The crystal structure of $\mathbf{B i O C l}$

K. G. Keramidas, G. P. Voutsas, and P. I. Rentzeperis

Applied Physics Laboratory Aristotle University of Thessaloniki, Thessaloniki, Greece
Received: January 29, 1992

Crystal structure / Ferroelectric / Subject classification: 61.60

Abstract

The crystal structure of BiOCl has been redetermined with 3570 observed reflections of which 174 were unique measured on a computer controlled Philips PW 1100 single crystal diffractometer. The structure belongs to the tetragonal space group $P 4 / \mathrm{nmm}$ and the cell constants, obtained by a least-squares calculation from direct θ-value measurements on the diffractometer, are $a=3.8870(5)$ and $c=7.3540(5) \AA$.

The positional and thermal parameters, with anisotropic temperature factors, were refined by full-matrix least-squares calculations to a final $R=9.17 \%$.

Each Bi atom is eight-coordinated by 4 O and 4 Cl atoms at distances of $2.316 \AA$ and $3.059 \AA$ respectively thus forming a decahedron. The faces of the decahedron are 2 rectangles ($\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ and $\mathrm{Cl}-\mathrm{Cl}-\mathrm{Cl}-\mathrm{Cl}$) with sides $3.487 \AA$ and 8 isosceles triangles (four $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ and four $\mathrm{Cl}-\mathrm{O}-\mathrm{Cl}$) with sides $\mathrm{O}-\mathrm{Cl} 3.249 \AA$ and $\mathrm{O}-\mathrm{O}$ or $\mathrm{Cl}-\mathrm{Cl} 3.487 \AA$.

The decahedra are linked to each other by a common $\mathrm{O}-\mathrm{Cl}$ edge along the a and b axes in infinite layers.

Introduction

The crystal structure of BiOCl has been determined within the framework of a general program for accurate structure determination of compounds
 Te and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$. A reliable structural model was necessary for the

[^0]Table 1. Crystal data for BiOCl .
BiOCl
Tetragonal

Space group:	$P 4 / n m m$	F.W. $=260.432$
a	$3.887 \AA$	Z
c	$7.354 \AA$	$\varrho_{\text {calc }}=2$
c	$111.15 \AA^{3}$	$\varrho_{\text {meas }}=7.784 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
V	$0.71069 \AA$	μ
$\lambda\left(\mathrm{Mo} K_{\alpha}\right)$		$=799.322 \mathrm{~cm}^{-1}$

explanation of the interesting physical properties (optical, ferroelectric, etc.) of the group.

Most of the structural data for BiOCl and generally for BiOX compounds ($\mathrm{X}=$ Halogen) given in the literature are from the work of Bannister and Hey $(1934,1935)$. Their structure investigation was carried out by means of photographic methods, and none of these articles describe the structure in detail. For this reason a new structure refinement work was undertaken recently by a number of investigators and by ourselves.

Experimental

Pure, lightly transparent, faint yellow, very thin, plates of BiOCl were prepared by heating a high purity mixture of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and BiCl_{3} in stoichiometric proportion in an evacuated ($10^{-6} \mathrm{Torr}$) quartz tube to $820^{\circ} \mathrm{C}$ and gradually cooling to room temperature. A small single crystal, with dimensions $0.6 \times 0.6 \times 0.02 \mathrm{~mm}$, was selected and centred on a Philips PW-1100 four-cycle single crystal diffractometer in our Laboratory. The cell constants were refined by a least-squares procedure. The final values for the unit cell are given in Table 1.

Three-dimensional intensity data were measured with Mo $\mathrm{K} \alpha$ radiation monochromated with a graphite monochromator. In view of the very large linear absorption coefficient ($799.3 \mathrm{~cm}^{-1}$) and the shape of the crystal (very thin plate) an exact absorption calculation was out of question. Ψ-scanning data were taken and worked out.

Determination of the structure and refinement

An approximate structural model for BiOCl , obtained from the isostructural BiOBr (Ketterer and Kramer, 1986), was used as a staring point. Each atom ($\mathrm{Bi}, \mathrm{O}, \mathrm{Cl}$) occupies a special position with multiplicity 2.

The structure was refined using the EHELX76 program (Sheldrick, 1976).

