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Abstract.This paper presents various substructure definitions which are used
mainly for crystal chemical discussions and for crystal structure analysis
purposes. It is directed to the fact that a distinction has to be made between
how the sub~tructures should occur in nature, and those substructures which
are specified for crystal structure determinations and accomodated to the set
of measured structure factors employed in analyzing the structure. For the
first case the ideal substructure or, if the substructure is disturbed, the
idealizedsubstructures are defined. The substructure definitions according to
Buerger (1959) and Takeuchi (1972) specified for the second case are
discussed. The underlying principles for the structure determination are
pointed out, if a substructure is used.

Introduction

In past years the number of structure analyses increased in which an existing
substructure was utilized as an aid for crystal structure determination.
Several substructure definitions are in use. It is the intention of the following
chapters to outline the properties of substructures occurring either as ideal
substructures or as disturbed substructures, to define them, and to oppose
them with two practical substructure definitions. One of these definitions is
after Buerger (1959) and the other after Takeuchi (1972). These practical
substructure definitions are accomodated to the measured structure factors.
They are then discussed with respect to their generally different symmetry
properties and to the general different Fourier transformations. In the last
chapter an example demonstrates a series of the terms used in this paper. The
mineral stannoidite was chosen as the example.
----

· Present address
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The general character of substructures

The ideal substructure is defined as a structure component with a higher space
group symmetry than that of the full structure or with a smaller unit cell being
the subcell or, as in most cases, with both properties. The space group of the
full structure is a subgroup of that of the substructure. According to this
definition the ideal substructure is a set S consisting of g atoms Si' i = 1, . . . ,g
in the entire cell being a subset of the superset G containing all atoms Gi,
i = 1, . . ., p in the full structure, so that

S c G holds. (2.1 )

All substructure atoms can be generated by the space group symmetry
operations Rj,j = 1, . . , Ils and the translation group Ts from the asymmetric
unit Sa of the substructure. This group R = {T" (Rj, j = 1, . . . , Ils)} contains

all symmetry operations of the full structure forming the group D = {Tg, (Dj,
j = 1, . . ., Il,)} where Tg is the translation group of the full structure and Dj,
j = 1, . . ., Ilgare the space group symmetry elements ofthe full structure being
a subgroup of R so that

D c R holds. (2.2)

The subunit vectors are designated by A, B, C, and the sublattice
constants by A, B, C, as, /3s,Ys.Since the unit vectors of the full structure are a
linear combination of the subunit vectors A, B, C with integral coefficients,
the transformation matrix (U) = (Si) with i = 1,2,3 and j = 1,2,3 for the
transformation from the base A, B, C to the base a, b, c consists completely of
integral numbers.

The number N of subcells in the entire cell is determined by N = det (U).
Due to the subgroup-supergroup relation between the symmetries of the
substructure and the entire structure, it is possible to choose a coordinate
system for the entire structure lying parallel to that of the substructure so that

a'=N1 A
b' = N2 B (2.3)
c' = N 3 C.

The matrix (X) = (~i)' (i = 1,2,3; j = 1,2,3) belongs to the transformation
of a, b, c into a', b', c' where the coefficients ~ij are integers possibly plus 1/2,
1/3, or 2/3 if the original lattice is a nonprimitive one. Since [a', b', c'] =
(X)(U)[A, B, C) the numbers Nt> N2, and N3 are calculated according to

3
Ni = L ~ij Sji with i = 1,2,3.

j~ I

(2.3a)

The number of subcells now can be obtained by

N' = N1 .N2 .N3

which has to be an integer.

(2.4)
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In many cases the lowest cell primitivity gets lost for the sake of
convenience so that the new cell is no longer a reduced one. Henceforth it will
be assumed that such a coordinate system for the entire structure has been
chosen of which the axes will be denoted by a, b, c instead of a', b', c', and the
number of subcells within the entire cell by N instead of N'.

The collection S of all substructure atoms lying within the entire cell can
be comprised by the set relation

...-----
S = {Si' i = 1,... ,gl Si (x) = [Sa (x). Rj] () (x~n1 A-n2 B-n3 C)

forallni= 1,...,Ni with i= 1,2,3 andj= 1,...ns}
(2.5)

where b (x) is the three-dimensional Delta-Dirac-function.
In X-ray crystallography the atomic function of interest is the electron

densitydistribution e (x) respectively e (X), where x and X mean x = xa + yb

+ zc and X = X A + YB + Z C with x,y,z and X, Y,Z being the fractional
coordinates of the atomic positions within the entire cell, respectively subcell.
The electron density distribution of the substructure in the entire cell can be
attained by forming the normalized sum S of all partial electron density
distributions, so that analogously to (2.5) the following equation holds after
having substituted S by e (x), Si by ei (x) etc.:

Qs(X)= S {eSi(X), i = 1,... ,gl eSi(x)
...-----

= res"(x). R) (j (x-n1 A-n2 B-n3 C)
for all ni = 1, . . . , Ni with i = 1,2, 3, and j = 1, . . .nJ.

