2015 ZAPISKI RMO (PROCEEDINGS OF THE RUSSIAN MINERALOGICAL SOCIETY) Pt CXLIV, N 3

НОВЫЕ МИНЕРАЛЫ, КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА МИНЕРАЛОВ

УДК 549.464 + 548.736 (571.66)

© Д. чл. И. В. ПЕКОВ, * д. чл. С. В. КРИВОВИЧЕВ, ** д. чл. Н. В. ЧУКАНОВ, *** В. О. ЯПАСКУРТ, * д. чл. Е. Г. СИДОРОВ****

АВДОНИНИТ: НОВЫЕ ДАННЫЕ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА. И УТОЧНЕННАЯ ФОРМУЛА К.Сu.cl.(OH). · 2H.O

^{**} Московский государственный университет, геологический факультет, 119991, Москва, Воробьевы горы;

e-mail: igorpekov@mail. ru

** Санкт-Петербургский государственный университет, кафедра кристаллографии, 199034, Санкт-Петербург, Университетская наб., 7/9

*** Институт проблем химической физики РАН, 142432 Московская обл., Черноголовка **** Институт вулканологии и сейсмологии ДВО РАН, 683006, Петропавловск-Камчатский, б-р Пийпа, 9

В статье охарактеризованы новые находки авдонинита в отложениях активных фумарол Второго шлакового конуса Северного прорыва Большого трещинного Толбачинского извержения (вулкан Толбачик, Камчатка). Для этого минерала впервые решена кристаллическая структура, что позволило достоверно определить его пространственную группу и метрику элементарной ячейки, уточнить формулу [K₂Cu₅Cl₈(OH)₄ · 2H₂O], произвести корректное индицирование порошковой рентгенограммы. Авдонинит моноклинный, пр. гр. $P_{2_1/c}$, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, $\beta = 91.104(6)^\circ$, V = 891.8(3) Å³, Z = 2. Кристаллическая структура минерала решена на монокристалле, R_1 [$F > 4\sigma(F)$] = 0.063. Ее основа — слои из медь-оксохлоридных комплексов [Cu₅Cl₈(OH)₄]²-, расположенные параллельно плоскости (100). Между этими слоями находятся катионы K⁺ и молекулы H₂O.

Ключевые слова: авдонинит, оксохлорид меди, кристаллическая структура, фумарола, вулкан Толбачик, Камчатка.

I. V. PEKOV,* S. V. KRIVOVICHEV,** N. V. CHUKANOV,*** V. O. YAPASKURT,* E. G. SIDOROV.**** AVDONINITE: NEW DATA, CRYSTAL STRUCTURE AND REFINED FORMULA K₂Cu₅Cl₈(OH)₄·2H₂O

* Moscow State University, Moscow ** Saint Petersburg State University, Saint Petersburg *** Institute of Problems of Chemical Physics RAS, Chernogolovka **** Institute of Volcanology and Seismology, Far East Branch of RAS, Petropavlovsk-Kamchatsky

New finds of avdoninite in the deposits of active fumaroles at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia, are reported. The crystal structure of the mineral, unknown before, is studied, its space group and unit cell parameters are determined at the first time, its formula is refined as $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$ and its powder X-ray diffraction pattern is correctly indiced. Avdoninite is monoclinic, $P2_1/c$, a =

Таблица 1

= 11.592(2), b = 6.5509(11), c = 11.745(2) Å, $\beta = 91.104(6)^{\circ}$, V = 891.8(3) Å³ and Z = 2. The crystal structure is solved from single-crystal X-ray diffraction data and converged to R_1 [$F > 4\sigma$ (F)] = = 0.063. It is based upon layers consisting of copper-oxochloride complexes [Cu₅Cl₈(OH)₄]²⁻ coplanar to the (100) plane. The K⁺ cations and H₂O molecules are located in the interlayer.

Key words: avdoninite, copper oxochloride, crystal structure, fumaroles, Tolbachik volcano, Kamchatka.

введение

Авдонинит был описан в качестве нового минерала в 1998 году в образцах из двух уральских колчеданных месторождений, где он возник как техногенное новообразование — на отвалах рудника, отрабатывавшего Дегтярское месторождение (Средний Урал), и на карьере, разрабатывавшем месторождение Блява (Южный Урал). Для него был определен химический состав (катионы и хлор), получены порошковая рентгенограмма, термограмма, ИК-спектр, оптические константы, изучены химические свойства (Бушмакин, Баженова, 1998). Однако авдонинит не был признан в качестве минерала, в соответствии с правилами, принятыми в начале 1990-х годов Международной минералогической ассоциацией (ММА) в отношении веществ, возникших в результате хозяйственной деятельности человека, как искусственных (т. е. полученных намеренно), так и техногенных — таких, получение которых не было целью, но они тем не менее образовались в ходе химических процессов, инициированных человеком. Характеризуя техногенный авдонинит, А. Ф. Бушмакин и Л. Ф. Баженова (1998) высказали предположение, что он вполне может быть найден в продуктах фумарольной деятельности на вулканах, где развиты хлориды меди и калия, например на Толбачике (Камчатка).

Это предположение подтвердилось спустя всего лишь несколько лет: авдонинит был обнаружен М. Н. Мурашко в составе богатой медной минерализации в активной фумароле Ядовитая на Втором шлаковом конусе Северного прорыва Большого трещинного Толбачинского извержения (СП БТТИ) 1975—1976 гг. По результатам изучения этого материала, имеющего несомненно природное происхождение, авдонинит в 2005 году был утвержден Комиссией по новым минералам и названиям минералов ММА в качестве самостоятельного минерального вида, IMA No. 2005-046 (Чуканов и др., 2006).

