НОВЫЕ МИНЕРАЛЫ

УДК 549.656.2

© Л. А.ПАУТОВ, * А. А. АГАХАНОВ, Е. В. СОКОЛОВА**

ШИБКОВИТ К(Са, Мп, Na) $_2$ ($K_{2-x}\Box_x$) $_2$ Zn $_3$ Si $_{12}$ O $_{30}$ — НОВЫЙ МИНЕРАЛ ГРУППЫ МИЛАРИТА!

L. A. PAUTOV, A. A. AGAKHANOV, E. V. SOKOLOVA. SHIBKOVITE $K(Ca, Mn, Na)_2 (K_{2-x}\Box_x)_2Zn_3Si_{12}O_{30}$ — THE NEW MINERAL FROM THE MILARITE GROUP

* Ильменский заповедник, Музей, 456301, Миасс ** Московский университет, 119899, Москва, Воробьевы Горы

The mineral has been found in the pegmatite clode at the moraine of Dara-i-Pioz glacier (Garmsky district, Northern Tadjikistan) in association with quartz, microcline, albite, aegirine, polylithionite, reedmergnerite, sogdianite, pyrochlore, eudialyte group minerals and others. Its segregations are 0.01-0.05 mm in size. White or colourless, with vitrous lustre. Hardness 5.5-6.0 Mohs, VHN 609 kg/mm^2 . Density 2.89 (measured), 2.90 g/cm^3 (calc.). The mineral is uniaxial, with weak biaxiality, optically positive; $n_o = 1.561 (2)$, $n_c = 1.563 (2)$. Chemical composition corresponds to the following idealized formula: K(Ca,Mn,Na)₂(K_{2-x} \Box_x)₂Zn₃Si₁₂O₃₀. Hexagonal crystal system, P6/mcc space group. Unite cell parameters: a = 10.505 (1), c = 14.185 (3), z = 2. Data on IR spectrum, X-ray powder diffraction, crystalline structure of the mineral are presented in the paper also. In general, shibkovite is a Zn-Ca-K silicate with twinned silica-oxygen milarite group rings. It is named in the memory of two prominent Russian geologists: Viktor Sergeevitch Shibkov (1926—1992) and Nikolai Viktorovitch Shibkov (1951—1991). Standard specimen is in the Miass museum, Russia.

В субщелочных пегматитах Туркестано-Алая обнаружен новый минерал из группы миларита с общей формулой $K(Ca,Mn,Na)_2(K_{2-x}\square_x)_2Zn_3Si_{12}O_{30}$, гексагональной сингонии, пространственная группа P6/mcc, a=10.505 (1), c=14.185 (3) Å. Z=2. Плотность (измеренная) 2.89 г/см³. Встречен в ассоциации с микроклином, кварцем, ридмерджнеритом, эгирином, полилитионитом и др. Минералу дано название шибковит (shibkovite) в честь известных геологов Виктора Сергеевича Шибкова (1926—1992) и Николая Викторовича Шибкова (1951—1991), посвятивших свою жизнь изучению геологии Средней Азии.

Место находки и ассоциация. Шибковит обнаружен на морене ледника Дара-и-Пиоз (Таджикистан, Гармский район), находящейся в пределах одноименного массива, известного благодаря находкам субщелочных пегматитов с уникальной минерализацией. Дара-и-Пиозский (верхний) массив приурочен (рис. 1) к сочленению Зеравшанского, Алайского и Туркестанского хребтов. Внешняя часть массива сложена гранитами туркестанского комплекса, а центральная часть — щелочными породами алайского комплекса. К-Аг возраст биотита из гранитов 180—190 млн лет, из сиенитов — 150—160 млн лет. Массив прорывает на севере известково-сланцевые и песчано-сланцевые толщи силура, а на юге — терригенно-сланцевую толщу с прослоями известняков и эффузивов среднего—верхнего карбона. Минералогия Дара-и-Пиозского массива описана в многочисленных работах (Дусматов, 1968; Семенов, Дусматов, 1975; Belakovskiy, 1991; Grew e. a., 1993, и др.).

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества РАН 20 апреля 1997 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 4 сентября 1997 г.

Рис. 1. Географическое положение Дара-и-Пиозского массива (площадь в рамке).

Fig. 1. Geographic position of Dara-i-Pioz massif (scoped square).

Шибковит найден в слабоокатонной глыбе $(1 \times 1 \text{ м})$ существенно микроклино-кварцевого состава. Порода грубогигантозернистая, состоящая приблизительно на 60 % из микроклина белого цвета и на 30 % из белого льдистого вида кварца. Остальные 10 % приходятся на ридмерджнерит, эгирин, полилитионит, согдианит, альбит, пирохлор, пектолит, минералы группы эвдиалита и туркестанит. Шибковит встречен в виде одиночных изометричных зерен среди кварца и микроклина. Размер обособлений шибковита 0.01—0.5 мм. По оценке Э. Грю с соавторами (Grew e. a., 1993), образование ассоциации калиевый полевой шпат—кварц—ридмерджнерит происходило при температурах ниже 450— $500 ^{\circ}$ С и давлении P< $2 ^{\circ}$ кбар.