In practical use one also speaks of a substructure when the high symmetrical
arrangement of the atoms is disturbed by small deformations due to
distortions, by substitution of some atoms by another kind of atoms,
respectively groups of atoms or by a combination of both possibilities. The
distortions cause small shifts of the atoms out of their ideal substructure
positions. In the case of the substitution structures an atom A will be replaced
aftera subperiod or a special substructure symmetry operation by an atom B.
If we supply correction functions by shifting the atoms in a distortion
structure by a vector Llx to the ideal substructure position we define the set
S'(x) consisting of virtual atoms lying on the ideal substructure positions so
that the following relation holds:

(2.6)

....--..
S'(x) = {S;(x), i = 1, . . . , g IS;(x) = Si(X) ()(x - Llx)}. (2.7)

In a substitution structure the set S' is attained by multiplying the partial
electron density distribution by an appropiate function E (x) so that the
following relation holds:

S'(X)= {S;(x), i = 1, .. . ,g IS;(x) = Si(X)' E (x)}. (2.8)
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If both disturbances are present both corrections have to
subsequently. For all three cases the following relations hold:

s'ctG,

S CG.

be applied

(2.9)

(2.10)

All structures to which a set S' can be assigned are said to have an idealized
substructure adjoined.

The ideal substructure comprises only a part of the atoms of the full
structure, in disturbed substructures the number of the substructure atoms
per entire cell is less or equal to the number of the atoms in the full structure.

For all substructures a complementary structure is defined by the
following relation:

substructure + complementary structure = full structure. (2.11)

An ideal substructure has an ideal complementary structure. In structures with
disturbed substructures the set of those atoms which have nothing to do with
the substructure is also called ideal complementary structure.

For the electron density distribution function Qs(x) of the substructure
and Q (x) of the full structure the following relations hold:
QsCx)S Q(x) (2.11)

in each case with an ideal complementary structure (see below), and

Qs(x) < Q(x) (2.12)

in all cases generally without an ideal complementary structure (see below), and

entire cell

f Qs(x)dx <

in each case.

entire cell

J Q(x)dx (2.13)

Most of what was stated here is in accordance with the general description of
substructure given by Buerger (1959).

In crystal chemistry one would say that the ideal complementary structure
consists ofthe additional atoms which have complicated the simpler structure
(Buerger, 1947).

In contrast to the ideal complementary structure there is the nonideal
complementary structure, the atoms of which belong neither only to the
complementary structure nor only to the substructure.

In structures with disturbed substructures an ideal complementary
structure need not exist so that in such a case each atom contributes a fraction
of the electron density to the substructure and the rest to the complementary
structure.

A full structure can have more than one substructure. It is possible that
between these substructures superstructure-substructure relations exist. But
they also can be independent upon each other as far as this can be allowed by
the full structure.
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Thedefinitions of a 'practical substructure'

For practical applications, in which the presence of a substructure should be
used, two apparently very similar but in fact basically very different
definitions of a 'practicable substructure' are employed. The first one was
introduced by Buerger (1959), the other by Takeuchi (1972) and others such
as Fruen (1953). Since they are used in X-ray analysis one is interested mainly
in the electron density distribution Q(x).

Buerger's substructure definition is very close to the ideal substructure.
The electron density distribution QBS(x) in Buerger's substructure is defined
as comprising that part of the total electron density distribution which
conforms to the subperiods and to the higher symmetry compared with that
of the full structure or only to one of both. One can approximate it by finding
the minimum function of a set of superposed electron density distribution
functions Qp(x),p = 1, . . . , q computed from Q(x) by letting the substructure
symmetry operations and subperiods transform it times successively, where q
is the number of the symmetry operations of the substructure not contained
in the set of the full structure symmetry operations:

QBS(X)= M {Qp(x), p = 1,..., ql (3.1)

Qp(X)= [Ri'Q(x)b(x-n1A-n2B-n3C)], i=l, ..., q' andnj=l, ..., Nj
with j = 1, 2, 3 and where q' is the number of the necessary space group
operations including the identity operation so that q' = ns - n, + 1 and
q=ns-n,+N1 +N2+N3-2}.
ns, n, and Nj, j = 1,2,3 are defined in Chapter 2 where the choice of the
coordinate system is also established. Redundant operations, e.g., the full
structure space group operations, would not change the result. The
complementary electron density distribution QBC(x) is defined by:

QBcCX) = (I(x) - QBS(X), (3.2)

In contrast to Buerger's substructure definition, Takeuchi's substructure is
the N-fold superposition of the electron density distribution Q(x) of the full
structurewith itself having been shifted Ntimes along the vectors n1A + n2B
+ n3Cwith nj = 1,..., Nj where i = 1,2,3 and N1 . N2 .N3 = N. This fulfills
the condition N = Ventirecell/Vsubcellso that its electron density distribution
can be written according to Taxer and Weick (1978) as a convolution product
of the electron density distribution Q(x) of the full structure and an
appropiate point function in the following equation:

1 NI N, N, -----
Qrs(X)= L; L; L; [b(x-n1A-n2B-n3C)Q(X)]

N1 .N2 'N3 1l1~11l2~11l3=1

= <Q(X»subcell' (3.3)
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Here also one should be reminded of the choice of the coordinate system in
Chapter 2.

So !hs is nothing else than the mean electron density distribution taken
over all subcells superposed upon each other. The electron density distri-
bution of the complementary structure, /hc (x), is to be calculated according
to:

!hc (x) = Q (x) - QTS (x). (3.4)

From this equation, after substituting QTS(x) by (3.3), the following
important relation can be derived:

"Vl :V2 NJ

L L L QTC(x+n1A+nzB+n3C)=O.
111=11/2=1113=1

(3.5)

It should be recognized that the electron density distribution QTS(x) in
Takeuchi's substructure has nothing to do with the electron density
distribution in Buerger's substructure (Taxer and Weick, 1978). In contrast
to Buerger's complementary structure, the function QTC(x) consists of
negative and positive values, whereas QBC(x) is positive everywhere.