В то же время этот минерал оставался недостаточно изученным. Так, его кристаллическая структура не была определена по причине низкого качества кристаллов. Более того, не удалось получить даже монокристальных рентгенографических данных, а параметры элементарной ячейки в обеих цитированных выше работах рассчитаны только по порошкограммам и существенно различаются между собой. А. Ф. Бушмакин и Л. Ф. Баженова (1998) дают моноклинную ячейку с такими параметрами: a = 23.25(2), b = 5.78(1), c = 12.84(1) Å, $\beta = 95.69(3)^\circ$, V = 1717 Å³, Z = 4, и вычисленную плотность $D_x = 2.89$ г/см³. В работе Н. В. Чуканова с соавторами (2006) из порошковой рентгенограммы, очень близкой к порошкограмме, приведенной авторами оригинального описания, но отличающейся в части нескольких рефлексов (в том числе на ней отсутствует отражение с d = 12.74 Å: табл. 1), рассчитаны такие параметры моноклинной (предполагаемая пространственная группа P2/m, Pm или P2) ячейки: a = 24.34(2), b = 5.878(4), c = 11.626(5) Å, $\beta = 93.3(1)^\circ$, V = 1660.6(20) Å³, Z = 4, а $D_x = 3.066$ г/см³ (при $D_{rray} = 3.03$ г/см³).

Порошковые рентгенодифракционные данные для авдонинита

X-ray powder diffraction data for avdoninite

	1		2		3		4	
I _{изм}	<i>d</i> _{изм} , Å	I _{изм}	<i>d</i> _{изм} , Å	І _{изм}	<i>d</i> _{изм} , Å	I _{выч} *	d _{изм} , Å	~ hkl
8	12 741							
100	11.540	100	11.63	100	11.64	100	11 500	100
13	5.848	20	5 88	30	5 881	27	5 871	100
14	5.773	27	5.80		5,001	7	5 795	200
		17	5.73	2.5	5 742	23	5 721	011
3	5.271	4	5.29	9	5 285	6	5 279	102
11	5.104	12	5.12	30	5 121	25	5 111	111
2	4.077				4.085	1.2	4 085 4 072	202 112
7 :	3.854	7	3.868	7	3.870	4	3 863	300
				5	3.517	2	3 514	212
1	3.353	2	3.360	5	3 363	2	3 360	013
		2	3.340	-			5.500	,015
2	3.269	2	3.277	11	3.280	5	3 275	020
		3	3.246	12	3.247	6	3.242	113
12	3.210	2	3.222	14	3.221	13	3.216	311
2	3.182			. 5	3.190	5	3 188	311
11	3.046	15	3.052	26	3.053	30	3 048	121
9	2.923	10	2.930	15	2.931	16	2 928	213
		2	2.905	4	2.912	4	2.916	312
4	2.867	2	2.880	5	2.880	5	2.875	312
5	2.828			14	2.830	9	2.873	104
4	2.770			7	2.779	3.2	2.777 2.771	$\frac{104}{221}$ 122
5	2.635			8	2.642	7	2 639	$\overline{204}$
3	2.612			6	2.620	1	2.618	$\frac{204}{402}$
7	2.572	6	2,579	11	2.579	2.6	2.575 2.555	411 222
8	2.553	5	2.560	12	2.563	6 7	2 556 2 555	313 222
10	2.511	19	2.518	11	2.520	10	2 515	313
7	2.450	4	2.462	14	2.461	11.10	2 461 2 450	123 321
1	2.395			4	2.404	1	2 399	412
15	2.310	17	2.321	14	2.319	3.14	2 318 2 316	500 304
		4	2.315	5	2.308	12	2.309	$\overline{3}22$
		4	2.284	2	2.270	2	2.294	223
		12	2.243	-		-	0.07	225
		4	2,184			1	2.184	314
5	2.169	4	2.175	4	2.181	2.2	2.177 2.170	413 502
3	2.152			3	2.156	1.1	2.155 2.154	511 124
5	2.137	4	2.145	5	2.146	-2.3	2.141, 2.140	511, 421
2	2.115			4	2.120	4	2.118	323
2	2.080	2	2.085	2	2.086	3	2.082	$\frac{1}{4}04$
6	2.041	8	2.047	7	2.047	2.8	2.045. 2.043	422.404
		2	2.042			-,~	,2.0.15	
1	2.010			2	2.015	2	2.011	231
1 .	1.931	3	1 935	2	1.937	1 1	1 936 1 934	106 315

	1		2		3		4	1.1.1
I _{изм}	d _{изм} , Å	І _{изм}	d _{изм} , Å	І _{изм}	d _{изм} , Å	I _{выч} *	d _{изм} , Å	пкі
5	1.908			5	1.912	3,5	1.910, 1.909	4 23,025
4	1.886			3	1.889	3	1.886	423
2	1.862			2	1.867	1, 2	1.865, 1.863	206, 521
6	1.834			3	1.836	5	1.837	504
5	1.822			3	1.829	2	1.825	611
1	1.803			3	1.807	1,1	1.804, 1.804	225, 332
3	1.773			4	1.777	1,3	1.775, 1.773	216, 415
1	1.727			2	1.732	2	1.728	4 31
2	1.692			1	1.695	1	1.693	523
1	1.678		:	2	1.682	3	1.680	026
2	1.660			2	1.664	2,2	1.663, 1.659	613, 126
2	1.626			3	1.629	1,2	1.628, 1.622	$\overline{6}04,041$
2	1.613			2	1.616	2	1.614	117
2	1.605			2	1.607	3	1.605	117
2	1.592			2	1.597	2	1.594	622
				2	1.589	1	1.586	515
				3	1.576	1	1.572	531
				3	1.560	2	1.557	217
4	1.540			4	1.544	3	1.541	712
1	1.520			3	1.524	2	1.520	242
				2	1.496	2	1.493	027
1	1.462			3	1.464	2,3	1.463, 1.460	$\bar{3}42, \bar{1}08$
1	1.426			3	1.430	1,2	1.427, 1.426	722, 440
				2	1.422	2	1.421	144
5	1.407			4	1.411	4	1.408	811
3	1.399			3	1.404	1,1	1.401, 1.401	811, 327
				1	1.368	1,1	1.368, 1.363	$\overline{6}25, \overline{6}33$
2	1.287			3	1.290	2	1.288	900

Таблица 1 (продолжение)

Таблица 2

6

8

Химический состав авдонинита (мас. %)

Chemical composition of avdonininte (wt %)

