observed values for frequency are principally enlightened after the reasonable set of the intermolecular interaction forces between oxygen. \cdots oxygen, tungsten \cdots calcium, calcium \cdots calcium and calcium—oxygen. But the intramolecular force constants give certain effects on the lattice vibrations, *i.e.*, the rotational and translational lattice vibrations are not perfectly separatable from the intramolecular vibrations in this crystal. This is also clear from the modes of vibration, as is revealed in Figs. 7 and 8.

The translatory external vibrations are dividable into two parts, of which one is translatable parallel to $z \, \text{axis} (A_u \, \text{and} \, B_g)$ and the other parallel to x or $y \, \text{axis} (E_g \, \text{and} \, E_u, \text{degenerate})$. Calcium ions translate chiefly in the translatory lattice vibrations $A_u(180 \, \text{cm}^{-1})$, $B_g(210 \, \text{cm}^{-1})$, $E_g(195 \, \text{cm}^{-1})$ and $E_u(143 \, \text{cm}^{-1})$ and tungaten atoms largely in the translatory lattice vibrations $B_g(84 \, \text{cm}^{-1})$ and $E_g(117 \, \text{cm}^{-1})$. The atomic weight of tungsten atom is larger than that of calcium. It is considered that this is the reason why 84 cm⁻¹ and 117 cm⁻¹ vibrations bear the values of frequency smaller than those of the other translational external vibrations. Differences in frequency between $A_u(180 \, \text{cm}^{-1})$ and $B_g(210 \, \text{cm}^{-1})$ is combined with the effects of the intermolecular interaction forces $k_2^{\text{ca}-0}$, $f_1^{\text{ca}\cdots \text{ca}}$, being clearly understood by examining the modes of vibration and the Jacobian matrix.

As is shown in Fig.8, the rotational external vibrations $A_g(218 \text{ cm}^{-1} \text{ and } B_u(213 \text{ cm}^{-1})$ are recognized to rotate about the z axis and

the degenerate rotational external vibrations $E_g(275 \text{ cm}^{-1})$ and $E_u(202 \text{ cm}^{-1})$ about the x or y axis. The difference in the frequency is explained by the Jacobian matrix and the modes of vibration. The force constants $k_2^{\text{ca}-0}$, $f_1^{0\cdots0}$ and $f_2^{0\cdots0}$ give the remarkable effects only on E_g and $f_1^{\text{ca}\cdotsw}$ and $f_2^{\text{ca}\cdotsw}$ on E_u . The former effect is more conspicuous than the latter, resulting in the large difference in frequency between $E_g(275 \text{ cm}^{-1})$ and $E_u(202 \text{ cm}^{-1})$. On the other hand, difference in frequency between $A_g(218 \text{ cm}^{-1})$ and $B_u(213 \text{ cm}^{-1})$ is small in magnitude. In this case, the force constants $k_1^{\text{ca}-0}$, $k_2^{\text{ca}-0}$ and $f_2^{0\cdots0}$ give the intense effects on $A_g(218 \text{ cm}^{-1})$ and all of the other force constants on $B_u(213 \text{ cm}^{-1})$, eventuating in small difference of frequency.

Acknowledgements

The writer wishes to express his sincere gratitude to Prof. Y. UME-GAKI of Hiroshima University for his kind advice and critical reading of the manuscript, to Assistant Prof. Y. SHIRO of the same University for his stimulating and helpful discussions.

References

- A. S. BARKER, JR. (1964), Infrared lattice vibrations in calcium tungstate and calcium molybdate. Physic. Rev. 135, 742-747.
- R. H. BUSEY and O. L. KELLER, JR. (1964), Structure of the aqueous pertechnetate ion by Raman and infrared spectroscopy. Raman and infrared spectra of crystalline KTcO₄, KReO₄, Na₂MoO₄, Na₂WO₄, Na₂MoO₄ \cdot 2H₂O, and Na₂WO₄ \cdot 2H₂O. J. Chem. Physics 41, 215–225.
- J. P. DEVLIN (1963), Urey-Bradley nonbonded forces. J. Chem. Physics 39, 2385.
- J. P. DEVLIN (1964), Urey-Bradley nonbonded forces, II. J. Chem. Physics 41, 2951-2952.
- R. FOWLER and E. A. GUGGENHEIM (1949), *Statistical thermodynamics*. Cambridge University Press, Cambridge.
- M. I. KAY, B. C. FRAZER and I. ALMODOVAR (1964), Neutron diffraction refinement of CaWO₄. J. Chem. Physics 40, 504-506.
- R. K. KHANNA, W. S. BROWER, B. R. GUSCOTT and E. R. LIPPINCOTT (1968), Lazer induced Raman spectra of some tungstates and molybdates. J. Res. Natl. Bur. Stand. 72A, 81-84.
- S. R. LEVITT (1969), The vibrational spectroscopy and normal coordinate analysis of geological apatites. Ph. D. Thesis, S. U. N. Y., College of Ceramics, Alfred University. Alfred, New York 14802.
- D. E. MANN, L. FANO, W. F. CAHILL, and T. SHIMANOUCHI (1954), The application of a high-speed digital computer to molecular vibration problems. J. Chem. Physics 22, 764.
- A. MÜLLER and B. KREBS (1967), Normal coordinate treatment of XY₄-type molecules and ions with T_d symmetry. Part I. Force constants of a modi-

fied valence force field and of the Urey-Bradley force field. J. Molec. Spectr. 24, 180-197.

- S. P. S. PORTO and J. F. SCOTT (1967), Raman spectra of CaWO₄, SrWO₄, CaMoO₄ and SrMoO₄. Physic. Rev. 157, 716-719.
- J. P. RUSSELL and R. LOUDON (1965), The first-order Raman spectrum of calcium tungstate. Proc. Physic. Soc. [London] 85, 1029-1033.
- J. F. Scorr (1968*a*), Lattice perturbations in CaWO₄ and CaMoO₄. J. Chem. Physics 48, 874-876.
- J. F. SCOTT (1968b), Dipole-dipole interactions in tungstates. J. Chem. Physics 49, 98-100.
- T. SHIMANOUCHI (1963), Force constants of small molecules. Pure Appl. Chem. 7, 131-145.
- T. SHIMANOUCHI and I. SUZUKI (1964), Method of adjusting force constants and its application to H_2O , H_2CO , CH_2Cl and their deuterated molecules. J. Chem. Physics 42, 296–308.
- A. ZALKIN and D. H. TEMPLETON (1964), X-ray diffraction refinement of the calcium tungstate structure. J. Chem. Physics 40, 501-504.

.

-

 $\mathbf{58}$