Takeuchi's substructure definition cannot be applied in contrast to
Buerger's substructure definition if the ideal substructure is characterized
only by higher symmetry and not by a smaller unit cell, i.e., N = 1.

A third practical substructure (Taxer and Weick, private communication,
1979) is defined by

1

L

n.,

J
QHS(x) = ---;-

"

L Rj QTS(x) with q' = ns - n, + 1.q l~n,+l
(3.6)

The letter H refers to the higher symmetry in it than in QTS(x). It is mentioned
here for completeness, but it is not dealt with in this paper.

The symmetry in the practical substructures

Buerger's substructure shows the higher space group symmetry of the ideal
substructure as defined in chapter 2, while Takeuchi's substructure generally
does not.

That the symmetry QTS(x) generally is not higher than that of the full
structure is due to the fact that the atoms of both, the ideal and nonideal
complementary structure, belong to Takeuchi's substructure. There they get
a small weight since in the general case no atoms superpose after the
superposition of the subcells, except the atoms of the ideal or disturbed
substructure.

Since the space group of the full structure is a subgroup ofthat ofthe ideal
substructure, the mean electron density distribution QTS(x) has at least the full
structure symmetry and is never lower. The sub cell parameters must fulfill all



. 9A- 98 .9A-9B

90n 900
~.~

.C) o
--

9r 9r

. t 129A +98) 81129A+98) 81129A+98)

190CJ
2 (~ 2 fj
"390

\~.-J "390~

0 0 0 0 0 0
t9r 19r t9r 19r 19r t9r d

.il9A-98) 8<tI9A-98) .119A-98)

190 C) 1900 19003
<0

0<0 0 0<0 () 0<0

-i9f t9f -t9r -t9r 1-9f -t9f e

K. Taxer: Substructures and their application 7

~

a

b

c

Fig. 1. a The projection of some structure with a substructure characterized by a smaller unit cell;

b Buerger's substructure; c Buerger's complementary structure; d Takeuchi's substructure;
e Takeuchi's complementary structure
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Fig. 2. Symmetry properties in the practical substructures and complementary structures. a Full

structure, space group Pbc2, ; b Buerger's substructure, space group Pbcn (the 2,-axesll a are not
drawn); c Buerger's complementary structure, space group Pbc2,; d Takeuchi's substructure,

space group Pbc2,; e Takeuchi's complementary structure, space group Pbc2,. The anti-and-

rational diminution-symmetries are not symbolized and can be recognized by looking to the
weight, sign, and location of the atoms only

requirements of the space group of the idealized substructure, i.e. the correct
Bravais lattice is an important condition for the occurrence of the higher
symmetry. This can be seen from the fact that each atom in the full structure is
located in one of the subcells which subdivide the entire cell. The symmetry
elements of the full structure are located in one of the subcells. When we
construct the mean electron density distribution QTS(x) the symmetry
elements of the full structure are also propagated about the entire cell
correspondingly to the atoms by the folding operations. Due to the
prior condition that the set of full structure symmetry elements is a subset of
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the substructure symmetry elements the symmetry in !?Ts(x) is not lower than

in e(x).

The symmetry in !?Ts(x) can in special cases be higher than that of the full

structure. Figure 3 demonstrates an example where the symmetry of the full
structure is orthorhombic and that of !?Tsis hexagonal. In this special case the
ratio of the sub cell parameteters hexagonal. In this special case the ratio of

the subcell parameteters A and B must be V3, or ~ V3with p, q integers.q

a

ZB ·
OQ~ OQ~OQ~ 0-0

. '
OQZQQZ

° d
0;0°0 /-- ()- O/n 0Qz Q1 Qz

j
0,,0,,0 C

A~oOQ~ OQZ- OQ~ 0-0 b
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Fig. 3. A special case of substructure: the symmetry in Takeuchi's substructure is higher than in

the full structure. a Full structure, (! (x). The electron density about the atoms is symbolized by
the length of the radius of the circles. The clectron densities are: (!o = 4 [e - fA3]. (!, = 3.4 [e fA 3],

e, = 1.6[e fA'], (!3= 1[e . fA3]. (!4 = 3 [e fA 3], (!s = 6 [e- fA'], and (!" = 2.5 [e- fA'j, so that

eo + (!3 = (!l + (!2, (!S = 2 (!4' and (!2 < (!" and (!, < (!o: b Takeuchi's substructure,
eTS: Ql = h?s = (!4, Ql = t ((!o + (!3) =

} ((!, + (!,): e Takeuchi's complementary structure,

ere< J(!, = -t(!s, J(!2 = t((!,-(!,), J(h = t((!o-(!,)

The tables prepared by Neubiiser and Wondraschek (1969,1970), contain
all maximal subgroups and minimal supergroups to each space group.