Table 2. Fractional atomic coordinates (\AA) and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for BiOCl .

Name	x	y	z	$B_{\mathrm{cq}}{ }^{*}$
Bi	$1 / 4$	$1 / 4$	$0.1714(3)$	0.995
O	$1 / 4$	$3 / 4$	0	2.464
Cl	$1 / 4$	$1 / 4$	$0.6459(25)$	1.536

* $B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} \bar{a}_{i} \bar{a}_{j} a_{i}^{*} a_{j}^{*}$

Fig. 1. Clinographic projection of the unit cell of BiOCl .

Structure factor calculation using the starting parameters with individual isotropic temperature factors gave $R=14.35 \%$.

Refinement was carried out by full-matrix least-squares, with unit weight to all reflections. The function minimised in the least-squares refinement was $\Sigma w\left(F_{o}-F_{c}\right)^{2}$. Final $\Delta / \sigma(I)_{\max }=0.012$ and $\left(\Delta(\varrho)_{\max } / \Delta(\varrho)_{\min }=\right.$ $6.23 /-13.46 \mathrm{e}^{-3}$). The atomic scattering factors were taken from the International Tables for X-ray Crystallography vol. III (1974). The final R factor with all atoms refined anisotropically was $9.17 \% .^{1}$

[^1]

Fig. 2. (a) Interatomic distances in the coordination polyhedra around Bi. (b) Clinographic projection of the coordination polyhedron around Bi .

Description of the structure and discussion

All the atoms of the asymmetric unit lie on special positions, $4 m m$ or $\overline{4} m 2$ (cf. Table 2). As shown in the clinographic projection of Fig. 1, each Bi atom is eight-coordinated by four O atoms at distances of $2.316 \AA$ and four Cl atoms at distances of $3.059 \AA$ in the form of an asymmetric dekahedron. The faces of the dekahedron are 2 rectangles $(\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{Cl}-\mathrm{Cl}-\mathrm{Cl}-$ $\mathrm{Cl})$ with sides 2.749 and $3.487 \AA$ respectively, which are parallel to the (110) plane and 8 isosceles triangles (four $\mathrm{Cl}-\mathrm{O}-\mathrm{Cl}$, with sides $\mathrm{O}-\mathrm{Cl} 3.249 \AA$ and $\mathrm{Cl}-\mathrm{Cl} 3.487 \AA$ and four $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ with sides $\mathrm{O}-\mathrm{Cl} 3.249 \AA$ and O-O $2.749 \AA$. The decahedra are linked to each other by a common $\mathrm{O}-\mathrm{Cl}$ edge along the a and b axes forming infinite layers.

Fig. 2 shows also the coordination of O and Cl . Each O atom is linked to four Bi atoms at distances $2.316 \AA$, forming a tetragonal pyramid with

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in BiOCl .

$\mathrm{Bi}-\mathrm{O}$		$2.3165(12)$			$\mathrm{Bi}-\mathrm{Cl}$		3.059(8)			
$\mathrm{O}-\mathrm{Bi}-\mathrm{Oa}$		114.07(9)			$\mathrm{O}-\mathrm{Bi}-\mathrm{Cld}$		72.90(24)			
$\mathrm{O}-\mathrm{Bi}-\mathrm{Ob}$		$72.78(4)$			$\mathrm{O}-\mathrm{Bi}-\mathrm{Cl}$		140.43(11)			
$\mathrm{O}-\mathrm{Bi}-\mathrm{Oc}$		72.78 (4)			$\mathrm{Cl}-\mathrm{Bi}-\mathrm{Cla}$		78.88(18)			
$\mathrm{O}-\mathrm{Bi}-\mathrm{Cl}$		72.90 (24)			$\mathrm{Cl}-\mathrm{Bi}-\mathrm{Cld}$		78.88(18)			
$\mathrm{O}-\mathrm{Bi}-\mathrm{Cla}$		140.53(11)			$\mathrm{Cl}-\mathrm{Bi}-\mathrm{Cle}$		127.9(4)			
Symmetry code										
a	x	-1.000	+y	z	b	1.000	$-x$	1.000	$-y$	$-z$
c	$-x$	1.000	$-y$	$-z$	d	-1.000	$+x$		y	z
e -1.000	$+x$	-1.000	+ y	z						

the O atom at its apex $(\mathrm{Bi}-\mathrm{Bi} 3.87 \AA)$. Also each Cl atoms forms with the neighbouring Bi atoms $(\mathrm{Cl}-\mathrm{Bi} 3.059 \AA) \mathrm{A}$ tetragonal pyramid with the Cl atom at its apex.

