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Abstract. The observed stacking disorder in scholzite can be explained by
a stacking ambiguity of layers parallel to (100). This is due to equivalent
surroundings of the calcium atoms on the boundary planes of two neigh-
bouring layers in two possible relative positions to each other. Conse-
quently, a series of possible polytypes of this compound was derived, among
which the structure of parascholzite is a likely candidate, from which the
space group and the lattice parameters could be found in agreement with
these predictions. It was demonstrated that the 00 structure does not
consist of layers of one kind but of two kinds.

Introduction

In compounds possessing stacking disorder, it is desirable to retrieve the
different possibilities for stacking of the two-dimensionally periodic layers.
This is done in such a way that in any possible case the crystal chemical
situation does not differ substantially from any other possibility, or that at
least in each possible case there are no crystal chemical contradictions. This
stacking ambiguity usually is due to special arrangements of the atoms on
or in the vicinity of the boundary planes of the layers perpendicular to the
stacking direction. It can also explain the existence of other modifications
of this compound.

Streaks parallel to a* along the reciprocal lattice row lines of scholzite,
CaZnz[P04h . 2HzO, indicate a stacking disorder in the [100] direction of
layers lying parallel to (100).
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A fundamental building block was found in scholzite with the required
properties for layer disorder. From this discovery it was possible to predict
a series of polytypes for scholzite. One is the probable structure of the
recently discovered mineral parascholzite [Sturman, Rouse and Dunn,
1981] or its enantiomorphic equivalent. I attempted to find an OD groupoid
for an OD structure [Dornberger-Schiff, 1964] of either one kind or two
kinds of layers. Since the scholzite structure is complex but has a substruc-
ture from which the entire structure can be derived by small distortions
[Taxer, 1975]the idealized substructure with the cell constants A = aschoIzite,
B = bscholzite/3,C = Cscholzitewas selected for consideration. The lattice con-
stants hand Cof parascholzite are equal to Band C of the substructure of
scholzite.

Each of the decompositions of the substructure of scholzite in this paper
will have its own advantage.

Since in the following the full structure of scholzite is not of any interest
the vectors a, b, c denote the lattice vectors of the substructure of scholzite.
x, y, z are the fractional coordinates of vector x referring to this cell. In
some Figures the axes are still denoted A, B, C. According to our agreement
they mean the same as a, b, c, and correspondingly xyz mean the same as
XYZ. But an index may change completely the meaning. - For those who
never heard anything about OD structures a brief introduction will follow.

The OD theory takes care of the partial symmetry operations, motions
which bring only a part of the crystal structure into coincidence with itself
or with another part of the structure. [Dornberger-Schiff, 1964; Fichtner,
1980]. Therefore, it applies the theory of groupoids. The OD theory of
equivalent layers is able to explain polytypism since an OD structure con-
sists of an infinite number of layers one onto another where stacking
disorder may occur when a stacking ambiguity exists. - At first a layer
has to be defined. It is a building unit which is periodic in two dimensions
parallel to the plane perpendicular to the stacking direction and which does
not share any atom with an adjacent layer. Its width is denoted aDif [100]
is the stacking direction.

The partial symmetry operations are divided into two sets: one contains
the A symmetries which transform one layer into itself and which form one
of the 80 layer groups. The other set contains the (J operations which are
all transformations from a layer to an adjacent one. The groupoid symbols
comprise in the first line the layer group and in the second the (J operations.
The parentheses about certain symmetry symbols indicate that in that
specified direction the periodicity needs not to exist. The OD theory requires
the fulfilment of the vicinity conditions: if a layer pair (Lq; Lq + 1) can be
transformed into the layer pair (Lp; Lp + 1) so that there is a coincidence of
Lq or Lq + I with Lp or Lp + 1, then (Lp; Lp + d has to be geometrically
equivalent to (Lq; Lq + d.
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Fig. I a. Projection of the idealized substructure of scholzite onto the (001) plane. The
numbers indicate the idealized z coordinates in to of c.

Usually it is the aim to find an aD structure of only one kind of layers
since they are relatively simple compared with those consisting of more
than one kind of layers.