The complementary structures always possess at least the full structure
symmetry. In Takeuchi's complementary structure antisymmetry like trans-
formations can be introduced. In fact this should be called 'anti- and
diminution-symmetries' or 'anti-and-rational weight change-symmetries'
sincein addition to a sign change the motif will be multiplied by the rational
fraction1/(N -1), respectively l/(Nj -1) with i = 1,2,3 or by its inverse after
the operation belonging to a space or translation group. No symbols have
beeninvented so one has to study them in Figures 1e, 2e, and 3c by looking at
theweight, sign, and position of the special 'atoms' which are 'equivalent' by
these kinds of symmetries,

Figure 2 demonstrates the space group symmetry elements in IlBS(x),

{hs(x), IlBC(x), and IlTC(x).
It is always possible to construct a mean structure <11(X)subccll, with any

integral value for N, respectively N1, Nz, N3, which makes sense mainly when
a substructure can be recognized. In the theory of OD-structures by
Dornberger-Schiff (1966) we find the 'superposition structure' which is
another application of the mean structure. Its interpretation is different in
each case of application, In our case the characteristic properties of the
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adjoined ideal substruture to which the higher symmetry and the existence of
complementary structure belong form the secondary conditions by which a
solution of the structure problem can be established.

The reciprocal space of the substructure and of the complementary structure

Since it is desired to have a separated set of measured data in the reciprocal
space which can be easily handled for the determination of the substructure
and the complementary structure, the definition of the practical substructure
has been required. Each definition is a compromise in which the character of
the ideal or idealized substructure can get lost for the sake of an easy
interpretation of the measured structure factors.

The Fourier transformation of the electron density distribution of
Buerger's substructure, FBS(h) = ~ [QBS(x)], is zero everywhere except at
those reciprocal lattice points UBS(h) which belong to the reciprocal
superlattice of the substructure and which do not belong to the set of
locations where extinctions due to the substructure space group take place.
The Fourier transformation of the complementary structure FBC(h) is
contained in both, the point set EBCcomprising the 'excess points' 1 (Buerger,
1959) and the points set UBS'in short, in all nonextinguished reflections of the
crystal, forming the set H. The set of Buerger's excess points comprise also the
'extinguished' reflections in the reciprocal lattice of the substructure.
Therefore, it is not allowed to compute the Patterson synthesis of QBC(x)
being equal to the function QBC(u) -+ ~BcCX)with the intensities located at the
excess points only, but with all intensities of the total reciprocal space. Of
course, for this it would be necessary to correct all the intensities at UBSin
such a way as to get rid of the influence of the substructure. This is nearly
impossible, at least the effort would be too large as compared with the result
which can be obtained by simpler methods. In order to calculate the structure
factors of the complementary structure, the right form factor curves are not
available except for the atoms of the ideal complementary structure.

In the case of the practical substructure defined by Takeuchi (1972) the
reciprocal space of the crystal can be decomposed into strictly separated sets
of the reciprocal lattice points. The structure factors at the points in one of
them have contributions only from the substructure, QTS(x); in the other set
only from the complementary structure, QTC(x) (Taxer and Weick, 1978). The

~

1 The excess points Ec are defined as those points of the reciprocal lattice which do not belong
to the set of points Us, so that Ec =

if (Us). which means that Ec is the complementary set of H

related to Us, where H = {h Ih = ha* + k b* + le*}. and, if Us = UBS, UBS = {Hs IHs =
H. A*

+ k.B* + L.C*} - Hs lying at substructure space group extinctions}. For forming fICUs) a
transformation ofHs to hs has to be made, i.e., the base a*, h*, c* should be used in both, UBSand

EBS.
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firstcomprises the 'strong reflections', UTS'the second the 'weak reflections',
Em which also may be called 'excess points', namely Takeuchi's excess
points. The weak reflections lie on reciprocal lattice sites which do not belong
to the reciprocal superlattice of the substructure. The set of the strong
reflections also includes all very weak reflections which are lying on the
reciprocal superlattice of the substructure, None of these reflections may be
considered as extinguished. Those points in this set which may be regarded as
extinguished were already registered as that by the full structure. The
extinctions due to the possible space group of the possible ideal or at least
idealized substructure are not noticed at all.

The origin of the reciprocal space with its nonzero weight being either the
structure factor or the intensity always belongs to the reciprocal superlattice
of the substructure. The set of the intensities of the weak reflections can be
calculated by the Fourier transformation of the folding square of the
complementary structure only. The set of the structure factors are calculated
by the Fourier transformation of the complementary structure alone (Taxer
and Weick, 1978). It is therefore a fact that the electron density distributions
of the practical substructure, (hs (x), and the complementary structure,
{lrc(x), scatter coherently, but they do not interfere.

And vice versa, the Patterson synthesis computed by the Fourier trans-
formation of the weak intensities alone yields the convolution square of the
complementary structure:

1
Prc(u) = z L L L 1(hkl) . cos 2 n (hu + kv + lw)

v
withu=ua+vb+wcandhkIE{hkl} \ {HKL}=H\ UTS;
2
erc (x) = PTC (u);

(4.1)

(4.1a)

v is the volume of the entire cell. PTC (000) is always positive. In each
Patterson synthesis PTC (u) the following relations hold:

Nt Nz I'll:>,

r L L PTC(nlA + n1B + n3C) = O.
nl=l flz=l 1/]=1

(4.2)

The amount of maxima and minima being due to vectors between 'atoms' in
the complementary structure which are related to each other by space group
symmetry operations and 'anti-and-diminution symmetry operations' is a
multiple of the amount of the Harker vectors due to space group symmetry
operations only. These form subsets of the superset of the unconventional
Harker vectors. All conventional Harker vectors cause maxima in the
Patterson function. The minima are due to vectors between the sets of space
group symmetrical 'atoms' where one of the regarded sets consists of negative
'atoms' and the other of positive 'atoms' of the complementary function. For
deformation structures sets of symmetrically equivalent 'dipols' are typical in
the Patterson function; these dipols consist of a maximum in the close
neighborhood of a minimum. Since (?Tsand the electron density of the
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idealized substructure need not be identical, the dipol vector needs not be
equal to Llx in (2.7).