Компонент	1	2	3	4
K	9.96	9.91	10.16	9.98
Cu	40.26	41.08	39.98	40.55
Zn			0.57	
C1	36.07	37.07	36.37	36.19
0	(12.19)	10.14	(12.30)	12.25
Н	(1.02)	0.77	(1.03)	1.03
Сумма	99.50*	98.97	100.41	100.00
Форм	ульные коэфф	ициенты, расчет	на (K+Cu+Zn+C	Cl) = 15
K.	2.00	1.955	2.01	2
Cu	4.99	4.985	4.91	5
Zn		·	0.07	
C1	8.01	8.06	8.01	8

Примечание. 1 — Блява, Ю. Урал (мокрый химический анализ: Бушмакин, Баженова, 1998); 2 — фумарола Ядовитая, Толбачик, Камчатка (электронно-зондовые данные, а для H₂O — метол Пенфильда: Чуканов и др., 2006); 3 — фумарола Главная Теноритовая, Толбачик (наши электронно-зондовые данные); 4 — теоретический состав для K₂Cu₅Cl₈(OH)₄·2H₂O. В скобках в ан. 1 и 3, где не определялось содержание H₂O, взяты расчетные значения, соответствующие 6 атомам O и 8 атомам H в идеализированой формуле K₂Cu₅Cl₈(OH)₄·2H₂O. *В оригинале (Бушмакин, Баженова, 1998) дано содержание H₂O 13.71 мас. %, рассчитанное по разности, а также приведены данные пересчета этого анализа на 100 % после вычета 3.8 мас. % H₂O, отнесенных по термогравиметрическим данным к адсорбированной воде: К 10.35, Cu 41.84, Cl 37.49, H₂O 10.32, сумма 100.00 мас. %.

4.88

5.91

6

0

Н

6

авторами с вычетом части H_2O , отнесенной по термогравиметрическим данным к адсорбированной воде. Именно после этой процедуры идеализированная формула минерала приняла вид $K_2Cu_5Cl_8(OH)_4$, тогда как дефицит суммы анализа в исходном виде соответствует двум молекулам H_2O на формулу: $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$ (табл. 2).

В ходе полевых работ 2012—2013 гг. на вулкане Толбачик одним из авторов настоящей статьи (И. В. П.) установлено, что авдонинит является достаточно обычным компонентом сульфатно-хлоридных и хлоридно-сульфатных инкрустаций в активных фумаролах Второго конуса СП БТТИ, причем две фумаролы — Главная Теноритовая и Пятно — содержат этот минерал в значительных количествах. Здесь были найдены и совершенные кристаллы авдонинита, на одном из которых, происходящем из фумаролы Главная Теноритовая, впервые решена кристаллическая структура этого минерала, что позволило однозначно решить вопросы с его формулой, симметрией и метрикой элементарной ячейки.

Условия нахождения и образования авдонинита в фумаролах вулкана Толбачик. Шлаковые конуса СП БТТИ, возникшие в 1975 г. к югу от вулкана Плоский Толбачик (Большое..., 1984), и сегодня проявляют заметную фумарольную активность, которая еще усилилась после извержения Плоско-

Пр и мечание. 1—Блява, Ю. Урал (дифрактометр ДРОН-2, Fe K_{α} -излучение: Бушмакин, Баженова, 1998); 2— фумарола Ядовитая, Толбачик, Камчатка (дифрактометр ДРОН-2, Со K_{α} -излучение: Чуканов и др., 2006); 3— фумарола Главная Теноритовая, Толбачик (наши данные); 4— порошкограмма, вычисленная из структурных данных, приведенных в настоящей работе. Курсивом выделены отражения, очевидно принадлежащие примесным фазам. * Включены только рефлексы с $I_{вкну} \ge 1$.

Соответственно индексы *hkl* для большинства рефлексов порошкограммы в этих работах оказались разными.

Второе расхождение касается формулы авдонинита. А. Ф. Бушмакин и Л. Ф. Баженова (1998) дали ее в виде $K_2Cu_5Cl_8(OH)_4$, а Н. В. Чуканов с соавторами (2006) — $K_2Cu_5Cl_8(OH)_4 \cdot H_2O$. Если соотношения К, Си и Сl продемонстрировали хорошее совпадение (табл. 2), и количество OH-групп, необходимых для достижения баланса зарядов в формуле, тоже не вызвало разногласий, то данные по содержанию молекулярной воды для камчатского (результаты определения методом Пенфильда) и уральского (расчет по дефициту суммы анализа после определения содержаний К, Си и Cl) образцов не совпали. Добавило разночтений и то, что в работе (Бушмакин, Баженова, 1998) результаты химического анализа были дополнительно пересчитаны ее

Рис. 1. Отдельные кристаллы (*a*) и друзовый сросток кристаллов (*б*) авдонинита, наросшие на базальтовый шлак.

Фумарола Главная Теноритовая, Второй шлаковый конус Северного прорыва Большого трещинного Толбачинского извержения (вулкан Толбачик, Камчатка). РЭМ-фотографии во вторичных электронах.

Fig. 1. Separate crystals (a) and the crystal cluster (δ) of avdoninite crystals overgrowing the basalt scoria. SEM (SE) image.

го Толбачика, произошедшего в 2012-2013 гг. В верхних частях Первого и Второго конусов наблюдаются выходы газов с температурой до 450-480 °С, которые в настоящее время более чем на 99 % состоят из воздуха, а оставшаяся часть представлена водяным паром и кислотными компонентами, в первую очередь CO₂, HCl и HF (Zelenski et al., 2012). На Втором шлаковом конусе CП БТТИ, имеющем объем около 0.1 км³ и высоту 300 м, находятся наиболее богатые проявления фумарольной медной минерализации (Набоко, Главатских, 1983; Вергасова, Филатов, 1993; наши данные). Одно из самых ярких среди них — фумарола Главная Теноритовая, расположенная в западном борту крупной контракционной трещины, известной как Микрограбен, в привершинной части Второго конуса. Эта фумарола была вскрыта и детально изучена нами в ходе работ 2012-2014 гг. Относящиеся к ней выходы газов располагаются на участке площадью около 4.2×1.7 м, большая часть которого имеет температуру 350—360 °С (данные наших измерений, проведенных с помощью хромель-алюмелевой термопары) уже на глубине около 0.2 м от дневной поверхности, и здесь развиты только безводородные минералы. Среди них преобладают гематит, тенорит и сульфаты: крашенинниковит KNa₂CaMg(SO₄)₃F, эвхлорин KNaCu₃O(SO₄)₃, долерофанит Cu₂O(SO₄)₂, халькокианит CuSO₄, англезит и ангидрит.