The aD theory is the most powerful tool for handling stacking disorder.
But its limits of application are defined by the groupoid theory. Hence, not
each structure with stacking disorder can be an aD structure. Nevertheless,
we should use the terms of it and try to find out that there is an aD
structure or not.
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Fig. 1b, c. Illustration of the stacking ambiguity about the boundary plane in the idealized
substructure ofscholzite by projections of the octahedral network onto (100). The num-
bers indicate the x coordinates in +., of a. In Figurc 1b, c the oxygen atoms with positive
x coordinates are located at identical positions, whereas in Figure 1c in comparison to
Figure 1b the oxygen atoms with negative x coordinates (dark circles) are shifted to the
alternate locations and correspondingly are the calcium atoms.

The stacking ambiguity

Let us consider the substructure of scholzite in Figure 1a (Taxer, 1975)
within one half of the subcelllimited by O=S;x=S;!, O=s;y=s;l, O=S;z=S;1.
Decompose this partial structure into two components one containing only
the calcium atoms, the second all the other atoms. The first component is
designated r, the second A. Then it can be recognized (see Fig. 1) that the
component A is symmetrical by translation t !, i to the other half of the
cell being limited by 1 ~ x ~ !, 0 =s;y =s;1, 0 =s;z =s;1. Hence the atoms of A
are repeated at! + x, ~ + y, i + z. The layer built up by A and periodic in
the directions band c is also denoted A. The equivalent holds for r. Let us
find all symmetrical equivalent layers of layer A, each a possible neighbor
of A behind r by trying to use all space group and OD groupoid elements
so that we obtain identical octahedral surroundings for the calcium atoms.
To these possible symmetry elements belong the two translations ~, ~, ({J
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with qJ= t and qJ= i depending on which octahedral cavities were chosen
by the calcium atoms. The corresponding translations for Tare t, 1, f.l with
II = 0 when qJ= *

(as for instance in Fig. 1a), and f.l= t when qJ= t. So for
qJ= t the calcium atoms at x, y, z have to be repeated at t + x, t + y, t + z,

and for qJ= i they are repeated at t + x, t + y, z.
With this background many phenomena of the stacking disorder in the

compound with the composition of scholzite and parascholzite can be
explained.

Figure 1band 1c illustrate the stacking ambiguity at the boundary
plane. Figure 1d shows the tetrahedral network behind the octahedral
network in Figure 1band 1c. The common atoms are the oxygens 01.

For convenience the layers with T and A are labelled in the following
way: the layer containing the zeroth component of T, being To, which
follows the zeroth component of A, being A, is the zeroth layer. The first
layer contains A 1 at lower x-coordinates than T 1 which lies at the boundary
plane to the second layer. Also for convenience let us call the components
Ao, To, Aj, Tj, ... "the layers Ao, To, AI' T], Az, Tz" ...".



244 Karlheinz Taxer

Fig. 1 d. Projection of the tetrahedral network between two boundary planes in the
idealized substructure of scholzite onto (100). It corresponds to A minus the water
molecules (04). The number indicate the x coordinates in To of a.

Let us define some translation vectors:

ti. i + 1 is the translation vector shifting layer Ai into the next layer Ai + 1, so
ti, i, + 1 = 1, 1, qJwith qJ= i or -l ti,j is the translation which shifts Ai into
its symmetrical equivalent in the jth layer, i.e. ti,j = (j

- i)/2, (j - i)/2, ~/8
with ~ = 0,1, ...,7. ti = t, t, f1 is the translation shifting the symmetrical
equilant of r 0 between the (i - 1)th and the ith layer of A 1 to its symmetrical
equivalent between the ith and the (i + l)th layer of Ao. The relation

1
ti = 2 (ti

-
l,i + ti,i + 1)

follows from the dependence of f1 on qJ: f1 = 0 when qJ= i is followed by
qJ= - i or vice versa, f1= i when qJ= i is followed by qJ= + i, etc.