Neighbouring decahedra form layers along (001) which are connected by common $\mathrm{O}-\mathrm{Cl}$ edges. Neighbouring layers of decahedra are connected by common $\mathrm{O}-\mathrm{O}$ or $\mathrm{Cl}-\mathrm{Cl}$ edges.

The coordination polyhedra in this structure are different from those found in the structures of chalcohalogenides of the same general formula $\mathrm{A}_{\mathrm{m}}^{\mathrm{V}} \mathrm{B}_{\mathrm{n}}^{\mathrm{Vl}} \mathrm{X}_{\mathrm{p}}^{\mathrm{VII}}$ with $\mathrm{B}=\mathrm{S}, \mathrm{Se}$, TeI (Rentzeperis, 1991). In these structures the coordination polyhedra are octahedra or composite 7 -coordination polyhedra, but never a decahedron. For example in BiTeI (Keramidas, Voutsas, Papazoglou and Rentzeperis, 1991), each Bi atom is octahedrally coordinated by three Te and three I atoms. The octahedra are linked to each other by a common $\mathrm{Te}-\mathrm{I}$ edge along the a and b axes, forming infinite layers.

In the structure of BiSeCl (Voutsas and Rentzeperis, 1980) each Bi atom is connected to three Cl atoms which form the base of a triangular pyramid. The average $\mathrm{Bi}-\mathrm{Cl}$ distance in this structure $(\langle\mathrm{Bi}-\mathrm{Cl}\rangle=3.147 \AA)$ agrees well with those found in the present structure $(\mathrm{Bi}-\mathrm{Cl}=3.059 \AA)$.

In the $\mathrm{CoSO}_{4}-\mathrm{Bi}_{2} \mathrm{O}_{3}$ system (Fanariotis and Rentzeperis, 1991) the average $\mathrm{Bi}-\mathrm{O}$ distance $(\langle\mathrm{Bi}-\mathrm{O}\rangle=2.33 \AA)$ agrees well with the $\mathrm{Bi}-\mathrm{O}$ bonds in the present structure $(\mathrm{Bi}-\mathrm{O}=2.3165 \AA)$. Here four O atoms and a Bi atom form a square pyramid with the Bi atom at its apex.

References

Bannister, F. A., Hey, M. H.: The crystal structure of the bismuth oxyhalides. Nature 134 (1934) 855.
Bannister, F. A., Hey, M. H.: The crystal structure of the bismuth oxyhalides. Mineral. Mag. 24 (1935) 49-58.

Fanariotis, I. A., Rentzeperis, P. J.: Crystal growth and X-ray investigation of the layered bismuth oxide sulfate in the $\mathrm{CoSO}_{4}-\mathrm{Bi}_{2} \mathrm{O}_{3}$ system. Z. Kristallogr. 194 (1991) 261 265.

Ibers, J. A., Hamilton, W. C.: International Tables for X-Ray Crystallography, vol. IV, p. 72. Birmingham: The Kynoch Press (1974).

Keramidas, K. G., Voutsas, G. P., Papazoglou, A., Rentzeperis, P. I.: The crystal structure of BiTeI. Z. Kristallogr. 204 (1993) 89-94.
Ketterer, J., Kramer, V.: Structure refinement of bismuth oxide bromide BiOBr. Acta Crystallogr. C42 (1986) 1098-1099.
Sheldrick, G. M.: SHELX-76. Program for crystal structure determination, Univ. of Cambridge, England 1976
Voutsas, G. P., Rentzeperis, P. I.: The crystal structure of the paraelectric bismuth thiochloride BiSCl. Z. Kristallogr. 152 (1980) 109-118.

[^0]: Correspondence with: Prof. P. I. Rentzeperis, Applied Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.

[^1]: ${ }^{1}$ Additional material to this paper can be ordered from the Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, FRG. Please quote reference no. CSD 55527, the names of the authors and the title of the paper.