В северной краевой части фумаролы нами обнаружена линзовидная зона протяженностью 1.5 м и мощностью до 0.2 м с существенно сульфатно-хлоридной минерализацией, имеющей очень своеобразный состав. Наиболее разнообразны здесь хлориды, преобладающие также и по массе: беллоит CuCl(OH), авдонинит, сильвин, галит, карналлит KMgCl₃ · 6H₂O, эриохальцит CuCl₂ · 2H₂O, митчерлихит K₂CuCl₄ · 2H₂O и открытые в 2013—2014 гг. сангвит KCuCl₃ (IMA No. 2013-002), хризоталлит K₆Cu₆Tl³⁺Cl₁₇(OH)₄ · H₂O (IMA No. 2013-008), меллицинкалит K₃Zn₂Cl₇ (IMA No. 2014-010) и романорловит K₈Cu₆Cl₁₇(OH)₃ (IMA No. 2014-011). Кроме хлоридов присутствуют гипс, хлоротионит K₂Cu(SO₄)Cl₂, каинит KMg(SO₄)Cl · 3H₂O и более ранние гематит, тенорит и халькокианит. Все эти минералы формируют корки, массивные и кавернозные агрегаты, целиком или частично заполняя обильные «пузыри» в базальтовом шлаке, трещины, а также полости между обломками шлака и вулканическими бомбами. Температура, измеренная нами в этой зоне сразу после ее вскрытия, составляет около 110 °С.

Авдонинит — один из самых распространенных минералов сульфатно-хлоридной зоны фумаролы Главная Теноритовая. Он образует здесь ярко-зеленые корочки и мелкокристаллические скопления площадью до нескольких квадратных сантиметров, тесно ассоциируя со всеми перечисленными выше минералами. На стенки открытых полостей нарастают его таблитчатые кристаллы до 0.1 мм в поперечнике, отдельные (рис. 1, *a*) или же собранные в друзовые сростки (рис. 1, δ).

В отличие от более горячей (350—360 °C) оксидно-сульфатной зоны, где не встречено ни одного H-содержащего минерала, здесь хлориды и сульфаты с OH-группами и/или молекулярной водой (авдонинит, беллоит, гипс, карналлит, каинит, эриохальцит, митчерлихит, хризоталлит, романорловит) преобладают над безводородными как по массе, так и по разнообразию. Этот факт и относительно невысокая (110 °C) температура говорят о том, что сульфатно-хлоридная минеральная ассоциация в этой зоне фумаролы в основном сформировалась не в результате прямого осаждения из газа, а путем взаимодействия такого газа, очевидно, содержащего HCl, с более ранними минералами возгонов при участии атмосферного водяного пара. Температура образования этих минералов, включая авдонинит, очевидно, не была высокой: скорее всего, в пределах 110—150 °C.

Такое предположение согласуется с данными об условиях нахождения авдонинита в фумароле Ядовитая, где образцы с этим минералом были отобраны из частично остывших участков, подвергшихся воздействию атмосферного воздуха, но не контактировавших с водой. Авдонинит здесь тесно ассоциирует с двумя OH-содержащими хлоридами меди — беллоитом и паратакамитом Cu₂Cl(OH)₃, а иногда дает псевдоморфозы по безводному собственно эксгаляционному оксихлориду меланоталлиту Cu₂OCl₂ (Чуканов и др., 2006). В фумароле Пятно в парагенезисе с авдонинитом нами встречены беллоит, хлоротионит, эриохальцит, атакамит Cu₂Cl(OH)₃, галит, кренкит Na₂Cu(SO₄)₂· 2H₂O, натрохальцит NaCu₂(SO₄)₂[(H₂O)(OH)], антлерит Cu₃(SO₄)(OH)₄ и гипс.

Химический состав и порошковая рентгенография. Химический состав (катионы и хлор) авдонинита из фумаролы Главная Теноритовая (табл. 2) определен с помощью сканирующего электронного микроскопа Jeol JSM-6480LV, оснащенного энергодисперсионным спектрометром INCA-Energy 350 (окно ATW-2). Ускоряющее напряжение 20 кВ, ток зонда 1 нА, диаметр зонда 5 мкм. Эталоны: микроклин (K), CuFeS₂ (Cu), ZnS (Zn) и NaCl (Cl). В катионной части наш образец отличается от ранее изученных только небольшой примесью цинка, очевидно замещающего медь. Содержание воды прямым методом не определялось, а рассчитано из структурных данных (см. ниже). Получившаяся при этом сумма анализа 100.41 мас. % свидетельствует о корректности данных.

Рентгенографическое исследование порошка авдонинита из фумаролы Главная Теноритовая выполнено на дифрактометре Rigaku R-AXIS Rapid II с цилиндрическим IP детектором (монохроматизированное CoK_{α} -излучение; геометрия Дебая—Шеррера). По порошкограмме наш и ранее изученные образцы минерала очень близки (табл. 1).

Рис. 1. Отдельные кристаллы (*a*) и друзовый сросток кристаллов (*б*) авдонинита, наросшие на базальтовый шлак.

Фумарола Главная Теноритовая, Второй шлаковый конус Северного прорыва Большого трещинного Толбачинского извержения (вулкан Толбачик, Камчатка). РЭМ-фотографии во вторичных электронах.

Fig. 1. Separate crystals (a) and the crystal cluster (δ) of avdoninite crystals overgrowing the basalt scoria. SEM (SE) image.