In this relation for ti the possible values of qJ= i and qJ = - i in both
vectors, ti - 1, i and ti, i + 1, should always be replaced by the equivalent

values qJ= -i and qJ= i respectively, or, should always be substituted
by the function t. mod (8. qJ, 8) - t. mod[mod(8 . qJ, 8), 3] which
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transforms the set {... i, ~, ~, i, ¥, ...} into the set { -~, + n, so that
the restriction is done automatically.

This relation helps to understand that the position of the layers Tj are
determined by the stacking vectors between the layers Ai' So, for instance,
the electron density distribution of the disordered crystal could be calcu-
lated by

Q(x) = Q(Ao)[b(x)+ b(x - to, I) + b(x - to,2) + ...]

+ Q(To){b(x) + b(x - td + b[x - (tl + t2)] + ...},

where Q(Ao) is the normalized two-dimensional periodic electron density
distribution of the layer Lo containing only Ao, and Q(T0) is that of layer
Lo containing only To, b(x) is the three-dimensionally Dirac-function, and
N is the number of layers each containing the components A and T. After
substitution of the vectors ti using the relation for it derived above with all
precautions and restrictions mentioned there the electron density distri-
bution can be computed according to

Q(x) = Q(Ao)
J~O

b(x - to,) + Q(T0)
j ~o b[ x -

~
(to,j + tl,)].

Derivation of a possible parascholzite structure

The subsequent application of the translation t, t, i to the corresponding
symmetrically equivalent positions of T and A yields the enantiomorphic
equivalent of the idealized structure of parascholzite (see Fig. 2a). The
monoclinic cell is C-centered. This can be understood by studying the
Figure 2 series. The cell vectors ap, bp, cp of parascholzite and its enantio-
morphic equivalent can be calculated by a linear combination of those of
the subcell of scholzite:

(1) ap = a - GJc
bp = b
cp = c
[Jp = 90°+ tan-I (i cia)

respectively,

(2) ap' = a - mc
bp' = b
cp' = -c
[Jp, = 90° + tan-I (t cia)

if the conventional orientation of the axes is used. Table 1 shows the
calculated values by Eq. (2) and comparison the measured values of
Sturman, Rouse and Dunn (1981).
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Fig. 2a. The derivation of the enantiomorphic equivalent of the parascholzite structure
from the idealized substructure of scholzite.

Fig. 2b. The derivation of the parascholzite structure from the enantiomorphic equivalent

of the idealized structure of scholzite. Reference was made to scholzite by using -Z
instead of Z' = - Z. A circle represents the asymmetric unit of parascholzite or its
symmetrical equivalent if the space group Cc is assumed.

The idealized asymmetric unit of parascholzite is identical with that of
the substructure of scholzite if parascholzite is assumed to have the space
group C2/c. The component A has a symmetry center at i, i, 136referred

to the coordinate system of the orthorhombic subcell of scholzite. Further-
more, there are mirrors at z = /6; f~, a twofold screw axis parallel to



Table 2. Derived atom coordinates of parascholzite from the idealized coordinates of the
substructure of scholzite.

Scholzite, Pben Parascholzite, C 21e

Atom
X y Z Xp YP zp

Zn 3 1 3 3 1
0.017IT 2" 16 IT 2"

P 7 3 7 7 3 0.82520 16 16 20 16
Ca 0

3 1
0 3

0.758 4 8
01

7 1 7 7 1
0.89116 20 16 16 20

02
3 1 7 7 1

0.70316 20 16 16 20
03

3 4 2 3 4
0.98920 25 16 20 25

04
1 3 7 1 3 0.620 20 16 20 20

05
7 6 4 7 6

0.012520 20 16 25 25
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Table 1. Derived values of the lattice constants of parascholzite from the substructure of
scholzite.

Scholzite
substructure
(Taxer, 1975)

Parascholzite
Relation to lattice constants
of substructure of scholzite

Computed
values

Hagendorf
measured values,
(Sturman, Rouse
and Dunn, 1981)

A = 17.149 [A]
B = 7.412 [A]
C = 6.667 [A]

17.863 [A]

7.412 [A]

6.667 [A]
106.25'

17.864 [A]

7.422 [A]

6.674 [A]
106.45°

[010] at x, z = i, ?6and a twofold axis parallel to [100] at y, Z = 0, 136in
addition to those in the substructure of scholzite. So the layer
group of this layer is P (~)~~. So for deriving the initial atom coordinates

hem

for the asymmetric unit of parascholzite there is nothing else to do but to
transform the orthorhombic coordinates of the idealized asymmetric unit
of scholzite into those of the monoclinic axes. If parascholzite has no
symmetry center, then Cc is the space group as shown in Figure 2b.