A substructure with only one genuine subperiod let us say A, conditions
very simple relations. The weak and strong reflections lie on separated sheets
in the reciprocal space. From the relation 2

tv']

L PTdn1Al)= 0 follows that for N1 = 2 and 3,
111= 1

-1
PTdn1A1)= PTdOOO) for all nl = 1,..., N1-1.

N1-1

In a substructure with three genuine subperiods a series of mean electron
density distributions !hdx) can be computed by the inverse Fourier
transformation. It is possible to use deliberately A or B or C as "1
= subperiod 1 and to use one of the remaining ones as subperiod 2 and the
other as subperiod 3, being denoted as "2 and "3, respectively. Perhaps a
certain sequence may be suggested by the special problem. In any case in the
whole there are seven different mean electron density distributions which are
possible to be computed. These are:
(}P) = < Q(X)ui with i = 1, 2, 3 (4.5)
comprising three different ones,

Q~J)= «Q(x)u)uj with i, j = 1,2, 3 and i < j, (4.6)

comprising also three different ones,

(4.3)

(4.4)

W) = <<<Q(x)u)u)u, with i -+j -+ k (4.7)
being all identical and, equal to QTdx) of the regarded substructure.
For their computation by a Fourier synthesis it is necessary to know which set
of reflections may be used.

Ifwe construct a substructure only by using "1 or "2 or
"3'

we subdivide
the reciprocal space each time into two sets of reflections: the set of strong
reflections U 11, respectively un, respectively U 33, and the respective set of
weak reflections, E!jJ (Uii) with i = 1, 2, 3 and j = 1.

The index j indicates the regarded number of genuine subperiods of the
substructure. Regarding the substructure with all three subperiods, we can
subdivide the entire reflection set H into a series of reflection subsets which
refer to the various mean substructures and complementary structures (see
Fig. 4).
----

2 For deriving the relation (4.3) the electron density functions of the complementary structure
in the subcells are denoted L1Qj(x), ..., L1QN,(X), respectively. The values of Pre (njA)

~ QrcCnjA) = ihcCx) with j
= 1,. . ., N 1 can be calculated by

PTc(njA) = ~' j1Q,(x)' I1Q(x)(i, IlmoduloN,dvx.
j

=-
1 ~uhcel1

Reconsidering (3.5) it can be seen immediately that the relations (4.3) and (4.4) hold. For
deriving the relation (4.2) one has to continue in the same way
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Fig.4. Symbolic representation of the subsets of the reflection set at the presence of a
substructure !2Tswith two or three subperiods; a !2TShas two genuine subperiods; b !2TShas three
genuinesubperiods. The main subsets like Ull, U22, U33, £\;31,and U3 are symbolized as
rectangles.They are marked by their labels in diagonally opposite corners
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U 3 is the Fourier transformation oUP) (x). It is the intersection of U 11,
U22, and U33:

U3 = U11
"

U22" U33. (4.8)

It is not important whether Uii relates to A, B, or C as respective genuine
subperiod. But a certain sequence, having once been chosen should be fixed.

The set E<J)comprises all other reflections:

E<J)= H \ U3. (4.9)

This set again can be decomposed into subsets which are the single
intersection sets of EIJ) with the respective sets Uii, with i = 1, 2, 3

EIJ) (Uii) = EG" Uii (4.10)

and the subset which does not have any reflections in common with the sets
Uii, with i = 1, 2, 3. It is demoted Ef'), so

E~3)=E<J)\ (U11vU22vU33). (4.11)

The structurefactors of E<J)are calculated by iJW(O)(x)
-

(P)(x)] ~ iJ [Q(x)-
QTC(X)],so E<J)= ETC simply.

Q(O)(x)is identical with Q (x). Therefore,

F(E<J»)= iJ[Q(x) - Q(3)(X)]. (4.12)

The structure factors of EIJ) (Uii) are calculated by the Fourier
transformation of Q(1)(x)

~ Q(3)(x), so

F[EIJ) (Uii)] = iJ[Q!1)(X)_Q(3)(X)] with i = 1,2 or 3. (4.13)

The subset E~3) is related to the complementary structure Q!J)(x)-QL3)(x)
with i, j, k = 1,2,3 and i 0/=j 0/=k, when the point weights are structure

factors, by:

iJ-t F (Ef'») =
Q(Z)(X)_Q(3)(X). (4.14)

2
~

For the convolution square p<[c3)(u) =
e(Z)(x)_Q(3)(x) the following

relation holds in addition to Eq. (4.2):
N,
L P<[c3)(niui + njuj + nkuk) = 0 (4.15)

ni=l

for all i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3 and all nj = 1, . . . , Nj; nk = 1, . . . , Nk

and i 0/=j 0/=k.
This is due to the fact that all WJ(X)_Q(3)(X) with i = 1,2,3;j= 1,2,3

N,
and i < j are equal to each other and that the sum L LJQijk= 0 in which I = i

l~ 1
orj or k with 1:0;; i:o;; Nt> 1:0;;j:o;; Nz, 1:0;;k:o;; N3. The indices i,j, k refer to the
ith or jth or kth sub cell in the direction A or B or C.
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Ifwe use the substructure with only two subperiods (see Fig. 4), although
three possibly are present, the set U 2 is given by

U2 = Ull n U22, (4.16)

the set EiP by

E~) = H \ U2, (4.17)
the sets E~) by

E~)= Eg) n Uii with i = 1, 2 (4.18)

and the set Ef{) by

Et2)=Eg)\ (U11v U22). (4.19)

For the subset Ef{) similarly the corresponding relations as for Et3)can be
derived,which holds for Eg) and E~), too.