го Толбачика, произошедшего в 2012-2013 гг. В верхних частях Первого и Второго конусов наблюдаются выходы газов с температурой до 450-480 °С, которые в настоящее время более чем на 99 % состоят из воздуха, а оставшаяся часть представлена водяным паром и кислотными компонентами, в первую очередь CO₂, HCl и HF (Zelenski et al., 2012). На Втором шлаковом конусе СП БТТИ, имеющем объем около 0.1 км³ и высоту 300 м, находятся наиболее богатые проявления фумарольной медной минерализации (Набоко, Главатских, 1983; Вергасова, Филатов, 1993; наши данные). Одно из самых ярких среди них — фумарола Главная Теноритовая, расположенная в западном борту крупной контракционной трещины, известной как Микрограбен, в привершинной части Второго конуса. Эта фумарола была вскрыта и детально изучена нами в ходе работ 2012-2014 гг. Относящиеся к ней выходы газов располагаются на участке площадью около 4.2×1.7 м, большая часть которого имеет температуру 350—360 °С (данные наших измерений, проведенных с помощью хромель-алюмелевой термопары) уже на глубине около 0.2 м от дневной поверхности, и здесь развиты только безводородные минералы. Среди них преобладают гематит, тенорит и сульфаты: крашенинниковит KNa₂CaMg(SO₄)₃F, эвхлорин KNaCu₃O(SO₄)₃, долерофанит $Cu_2O(SO_4)_2$, халькокианит CuSO₄, англезит и ангидрит.

В северной краевой части фумаролы нами обнаружена линзовидная зона протяженностью 1.5 м и мощностью до 0.2 м с существенно сульфатно-хлоридной минерализацией, имеющей очень своеобразный состав. Наиболее разнообразны здесь хлориды, преобладающие также и по массе: беллоит CuCl(OH), авдонинит, сильвин, галит, карналлит KMgCl₃ · 6H₂O, эриохальцит CuCl₂ · 2H₂O, митчерлихит K₂CuCl₄ · 2H₂O и открытые в 2013—2014 гг. сангвит KCuCl₃ (IMA No. 2013-002), хризоталлит K₆Cu₆Tl³⁺Cl₁₇(OH)₄ · H₂O (IMA No. 2013-008), меллицинкалит K₃Zn₂Cl₇ (IMA No. 2014-010) и романорловит K₈Cu₆Cl₁₇(OH)₃ (IMA No. 2014-011). Кроме хлоридов присутствуют гипс, хлоротионит K₂Cu(SO₄)Cl₂, каинит KMg(SO₄)Cl · 3H₂O и более ранние гематит, тенорит и халькокианит. Все эти минералы формируют корки, массивные и кавернозные агрегаты, целиком или частично заполняя обильные «пузыри» в базальтовом шлаке, трещины, а также полости между обломками шлака и вулканическими бомбами. Температура, измеренная нами в этой зоне сразу после ее вскрытия, составляет около 110 °C.

Авдонинит — один из самых распространенных минералов сульфатно-хлоридной зоны фумаролы Главная Теноритовая. Он образует здесь ярко-зеленые корочки и мелкокристаллические скопления площадью до нескольких квадратных сантиметров, тесно ассоциируя со всеми перечисленными выше минералами. На стенки открытых полостей нарастают его таблитчатые кристаллы до 0.1 мм в поперечнике, отдельные (рис. 1, *a*) или же собранные в друзовые сростки (рис. 1, *б*).

В отличие от более горячей (350—360 °C) оксидно-сульфатной зоны, где не встречено ни одного H-содержащего минерала, здесь хлориды и сульфаты с OH-группами и/или молекулярной водой (авдонинит, беллоит, гипс, карналлит, каинит, эриохальцит, митчерлихит, хризоталлит, романорловит) преобладают над безводородными как по массе, так и по разнообразию. Этот факт и относительно невысокая (110 °C) температура говорят о том, что сульфатно-хлоридная минеральная ассоциация в этой зоне фумаролы в основном сформировалась не в результате прямого осаждения из газа, а путем взаимодействия такого газа, очевидно, содержащего HCl, с более ранними минералами возгонов при участии атмосферного водяного пара. Температура образования этих минералов, включая авдонинит, очевидно, не была высокой: скорее всего, в пределах 110—150 °C.

Такое предположение согласуется с данными об условиях нахождения авдонинита в фумароле Ядовитая, где образцы с этим минералом были отобраны из частично остывших участков, подвергшихся воздействию атмосферного воздуха, но не контактировавших с водой. Авдонинит здесь тесно ассоциирует с двумя OH-содержащими хлоридами меди — беллоитом и паратакамитом Cu₂Cl(OH)₃, а иногда дает псевдоморфозы по безводному собственно эксгаляционному оксихлориду меланоталлиту Cu₂OCl₂ (Чуканов и др., 2006). В фумароле Пятно в парагенезисе с авдонинитом нами встречены беллоит, хлоротионит, эриохальцит, атакамит Cu₂Cl(OH)₃, галит, кренкит Na₂Cu(SO₄)₂ · 2H₂O, натрохальцит NaCu₂(SO₄)₂[(H₂O)(OH)], антлерит Cu₃(SO₄)(OH)₄ и гипс.

Химический состав и порошковая рентгенография. Химический состав (катионы и хлор) авдонинита из фумаролы Главная Теноритовая (табл. 2) определен с помощью сканирующего электронного микроскопа Jeol JSM-6480LV, оснащенного энергодисперсионным спектрометром INCA-Energy 350 (окно ATW-2). Ускоряющее напряжение 20 кВ, ток зонда 1 нА, диаметр зонда 5 мкм. Эталоны: микроклин (K), CuFeS₂ (Cu), ZnS (Zn) и NaCl (Cl). В катионной части наш образец отличается от ранее изученных только небольшой примесью цинка, очевидно замещающего медь. Содержание воды прямым методом не определялось, а рассчитано из структурных данных (см. ниже). Получившаяся при этом сумма анализа 100.41 мас. % свидетельствует о корректности данных.

Рентгенографическое исследование порошка авдонинита из фумаролы Главная Теноритовая выполнено на дифрактометре Rigaku R-AXIS Rapid II с цилиндрическим IP детектором (монохроматизированное CoK_{α} -излучение; геометрия Дебая—Шеррера). По порошкограмме наш и ранее изученные образцы минерала очень близки (табл. 1).