The initial coordinates of parascholzite are calculated by the following
equations with the coordinates of the asymmetric unit the subcell of
scholzite:

(3)
=y
=~x+z.4
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Fig. 3. Representation of the layer units T and U
(a) Projection of Tonto (001)
(b) Projection of U onto (001).

The representation of the enantiomorphic equivalent of parascholzite
with orthorhombic coordinates is drawn in Figure 2a. Bartl and Taxer
(manuscript in preparation) have confirmed this structure by measurements
of the X-ray diffraction intensities (R = 0.035 for structure factors of 1050
reflections).

Derivation of the possible polytypes of the scholzite compound

Let us consider another decompoistion of the idealized substructure of
scholzite into a set of equivalent layers which will be a powerful means of
deriving all polytypes of this compound and for finding out whether this
compound has an OD structure built up by a set of equivalent layers. The
partial structure within the lower half-cell 0::;; x ::;;t will be designated by
T, the other half-cell within the limits t::;; x < 1 will be designated by U'.
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If U' is shifted by -t, -t, -~ above the lower half-cell all atoms coincide
except the calcium atoms; U' b[x - (-t, -t, -~)] is denoted U. T and U
can be transformed into each other by a mirror perpendicular to (001) at
z = ?6; 1~. From this transformation only the calcium atoms change their

positions, A has the same position in both, T and U. So T is the
enantiomorphic equivalent of U and vice versa. T is the union of r and A,
so T= rUA (see Fig. 3).

The application of the OD theory requires a definition of layers,

Li' i= -00 ..., 0, ... + 00, as building units with a set of atoms being
unshared by the neighboring layer.

In this compound L is periodic in the directions band c. Both layers,
U and T, have the thickness aa = a12. The plane group of both layers, U
and T, is P (1) c 1. This determines the ),-symmetry of the layers. Let us
first assume La to be T.

By application of the translation t, t, i we get an adjacent layer

Ll = La 6[x - Ct, t, i)]. Another possibility of getting an adjacent
layer Ll is applying the n-glide plane parallel to (001) at z = t, ~upon La =
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Table 3. Possible V-type layers and T-type layers in L.

n Un= z-coordinates of the Tn= z-coordinates of the
U S(x - 0, calcium positions TS(x-O, calcium atoms in T
0, n i) in 1/16th of c 0, ni) in 1/16th of c

(x, Y= 0, ~Ix, y
= 0, i) (x,y=o,ilx,y=o,i)

° Uo 10 I 2 To 4 I 12
1 U! 4 I 12 T! 10 I 2
2 U2 14 I 6 T2 ° I 8
3 U3 8 I ° T3 6 I 14
4 U4 2 I 10 T4 12 I 4
5 Us 12 I 4 Ts 2 I 10
6 U6 6 I 14 T6 8 I 0
7 U7 ° I 8 T7 14 I 6

T, then Lj = U'. So we can get for Lj either a T-type layer or aU-type
layer depending on the defined a--symmetry. T-type layer of U-type layer
means that only a translation is necessary to transform the considered layer
into Tor U, respectively. If La is assumed to be U then the translation
}, }, ~ yields a U-type layer L; the n-glide plane at z =~, ~ would yield a
T-type layer L. The sequence of the layers of type T parallel to the direc-
tion [100] each shifted by t, t, i against the preceding one yields the very
probable structure of parascholzite, the sequence of the layers of type U
parallel to [100] shifted against the preceding one by to to i yields the
enantiomorphic equivalent of the parascholzite structure. The subsequent
application of the reflection at the n-glide plane parallel to (001) on La =
T yields the layer type sequence - T - U - T - U - ... in the [100] direction
which is the idealized substructure of scholzite.