In general to all complementary electron density distributions

e (x) = Qlk) (x) - QUI(x) with k < I and k = 0,1,2 and I = 1,2,3 and in the
most interesting cases I = k + 1, where Q10)(x) in this general notation refers
to e (x) simply, a specific set of nonextinguished structure factors which
are a subset of H corresponds in the reciprocal space. In order to select the
right subset of H for the inverse Fourier transformation by computing the
Fourier synthesis one has to check how far the following relations hold:

Nj ~

r e(x)b(x-niu)=Oforj=1,2,3.
ni=1

(4.18)

Demonstrationof the various terms at an example

Therecently analyzed structure of stannoidite, CUsFei+ (FeH, Zn) Sn2S12,
(Kudoh and Takeuchi, 1976) comprises a series of examples for the terms
discussedin this paper. In Table 1 the structure parameters and the idealized
coordinates are listed. Figure 5 shows a projection of the idealized structure
onto (001). The structure parameters were refined with Cromer's approxi-
mation of the atomic form factors (Cromer and Waber, 1965; Cromer, 1965).
In contrast to the usual expectation the R-value became lower than that of
Kudoh and Takeuchi (1976).

Stannoidite has a series of substructures which are collated in Table 2. The
multiple cell of stannoidite arose predominantly by substitution of various
metal atoms in the ZnS structure and by a slight distortion.

The subcell of the most striking substructure is also orthorhombic with
A = a12,B = b, C = c/3. The probable space group is A 222.SinceA ~ B ~ C
holds a tetragonal substructure with the space group 142m or even a cubic
substructure with F43m, symmetry is worth consideration. But the de-
viations of A, B, and C from each other are already too large to carry out
computations with atomic arrangements in these space groups in order to



Table 1. Structural parameters and idealized coordinates of stannoidite [R = 5.3 % (isotropic), R = 4.7 % (anisotropic)]

Atom Occupancy Equipoint Coordina tes B[A]>

x y z

Ml 0.783 Zn 2+ 2 a 222 0 0 0 1.53(12)

+ 0.217 FeH

M2 Cu 2 b 222 1 0 0 2.16(15)2

M3 Cu 2 c 222 0 0 1 1.9(2)2

M4 Cu 41 2 0.2513(5) 0 1 1.42(9)2

M~ Fe3+ 4i 2 0 0 0.3305(4) 0.85(7)

M6 Sn4+ 4) 2 0 1 0.16907(15) 0.39(4)2

M7 Cu 8k 1 0.2466(3) - 0.006(3) 0.1689(3) 1.61(5)

Sl S 8 k 1 0.1318(15) 0.2443(15) 0.0808(7) 0.9(2)

S2 S 8k 1 0.3833(11 ) 0.753(2) 0.0797(7) 1.2(2)

S3 S 8k 1 0.130(2) 0.7495(15) 0.2524(8) 0.47(13)
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Fig. 5. Idealized structure of stannoidite with idealized z-coordinates in h of c

reduce the number of free parameters in the full structure. In any case an
idealization is required. The idealized substructure is shown in Figure 6. If
one continues the idealization by transforming the copper atoms into iron
atoms Fe3+, the idealized substructure has the space group F222.

This substructure, denoted (a) in Table 2, can be 'decomposed' into two
orthorhombic substructures having a subcell with A = a12,B = b, C = c, and
a space group A 222 or a subcell with A = a, B = b, C = c13, space group of
the substructure 1222. This is an example for the case that a set of
substructure yielding parameters can be decomposed into two independent
subsets. The characteristic substructure of all the mentioned substructures,
denoted (a), (b), and (c) in Table 2, consists of the copper atoms M3 (see
Table 2a).

Stannoidite has also an ideal substructure (see Table 2 and Fig. 7) with the
subcell A = a, B = b12, C = c, and with space group B 222. It consists of the
copper atoms M2 and M3 (see Table 1). All the other atoms and anything
else belong to the complementary structure. If the eigensymmetry of the
atoms M2 and M3 can be assumed to be mmm or higher, the space group is
Bmmm.

For the substructure analysis the practical substructures which relate to
the idealized substructures (a), (b), (c), and (aii) in Table 2 can be used.



Table 2a. Substructures in stannoidite

Substructure Subcell
identifica-
tion

Probable
space group
of the
substructure

Content atoms
of the full structure
participating
(compare Table 1)

Kind of disturbance
if any

Remarks

a
--~-----_.-_._-

al

a2

b

A = ai2, B = b, C = en A 222

A = a;2, B = h, C = c/3 142m
(A = B = C)

A = a/2, B = b, C = c/3 F43m
(A = B = C)

A = a/2, B = b, C = c

d

A = a, B = h, C = c

ill

A = a, B = h/2, C = c

A = a, B = b/2, C = c

A 222

1222

M1. M2, M4, MS, M6,
M7, 51, 52, 53

M1. M2, M4, MS, M6,
M7, 51, 52, S3

M1. M2, M4, MS, M6,
M7, 51, S2, 53

MI, M2, M4, MS, M6,
M7, 51, 52,53

MI, M2, M4, M5, M6,
M7, 51. S2, 53

Predominantly substitution, Idealization is necessary;
light distortion compared with ai, aii, aI, and a2

it is here at a minimum

Predominantly substitution, Only for topological
light distortion considerations useful eg.,