Кристаллографические данные и параметры уточнения кристаллической структуры авдонинита

Crystallographic data and parameters of refinement of the avdoninite crystal structure

Кристаллографические данные	
Сингония	Моноклинная
Пространственная группа	$P2_1/c$
Параметры элементарной ячейки a, b, c (Å), β (°)	11.592(2), 6.5509(11), 11.745(2), 91.104(6)
Объем элементарной ячейки (Å ³)	891.8(3)
Ζ	2
Вычисленная плотность (г/см ³)	2.918
Коэффициент поглощения (мм ⁻¹)	7.541
Размер кристалла (мм ³)	0.12×0.08×0.03
Параметры сбора данных	
Интервал углов 20	1.73—29.00°
Интервал значений h, k, l	$-15 \rightarrow 17, -8 \rightarrow 8, -16 \rightarrow 9$
Всего рефлексов	10454
Независимые рефлексы (R _{int})	2338 (0.045)
Независимые рефлексы с $F > 4\sigma$ (F)	1860
Параметры уточнения	
Метод уточнения	Полноматричный МНК по F^2
Весовые коэффициенты <i>a</i> , <i>b</i>	0.1162, 15.383
Коэффициент экстинкции	0.016(2)
$R_1[F > 4\sigma(F)], wR_2[F > 4\sigma(F)]$	0.063, 0.213
R_1 по всем данным, wR_2 по всем данным	0.083, 0.236
S	1.191
$\rho_{\max}, \rho_{\min}, e^{\cdot} \text{ Å}^{-3}$	1.928, -1.571

Кристаллическая структура. Эксперимент. Кристалл авдонинита, отобранный для съемки, был изучен на дифрактометре Bruker APEX II в Ресурсном центре рентген-дифракционных исследований Санкт-Петербургского государственного университета. Более полусферы дифракционных данных было собрано с использованием Мо K_{α} -излучения и сканирования по ω с шагом 0.5° и 60-секундной экспозиции. Данные были проинтегрированы в программе *APEX2*. Поправка на поглощение вводилась полуэмпирическим методом. Структура была решена прямыми методами и уточнена в комплексе программ *SHELXTL*. Атомы водорода локализовать не удалось. Основные кристаллографические данные и параметры уточнения приведены в табл. 3, координаты атомов и параметры атомных смещений — в табл. 4. Табл. 5 содержит основные длины связей.

Результаты. Кристаллическая структура авдонинита аналогична структуре его синтетического аналога $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$, описанного в работе (Kahlenberg, 2004). В ней имеет место один симметрично независимый атом калия, координированный двумя молекулами воды и шестью ионами Cl-(рис. 2). С точки зрения координации катионов наиболее интересной является смешанная оксохлоридная координация атомов меди (Krivovichev et al., 2012). Атом Cu1 имеет квадратную *транс*-координацию [2O+2Cl], которая дополнена двумя удлиненными связями Cu—Cl с образованием октаэдриче-

Таблица 4

		Координаты а	чтомов и парам	етры атомны.	х смещений (Å	2) для кристал	пической стр	уктуры авдони	анита	
			Atom co.	ordinates and	displacement pa	arameters (Å ²)	for avdoninite			
Atom	24	y	N	$U_{\rm eq}$	U_{11}	U22	U ₃₃	U ₂₃	U_{13}	U_{12}
К	0.9172(3)	0.0906(5)	0.6769(3)	0.0433(8)	0.0296(14)	0.0506(18)	0.0495(18)	-0.0012(15)	-0.0016(12)	0.0028(12)
Cul	1/2 2/	1/2	0	0.0176(4)	0.0186(8)	0.0191(8)	0.0150(8)	-0.0022(6)	0.0007(6)	0 0035(6)
Cu2	0.71701(11)	0.4997(2)	0.80297(12)	0.0216(4)	0.0148(6)	0.0251(7)	0.0251(7)	0.0046(5)	0.0017(5)	0.0016(4)
Cu3	0.48746(10)	0.33730(17)	0.74100(11)	0.0164(4)	0.0192(6)	0.0122(6)	0.0178(6)	-0.0002(4)	-0.0018(4)	-0.0019(4)
GE	0.3608(2)	0.5905(4)	0.8643(2)	0.0201(5)	0.0177(10)	0.0219(11)	0.0207(11)	0.0021(9)	0.0009(8)	0.0008(8)
CI2	0.3742(2)	0.3481(4)	0.5787(2)	0.0234(6)	0.0269(12)	0.0205(11)	0.0225(13)	0.0008(9)	-0.0056(9)	0.0006(0)
C13	0.8534(2)	0.3594(6)	0.9126(3)	0.0383(8)	0.0223(13)	0.056(2)	0.0369(17)	0.0151(14)	-0.0030(11)	0.0072(12)
ĊĮć	0.8386(3)	0.6119(6)	0.6727(3)	0.0409(8)	0.0239(13)	0.059(2)	0.0402(17)	0.0160(15)	0.0063(11)	-0.0041(13)
IHO	0.5829(6)	0.5825(10)	0.7056(6)	0.0160(13)	0.016(3)	0.012(3)	0.020(3)	-0.002(3)	0.00001	(CI)1-00.0
OH2	0.5855(6)	0.3565(10)	0.8831(6)	0.0174(13)	0.021(3)	0.014(3)	0.017(3)	0.003(3)	0.001(3)	-0.000(2)
H_2O_3	0.9279(13)	0.8808(19)	0.8808(19)	0.063(3)	0.068(8)	0.046(6)	0.073(9)	-0.011(6)	0.008(7)	-0.006(6)

Таблица 5

межатомные расстояния (А) в кристаллической структуре	Лежатомные расстояния	(Å)) B	кристаллической	структуре	авдонинита
---	-----------------------	-----	-----	-----------------	-----------	------------

Interatomic distances	(Å)) in	the	crystal	structure	of	avdoninite
-----------------------	-----	------	-----	---------	-----------	----	------------

tallographic data and p	2.789(14)	Cu2 OH1	1 000/7)
	2.789(14)	Cu2 OH1	1 000/7
K—H ₂ O3		Cu2—Oni	1.988(7)
K-H ₂ O3	2.989(15)	Cu2—OH2	2.036(7)
K—C13	3.194(5)	Cu2—Cl3	2.219(3)
K—C11	3.250(4)	Cu2—Cl4	2.225(3)
K-C13	3.253(4)	Cu2—Cl2	2.884(3)
K-C14	3.266(5)		
K-C14	3.311(5)	Cu3—OH1	1.966(7)
KC13	3.375(5)	Cu3—OH1	1.999(7)
		Cu3—OH2	2.005(7)
Cu1—OH2	1.950(7)2×	Cu3—Cl2	2.295(3)
Cu1—Cl1	2.323(2)2×	Cu3—Cl1	2.662(3)
Cu1—Cl2	2.869(3)2×	Cu3—Cl1	2.705(3)

Рис. 2. Координация катионов в кристаллической структуре авдонинита Fig. 2. Coordination of cations in the crystal structure of avdoninite.

