N. V. ZUBKOVA,* I. V. PEKOV,* N. V. CHUKANOV,** A. V. KASATKIN,***
D. A. KSENOFONTOV,* V. O. YAPASKURT,* S. N. BRITVIN,****
D. Yu. PUSHCHAROVSKY.* REDEFINITION OF LEMANSKIITE:
NEW MINERALOGICAL DATA, CRYSTAL STRUCTURE
AND REVISED FORMULA NaCaCu5(AsO4)4Cl·3H2O

** Moscow State University, Moscow, Russia

** Institute of Problems of Chemical Physics RAS, Moscow, Russia

*** Fersman Mineralogical Museum, RAS, Moscow, Russia

**** Saint Petersburg State University, Saint Petersburg, Russia

Refinement of the crystal structure of lemanskiite (R = 0.019), studied for the first time, has allowed redefining this mineral: to carry out refinement of its formula; redefine crystal system, space group and parameters of its unit-cell. X-ray powder diffraction pattern of lemanskiite has been correctly identified, the IR spectrum was obtained for its pure sample — free from pollutions by other phases. It is shown that lemanskiite is not a dimorph of lavendulan NaCaCu₅(AsO₄)₄Cl·5H₂O but contains less H₂O in comparison with the latter. Studied sample of lemanskiite has been picked up from the oxidation zone of Perseverancia deposit (Guanaco, Antofagasta, Chile). Its empirical formula is Na_{0.98}(Ca_{0.98}Sr_{0.03})_{Σ1.01}Cu_{5.07}As_{3.97}O_{15.97}Cl_{1.03}·3H₂O. The idealized formula of lemanskiite may be written as NaCaCu₅(AsO₄)₄Cl·3H₂O. The mineral is monoclinic, $P2_1/m$, a = 9.250(2), b = 10.0058(10), c = 10.0412(17) Å, $\beta = 97.37(3)^\circ$, V = 921.7(3) Å³, Z = 2. Lemanskiite represents a new structure type in the lavendulan group. Crystal structure of lemanskiite is based on the heteropolyhedral layers built by clusters of four distorted Cu-centered tetragonal pyramids, linked by edges, and eight AsO₄ tetrahedra connected also with the Cu-centered squares not involved in the clusters. Na-centered trigonal prisms and Ca-centered seven-fold polyhedra, connected with heteropolyhedral layers from both sides of each layer, are linked in the interlayer space by shared edges.

Key words: lemanskiite, lavendulan, lavendulan group, arsenate, crystal structure, oxidation zone, Perseverancia mine, Chile.