Predominantly substitution, for crystal chemistry
light distortion

Predominantly substitution, Only one subperiod
light distortion is reconsidered

Predominantly substitution. Only one subperiod
light distortion is reconsidered

~
"~-- - --

~----_._--------

No disturbance Ideal substructure

Ideal substructure

B222

Bmmm

M2. M3

M2, M3
~-_.-----------_._---

ai

aii

Similarly

hi. hii. and
hii. cii can bc
yielded

A = a/2. B = h, C = ci3

A = ai2, B = h, C = ci3

A 222

F222

No disturbance
-------.-

M I, M 2. M 6. M 5 are to be considered as FeH;
light shifts or A.14. MS. M 6. and M 7 to required
places

Additionally l',12 and M 7 are to be considered as Fe' +

Further idealization
substructure (a)

Further idealization
or substructure (a)

to.)
o
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8-
0+0

OF~OF~OFe3+

IQ~ Otl
o~e3+ o~e3+ Oie3+

j2Qi Ot \
Z

I O~OL-OO
A Fe3+ Fe3+ Fe3+

Fig.6. Idealized substructure. i!B/: A = la, B = h. C = tc; F222

Table2b. Complementary structures

Identification

of corresponding

substructure

Content

Ideal complementary structure
(compare Table 1)

Nonideal complementary
structure
(compare Table 1)

a M2 M4. M5, M6. M7, 51. 52,
53

b M2 M4, M5, M6, M7, 51, 52,
53

M2 M4, M5, M6, M7, 51, 52,
53

d M1, M4, M5, M6, M7, 51, 52, 53 none

Tables3 and 4 contain the space group, cell, and structure parameters and
other information about a series of them.

The set of the 'strong reflections' from which Takeuchi's sub cell and
substructure TS 1 can be determined consists of all reflections hkl with 1= 3 L
and h = 2 H which could have been observed. Takeuchi's complementary
structure TC 1 can be determined from the set of the 'weak reflections' hkl
withh = 2 H + 1 and I = 3 L + 1. The substructures TS 2 and TS 3 with one
subperiod regarded as genuine condition strong and weak reflection sets. In
TS 2 the reflections hkl with h = 2 H, k = K, I = L, and in TS 3 the reflections
hkl with h = H, k = K, 1= 3 L ::t 1 are the 'strong' ones, the remaining
correspondingly the 'weak' ones.

The Fourier transformations of Buerger's substructures and com-
plementary structures generate nonzero values at the identical reciprocal
point sets as those of Takeuchi's substructure. So stannoidite cannot
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-8 -b

O~ O;~ O~3
222

Fig. 7. Ideal substructure consisting ofCu-atoms only. A = a, B = h/2, C = c, B222, or Bmmm

demonstrate that the excess point sets of Buerger's and Takeuchi's substruc-
tures need not comprise the same points in the reciprocal space. TS 1 have the
space group A 222; TS 2 and BS 2 refer to the idealized substructures (b) in
Table2; TS3 andBS3 correspond to (c) in Table 2. The space group for TS2
and BS 2 is A 222, while for TS 2 and BS 3 it is 1222.

A great help for the determination of the substructures TS 1, TS 2 or TS 3
is the analytical form of the scattering factors introduced by Cromer and
Waber (1965). The convolution square of the substructures TS1, TS2, and
TS 3 can be obtained by calculating the Patterson synthesis with the
intensities I (hkl) with h = 2 H, k = K, 1= 3 L, respectively h = 2 H, k = K,
1= L, respectively h = H, k = K, 1= 3 L. Parallel to the interpretation of the
Patterson synthesis the iterative Gaussian analysis after Hosemann and
Schoknecht (1955) could be applied.

Since stannoidite has predominantly a substitution structure, it is possible
to find more or less well fitting models of TS 1, TS 2, and TS 3 using isotropic
temperature factors and mean atomic scattering factors which can be
resolved into a linear combination of the scattering curves of the metal atoms.

In Tables 3 and 4 the results of the substructure determinations with the
coordinates and the isotropic temperature factors refined by least squares
methods are listed. The anisotropic temperature factors were not added in
Table 3, but the reliability factors of the refinements reconsidering them are
given. For the computations all 422 published structure factors of the
measured 429 ones (Kudoh and Takeuchi, 1976) were used.



Table 3. Refinement of the practical substructures in stannoidite ?"....,

Equipoint Isotropic "'Practical Subcell 'Atom' 'Occupancy' Coordinates ><
su bstructure and space temperature
~identification X y Z factor B [A]2

(/)
group

>=[
tcCu1+ + Zn2+ 2 a 222 0 0 0.84(3)

..,
TS 1 A = a/2, MS1 0 >=

~+ FeH + Sn4+)
>=..,

B=b, MS2 j; Cu 1+ 2 b 222 0 0 1 1.6(2) Vi2:
C = c/3. MS3 Cu1+ 2 C 222 1 0 1 1.56(3) "'2: 2: ::;
A 222 S S2- 4k 2 0.25396(4) 1 1 101(4) 0-

4 4 ;.
--.,'--- ~.

TS2 A = a/2, MS1 tcZn2+ + Cu1+) 2 a 222 0 0 0 0.2(2)
"'B=b, MS2 tCu1+ 2 b 222 0 0 1 16(2) '1;j

2: "2.-
c= c. MS3 t(FeH + Sn4+) 4e 2 0 0 0.3329(5) 0.86(9) (;.