Рис. 3. Медь-оксохлоридный тетрамер в кристаллической структуре авдонинита (*a*) и его представление в виде «пустого» тетраэдра из атомов меди (*б*).

Fig. 3. Copper-oxochloride tetramer in the avdoninite crystal structure (a) and its representation as an 'empty' tetrahedron of copper atoms (δ).

ской координации, искаженной согласно эффекту Яна—Теллера. Похожую координацию имеет атом Cu3, который в экваториальной плоскости окружен тремя группами OH⁻ и одним ионом Cl⁻ с образованием квадрата [CuO₃Cl]. Еще два иона Cl⁻ дополняют координацию атома Cu3 до октаэдрической. В отличие от атомов Cu1 и Cu3 позиция Cu2 имеет тетрагонально-пирамидальную координацию [(2O+2Cl)+Cl].

В основе кристаллической структуры авдонинита лежит строительный блок, представляющий собой тетраэдрический тетрамер, состоящий из четырех атомов меди, координированных группами OH⁻ и ионами Cl⁻ (рис. 3). Заметим, что подобные кластеры имеют место в кристаллических структурах атакамита, клиноатакамита и анатакамита — трех полиморфов Cu₂(OH)₃Cl (Malcherek, Schlüter, 2009). В структурах этих минералов тетраэдры Си₄ связываются по вершинам, образуя каркас кристобалитового типа. В структуре авдонинита тетраэдрические тетрамеры также соединяются по вершинам, образуя слои, параллельные плоскости (100) (рис. 4, а). Идеализированное представление этого слоя (рис. 4, б) показывает, что тетраэдры Си₄, объединяясь вершинами, формируют слой из гексагональных колец, который можно рассматривать как вырезку из кристобалитового каркаса. Интересно, что кристаллическая структура меланоталлита Cu₂OCl₂ — минерала, при изменении которого, в частности, образуется в фумаролах Толбачика авдонинит, основана на каркасе того же кристобалитового типа, но из оксоцентрированных тетраэдров OCu₄ (Krivovichev et al., 2002).

Слои из медь-оксохлоридных комплексов [Cu₅Cl₈(OH)₄]²⁻ расположены параллельно плоскости (100). Между этими слоями находятся катионы K⁺ и молекулы H₂O (рис. 5).

Fig. 4. Layer of copper-oxochloride tetramers in the avdoninite crystal structure (a) and its representation in terms of 'empty' Cu_4 tetrahedra (δ).

Рис. 5. Кристаллическая структура авдонинита как состоящая из слоев координационных полиэдров меди с ионами К⁺ и молекулами H₂O в межслоевом пространстве.

Fig. 5. Crystal structure of avdoninite as consisted of layers of coordination copper polyhedra with K^+ ions and H_2O molecules in the interlayer space.

Рис. 6. ИК-спектр авдонинита с Толбачика.

Fig. 6. IR spectrum of avdoninite from the Tolbachik volcano.

Инфракрасная спектроскопия. ИК-спектр авдонинита (рис. 6) в области О—Н-валентных колебаний содержит четыре полосы, две из которых (при 3598 и 3540 см⁻¹) соответствуют слабым водородным связям и, скорее всего, относятся к группам ОН⁻. Две другие полосы в этой области (сильная при 3430 см⁻¹ и плечо около 3250 см⁻¹) отвечают водородным связям средней силы, и логично предположить, что они относятся к молекулам воды, у которых по меньшей мере один из атомов водорода образует водородную связь с кислородом (более сильным, чем хлор, акцептором), что должно способствовать поляризации обеих связей О—Н и приводить к увеличению коэффициентов экстинкции полос О—Н-валентных колебаний.

Полоса деформационных колебаний Н—О—Н расщеплена на две компоненты (при 1616 и 1601 см⁻¹). Поскольку эта мода невырожденная, расщепление однозначно указывает на существование двух локально неэквивалентных состояний молекулы воды в структуре авдонинита, что, скорее всего, связано с динамическими факторами (например, реориентацией этих молекул между двумя локально-равновесными состояниями).

В области деформационных колебаний Си…О—Н наблюдаются четыре полосы. Поскольку группы ОН занимают в структуре две позиции, этот факт говорит о том, что образуемые ими водородные связи не просто бифуркированные (т. е. обслуживаются двумя акцепторами при одном фиксированном положении водорода), но водород перескакивает между двумя положениями. Учитывая, что хлор — довольно слабый акцептор Н-связи, можно предположить, что энергетический барьер таких перескоков низкий.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Итак, авдонинит является природным аналогом синтетической фазы $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$, структура которой изучена Ф. Каленбергом (2004). Об этом однозначно свидетельствует очень близкое совпадение порошковой рентгенограммы, вычисленной из структурных данных для нашего образца из фумаролы Главная Теноритовая, с экспериментальными порошкограммами этого и обоих ранее изученных образцов авдонинита (табл. 1). Порошковая рентгенограмма, рассчитанная для синтетического $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$

по данным из работы (Kahlenberg, 2004), аналогична нашей вычисленной. Опираясь на эти данные, можно считать, что рефлексы на ранее опубликованных порошкограммах авдонинита, которых нет на расчетной порошкограмме (выделены курсивом в табл. 1), скорее всего, отвечают механическим примесям: это отражение с d = 12.74 Å на рентгенограмме образца из Блявы и рефлексы с d = 3.340, 2.243 и 2.042 Å у образца из фумаролы Ядовитая. Допустить, что фазы, существенно (в разы) различающиеся по числу молекул воды на формулу, могут давать столь близкие рентгенограммы, трудно.