Let us denote Pi = b[x - (i/2, mod(i, 2)/2, 0)] with i being an integer
indexing the ith layer and Urn= Ub{x - [0,0, i mod (m . 5, 8)]}and Trn=
l' is{x - [0, 0, i mod (m 3, 8)]} with 0 < m < 7. Remember that we refer to
the lattice constant A = a and not to aa = a12. Since the calcium atoms are
situated on boundary positions and determine the layer of the set U = {Urn,
m = 0,1, ..., 7} or of the set T= {Trn,m = 0,1, ..., 7}, we have taken their
z-coordinates in /6 of c as characterization of U and T in Table 3.

Building up any layer sequence in the direction [100] we note from left
to right the layers - La - Ll ... - Li - Li + 1 - '"

e.g. - Tz - T3 - U6-
U7 - where again for shortness it has been assumed that each Urnor Trn
with m = 0, ..., 7 has been convoluted with Pi with i being the actual layer
index. In Fig. 4 two examples are demonstrated. - Each Urnin layer Li has
to be followed by Up with p = mod(m + 1, 8) if the next layer shall be one
of type U; the corresponding holds for T. If Tn is followed by Urn,m has to
be chosen so that in both, Tn and Urn,the calcium atoms have the same
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Table 4. Some arrangements of V- and T-type layers being possible polytypes of the scholzite compounds or twins.

Label Arrangement of layers of type T and V parallel [100]
(all indices are to be taken as modulo S,
so 0::; n ::; 7, fl is any positive integer, n + fl = mod(n + fl, S)
all Vand T have been folded by Pi, i is the layer index)

Space group
(highest
possible
symmetry)

Lattice vector am as a linear
combination of a, B, C

- Vn - Vn+ 1- a - ic

2 -Tn-Tn+l-

3

4

5 -Vn- Te-n- T10-n- Vn-1- TlO-nTll-n
- Tn - Ve-n - VIO-n - Tn-I - VlO-n - Vll-n

- Vn - Te-n - ... - Te-n+n - Vn-n - Te-n+n - Te-n+2n

fl is any positive odd integer

example: fl = 3

-~-~-~-~-~-~-~-~-~-~-

6 - Vn - Vn+1 - Ts-n - .., - TS-n+" - Vn-n+1 - Vn-n+2
-T7-n+n - T7-n+2n-
2::; fl(even)

example: fl = 2

- VI - V2 - T7 - To - TI - Vo - VI - To - TI - T2-

7 - Vn - Vn+1 - Ts-n - ... Ts-n+n- with fl:::: 3 (odd)

example: fl = 3

- V3 - V4 - Ts - T6 - T7 - To

and so on

C 2/c

C 2/c

Phcn

Pbcn

C 2/c
C 2/c

C 2/c

Cc

Pc

a-ic

a

(fl + l)a

3a - tc
3a - ic

(fl + 2)a - imod(2fl5,S)c

5a - ic

(fl + 3)a - {1 - imod[mod(10 - 2fl,S)5,S]} . c

5a - tc

(fl + 3)a/2 + imod{mod[(l - fl),S]5,S}c

3 a - ~c
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z-coordinates. For determinating m with m = 0, 1, ..., 7 it is convenient to
use Table 3. Now we can fill up Table 4 by a series of certain periodic layer
sequences which may be discussed as being or not being arrangements of
maximal degree of order so representing probable resp. improbable
polytypes of the compound. Their lattice constants bm and Cmare equal to
Band c of scholzite, am is characteristic for each of these hypothetical
polymorphs. a . sinf3m is equal to or a multiple of A = a of scholzite. The
use of this collection is to get an impression of what is likely to be a
polymorph, a twin, nearly a parallel growth or an arrangement which tends
to the state of disorder. The greater am the more improbable is the existence
of crystallites or of domains consisting completely of the considered
"polytype". The observations of Sturman, Rouse and Dunn (1981) concern-
ing especially the syntaxial intergrowth of scholzite and parascholzite con-
firm these statements.