A 222 MS4 Cu1+ 2 C 222 1 0 1 0.1(10)~2: :1 o'
MS5 Cu1+ 4e 2 0 0 0.1662( 1 0) 3.4(4) ::;

Sl S2- 8/ 1 0.245(3 ) 0.245(3) 0.0849(8) 1.5(3)

S2 S2- 4k 2 0.246(10) 1 1 0.6(4)4
"---~

TS3 A =a, MS1 t(FeH + Zn2+) 2 a 222 0 0 0 107(5)

B=b, MS2 tCu1+ 2 C 222 0 0 1 19(2)2:
C = c/3, MS3 t(2Sn4+ + Cu1+) 2 b 222 0 1 1 0.69(3)2: :1
1222 MS4 Cu1+ 4{ 2 0.2483(4) 0 1 1.57 (4)2:

S S2- 8k 1 0.1270(2) 0.2485(15) 0.2477(6) 1.01(4)

TF A = a/2, MS1 Cu1+ ~f2(Zn2+ 4 a 222 0 0 0 0.92(5)

B= b, +7Cu1++2F3H+2Sn+)

C = c/3; MS2 j;(Cu1+) 4 b 222 0 0 1 4.6(4):1
F222 S S2- 4 c 222 1 1 1 1.18(8)

" 4 4

BF A = a/2, MS Fe3+ 4 a 222 0 0 0 0.97(6)
B =b, S S2- 4 c 222 1 1 1 145(9)4 4 4 N
C = c/3; VJ

F222

---,--

In column 1 the letter Trefers to a practical substructure after Takeuchi. and B refers to one after Buerger. The letter Frefers to a face-centered lattice



Table 4. The reliability factors of the refinements of the practical substructures

Practical R R N umber of reflections: Correspond-
substructure isotropic anisotropic additional selection rule ing ideal sub-
(compare 0/ 0,

in respect to entire structure
"

.
"Table 3) in Table 2

--.-
TS1 2.7 2.6 141 a

h = 2 H, I = 3 L

TS2 8.6 7.4 245 b
h=2H

TS3 4.2 3.8 224 c
1=3L

TF 4.3 4.1 87 aii
h = 2 H, k = K, I = 3 L
H + K = 211,k + L = 211,
H + L = 211

BF 8.6 7.8 87 aU
h = 2 H, k = K, 1= 3 L
H + K = 211,k + L = 211,
H + L = 2n
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The complementary structures can be determined by the Patterson
syntheses of the weak reflections hkl with h =F 2 H and I =F 3 L.

The Patterson map has to be investigated at the sites where the maxima in
the full Patterson synthesis would be located if the substructure would be the
full structure. The application of the minimum function (Buerger, 1959) has
been suggested by Takeuchi (1972).

Each atom in the full structure (JA(xyz) generates five points with negative
weight _1/6 and one point with positive weight 5/6in the complementary
structure TC 1. Similarly the complementary structures TC 2 and TC 3 can be
derived from the full structure. So the electron density in TC 1, TC2
respectively TC 3 can be calculated by the following relations:

.----...
QTC1(X)= tQ (x) - i Q(x) [b(x-oot) + ()(x-OOi)

+ b (x -100) + Q (x -10t) + b (x -toi)], (5.1)

.----...
QTC2(x) = 1 Q (x) [b(x) - b (x -100)], (5.2)

.-----..
QTCAx)= t Q (x) [2 b (x) - b (x -oot) - b (x -OOi)]. (5.3)

What the complement structure looks like was derived from the full structure.
This can be done generally as useful check of a structure, too. The reliability
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factorswerecomputedtoRTC1 = 9.6%, RTC2= 9.4%, and RTC3= 10.3%for
281reflections, respectively 198 reflections, respectively 177 reflections. One
has to pay attention when special positions after the anti-and-diminution
translation had taken place get on less special positions. Buerger's sub-
structure has been obtained by computing the minimum function as it was
suggested in Eq. (3.1). Computation of the structure factors of Buerger's
substructures was attempted, the one with space group A 222 and the other
withspace group F222. This was done without trying to correct the observed
structure factors as would be necessary to get an impression of the influence
of the complement structure on the substructure. The result at the latter is
contained in Table 3.
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	A = a/2, B = b, C = c 
	A = a, B = h, C = c 
	ill 
	A 222 
	1222 
	M7, 51, 52,53 
	Predominantly substitution, Idealization is necessary; 
	light distortion is reconsidered 
	~ "~-- - -- ~----_._-------- 
	No disturbance 
	B222 
	Bmmm 
	~-_.-----------_._--- 
	ai 
	aii 
	Similarly 
	A = a/2. B = h, C = ci3 
	A = ai2, B = h, C = ci3 
	A 222 
	F222 
	No disturbance 
	-------.- 
	Additionally l',12 and M 7 are to be considered as Fe' + 
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	8- 
	Table2b. Complementary structures 
	Content 
	M2 
	M2 
	M2 
	M1, M4, M5, M6, M7, 51, 52, 53 
	none 
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	-b 
	O~ O;~ O~3 


	page 23
	Tables
	Table 1


	page 24
	Titles
	24 
	K. Taxer: Substructures and their application 
	+ b (x -100) + Q (x -10t) + b (x -toi)], 
	(5.1 ) 
	(5.2) 
	(5.3) 
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