Вероятно, занижение количества H_2O для образца из фумаролы Ядовитая (табл. 2) было связано с объективной проблемой анализа методом Пенфильда соединений, содержащих наряду с водой большое количество другого летучего компонента — хлора. О «недоопределении» воды в этом образце косвенно говорит и несколько заниженная сумма анализа (Чуканов и др., 2006). Что же касается образца из Блявы, то авторы работы (Бушмакин, Баженова, 1998), скорее всего, допустили ошибку в интерпретации термогравиметрических данных, сочтя часть воды не структурной, а адсорбированной, и пересчитав в соответствии с этим свой анализ, выполненный, как показывают наши расчеты, великолепно: именно исходные, а не пересчитанные данные четко отвечают структурно обоснованной формуле минерала $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$. К сожалению, проверить свои результаты в части количества электронейтрального компонента (H_2O) каким-либо надежным независимым методом при отсутствии данных о структуре минерала авторы этих работ в то время не могли.

ЗАКЛЮЧЕНИЕ

Таким образом, в результате настоящей работы:

— охарактеризованы новые находки авдонинита и условия его образования в фумаролах;

— впервые решена кристаллическая структура этого минерала, достоверно определены его пространственная группа и метрика элементарной ячейки, оказавшиеся отличными от тех, что предполагались ранее из анализа порошковых рентгенографических данных;

---- впервые опубликована корректная порошковая рентгенограмма авдонинита: проиндицированная на основе структурных данных и не содержащая посторонних рефлексов;

— уточнена формула минерала: $K_2Cu_5Cl_8(OH)_4 \cdot 2H_2O$.

Благодарности. Работа выполнена при поддержке Российского научного фонда, гранты № 14-17-00048 (в части электронно-микроскопических и спектроскопических исследований) и 14-17-00071 (в части структурных исследований). Рентгеновское изучение минерала осуществлено на оборудовании ресурсного центра «Рентгенодифракционные методы исследования» СПбГУ.

Список литературы

Большое трещинное Толбачинское извержение, Камчатка, 1975—1976 / Под ред. С. А. Федотова. М.: Наука, **1984.** 637 с.

Бушмакин А. Ф., Баженова Л. Ф. Авдонинит К₂Cu₅Cl₈(OH)₄ — новый минерал из зоны техногенеза уральских колчеданных месторождений // Уральский минералогический сборник. **1998.** № 8. С. 32—39. Вергасова Л. П., Филатов С. К. Минералы вулканических эксгаляций — особая генетическая группа (по материалам Толбачинского извержения 1975—1976 гг.) // ЗВМО. 1993. № 4. С. 68—76.

Набоко С. И., Главатских С. Ф. Постэруптивный метасоматоз и рудообразование: Большое трещинное Толбачинское извержение 1975—1976 гг. на Камчатке. М.: Наука, **1983.** 166 с.

Чуканов Н. В., Мурашко М. Н., Задов А. Е., Бушмакин А. Ф. Авдонинит К₂Cu₅Cl₈(OH)₄ · 2H₂O — новый минерал из вулканических эксгаляций и зоны техногенеза колчеданных месторождений // ЗРМО. **2006.** № 3. С. 38—42.

References

Bushmakin A. F., Bazhenova L. F. Avdoninite, $K_2Cu_5Cl_8(OH)_4$, a new mineral from the zone of technogenesis at Urals massive sulfide ore deposits. Uralskiy Mineralogicheskiy Sbornik. **1998.** N 8. P. 32—39 (*in Russian*).

Chukanov N. V., Murashko M. N., Zadov A. E., Bushmakin A. F. Avdoninite, $K_2Cu_5Cl_8(OH)_4$ H_2O , a new mineral from volcanic exhalations and from the zone of technogenesis at massive sulfide ore deposits. Zapiski RMO (Proc. Russian Miner. Soc). 2006. Vol. 135. IV 3. P. 38–42. (in Russian).

Kahlenberg V. On the crystal structure of $K_2Cu_5Cl_8(OH)_4 \cdot 2(H_2O)$. Zeit. Anorg. Allgem. Chemic. 2004. Vol. 630. P. 900–903.

Krivovichev S. V., Filatov S. K., Burns P. C. The cuprite-like framework of OCu₄ tetrahedra in the crystal structure of synthetic melanothallite, Cu₂OCl₂, and its negative thermal expansion. Canad. Minner. **2002.** Vol. 40. P. 1185–1190.

Krivovichev S. V., *Filatov S. K.*, *Vergasova L. P.* The crystal structure of ilinskite, Na- $Cu_5O_2(SeO_3)_2Cl_3$, and review of mixed-ligand CuO_mCl_n coordination geometries in minerals and inorganic compounds. Miner. Petrol. **2012.** Vol. 107. P. 235–242.

Malcherek T., Schlüter J. Structures of the pseudo-trigonal polymorphs of Cu₂(OH)₃Cl. Acta Crystallographica. **2009.** Vol. B65. P. 334—341.

Naboko S. I., Glavatskikh S. F. Post-Eruptive Metasomatism and Ore Genesis: the Great Tolbachik Fissure Eruption of 1975–1976 at Kamchatka. Moscow: Nauka, **1983**. 165 p. (*in Russian*).

The Great Tolbachik Fissure Eruption, Kamchatka, 1975—1976. Ed. by S. A. Fedotov. Moscow: Nauka, **1984.** 637 p. (*in Russian*).

Vergasova L. P., Filatov S. K. Minerals of volcanic exhalations — a new genetic group (after the data of Tolbachik volcano eruption in 1975—1976). Zapiski VMO (Proc. Russian Miner. Soc.). **1993.** Vol. 122. N 4. P. 68—76 (*in Russian*).

Zelenski M. E., Zubkova N. V., Pekov I. V., Polekhovsky Yu. S., Pushcharovsky D. Yu. Cupromolybdite, Cu₃O(MoO₄)₂, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. Eur. J. Miner. **2012.** Vol. 24. P. 749–757.

Поступила в редакцию 10 декабря 2014 г.