Order - disorder

The OD theory of OD structures of layers of one kind requires a set of
equivalent layers and also a set of equivalent pairs of layers for assigning
an OD groupoid to the considered compound. Since T and V are the
enantiomorphic equivalents of each other, all layers in any layer sequence
are equivalent to each other. But unfortunately this does not imply that
all pairs of layers are equivalent to each other. Since there is no opera-
tion which could transform a pair - V - V - into a pair - V - T - or
- T - V - the second condition is not fulfilled in the general case, since,
if one chooses to explain the streaks by stacking disorder, the V-type layers
and T-type layers have to follow each other arbitrarily. Therefore, it was
assumed that the scholzite compound has an OD structure consisting of
two kinds of layers. To recognize this, the layers T and V have to be
decomposed into two layers, respectively; one of them has the composition
A and the other the composition r. Let us agree that the layers L2n have
the composition A and the layers L2n + 1 have the composition r. Let us
further assume that Lo contains the subcomponent A of T or V. The
O'-operations, which transform the layer Lo into L2, may be either a translation
t, t + i or a two-fold screw axis 2,1/[001], r = + 2 . tat xy = t, t; t, 0
etc., or a glide plane nl. 1II(001) or a two-fold axis 211[010]at x = 0; t and
z = t; i or i; t or a glide plane c,II(100), r = ::t i . 2 at x = 0; t etc. all
referred to the orthorhombic coordinate system a = ascholzite,B = bscholzite/3,
C = Cscholzite'Further, let LI contain the subcomponent r of V'. The
following O'-operations for transforming LI into L3 (i.e. the layer with the
calcium atoms into the next "calcium layer") can be derived from the
O'-operations 0.20'and 2,40'.For instance, if 0,20'and 2,40'are twofold screw
axes 2,1/[001], r = ::t2 . t then 1,30' may be also a twofold screw axis
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2s//[001]at xy = i, t with s = h -1 + ira, Z + i rZ,4)' If the translations
are the CT-operations o,zCTand Z,4CT,then [,3CT= i (O,ZCT + Z,4CT),etc. The
following CT-operations

[
for transforming L[ into L3 are possible, but in

general they are not present simultaneously:

2d/[010] at x = i, z = 0 or t6
2d/[100] at y = i, z = i or 1~
2r//[001] at xy = i, 0 and i, 1,

with r = 2 . (::1::i ::1::i - 1) . i
nl,l//(OOO at z = t, i or -10,[96
nl,r//(100)atx=i, r=-2'(::1::i::1::i).i
and the translations l i, r with r = ::1::i or r = O.

If L [ contains the subcomponent r of T there is a corresponding set of
parameters and positions of these symmetry elements. To a compound with
an OD structure consisting of two kinds of layers an Ehresmann groupoid
can be assigned. Due to the different operations which may not exist
simultaneously there are several possibilities of getting an Ehresmann
groupoid; one only will be given as an example.

The Ehresmann groupoid consists of two groupoids, one for all layers
LZn with A or its symmetrical equivalents:

(0 P (~)~Z-' with r=1;'2 and s=i.2
h, em

[(cs) 1 2]

and the other for all layers LZn + [ containing r or its symmetrical
equivalents:

(2) PO) c 1
[ (2z) 2[2r] r = 0 or t (referred to ao = a/2 although all Lzn + [

have the thickness 0 since each of them needs only
a plane, but not more than a thickness of less or
equal /z a so that the slum of the thicknesses of LZn
and LZn+ [ is a/2, and so references for ao = a/2
make sense)

Final remarks

Studying the idealized substructure of scholzite one realizes that both, a
stacking ambiguity and the arrangement of the atoms in components of
the substructure could admit symmetry elements which may not occur

1 In chapter 2 "The stacking ambiguity" only one possibility of a-operations was
mentioned. There the layer T was decomposed into two components A and r. In this
chapter it was decomposed into two different layers. Formally there is a great difference
between these two decompositions.
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simultaneously. Both properties allow a behaviour of good compatibility
to changes in the environment (e.g. a replacement of an atom by another
one.) - The method of finding the stacking disorder principle (stacking
ambiguity) is not straight-forward, but the results are reliable due to the
reconsideration and fulfilment of the crystal chemical requirements.
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