Физические свойства. Шибковит макроскопически белый, бесцветный, по внешнему виду напоминает кварц. В иммерсионных препаратах бесцветный. Блеск стеклянный. Черта белая. Спайность не наблюдается. В коротких ультрафиолетовых лучах обнаруживает яркое красное свечение. Под электронным пучком обнаруживает длительное послесвечение, что приводит к «размазыванию» изображения в режиме катодолюминесценции при обычных режимах сканирования. Твердость по шкале Мооса 5.5-6, твердость микровдавливания VHN = 609 кгс/мм² (среднее значение из 6 замеров) при нагрузке 50 гс (измерена на приборе ПМТ-3, тарированном по NaCl). Минерал хрупкий. Плотность, определенная иммерсионным способом в смеси бромоформа с иодистым метиленом, 2.89(2) г/см³, вычисленная 2.90(5) г/см³. Минерал оптически одноосный положительный, иногда наблюдается слабая двуосность. Следует отметить, что определение осности минерала связано с известными трудностями из-за очень малого двупреломления. Показатели преломления минерала измерены на вращающейся игле методом центрального экранирования. $n_o = 1.561(2)$, $n_e = 1.563(2)$. Минерал не растворим в воде и в НСІ (1:1). ИК-спектр шибковита получен С. Н. Батуровым на приборе UR-20 и характеризуется полосами поглощения 495, 530, 575, 700, 790, 920, 940, 1000, 1048 и 1105 см-1. Хорошо выраженная полоса в области 790 см-1 характерна для кольцевых силикатов.

Рентгеновские данные. Рентгеновская порошкограмма минерала (табл. 1) индивидуальна и хорошо индицируется в предположении гексагональной сингонии с параметрами элементарной ячейки a = 10.505(1), c = 14.185(3) Å. Пространственная группа P6/mcc. Z = 2.

Монокристальное изучение шибковита проводилось на дифрактометре CAD-4 «Энраф-Нониус». Параметры элементарной ячейки, определенные по 20 рефлексам в области $\theta = 24.05$ —30.00°, a = 10.502(1), c = 14.184(2) Å, близки к параметрам, определенным по порошкограмме. Экспериментальный материал для расшифровки струк-

Таблица 1
Результаты расчета дебаеграммы шибковита
Calculated data on debayegram of shibkovite

I	d _{N3M}	d _{выч}	hkl	I	d _{H3M}	d _{выч}	hkl
35	7.11	7.09	002	20	2.111	2.111	224
12	5.59	5.594	012	15	2.097	2.098	026
15	5.25	5.253	110	20	2.056	2.056	134
4	4.549	4.549	020	4	1.985	1.985	140
8	4.223	4.221	112	2	1.967	1.966	1 41
100	3.830	3.829	022	2	1.915	1.914	044
6	3.546	3.546	004	10	1.886	1.885	135
60	3.345	3.342	1 21	8	1.821	1.820	050
40	3.304	3.304	014	12	1.774	1.775	045
6	3.096	3.094	122	20	1.758	1.757	226
4	3.033	3.033	030	2	1.720	1.719	240
50	2.940	2.939	114	2	1.706	1.707	241
85	2.795	2.797	024	4	1.671	1.671	242
35	2.627	2.626	220	6	1.640	1.639	046
8	2.484	2.484	131	8	1.624	1.623	151
12	2.463	2.463	222	6	1.570	1.570	334
2	2.306	2.035	034	8	1.564	1.565	236
2	2.273	2.274	040	8	1.484	1.484	154
8	2.225	2.226	133	15	1.470	1.470	245
12	2.165	2.166	042	8	1.457	1.457	250

a = 10.505 (1) Å, c = 14.185 (3) Å, V = 1355.8 (5) Å³

Примечание. Условия съемки — ДРОН-2, графитовый монохроматор, внутренний стандарт — кварц. Аналитики Л. А. Паутов, А. А. Агаханов.

туры составили интенсивности 356 рефлексов (излучение Mo_{K_α}). Расчеты проведены по программе AREN в анизотропном приближении (R=0.0245). Проводилось уточнение заселенностей позиций A, B, C. Наилучший R-фактор соответствовал следующему распределению катионов: A — Ca 0.63, Mn 0.20, Na 0.17; B — K 0.63, \square 0.37; C — K 1.0; T2 — Zn 1.0. Формула минерала ($Ca_{1.26}Mn_{0.40}Na_{0.34}$)₂ · ($K_{1.26}\square_{0.74}$)₂KZn₃Si₁₂O₃₀.

Средние расстояния (Å) в Si-тетраэдре — 1.613, в A-октаэдре — 2.300, в В-полиэдре — 3.003, в С-полиэдре — 3.009. Близость расстояний в В- и С-полиэдрах подтверждает сосредоточение натрия в позиции А.

Химический состав. Химический состав минерала (табл. 2) изучен на электронном микрозонде Superprobe JCXA-733. Зерна нового минерала гомогенны по химическому составу (рис. 2). Анализ проводился при ускоряющем напряжении 20 кВ и токе зонда 2.7 · 10⁻⁸ Å. В качестве стандартов использовались осумилит USNM 143967 (Si, K, Fe), ильменит USNM 96189 (Fe, Ti, Mn), скаполит USNM K6600-1 (Na, Ca), Zn₂SiO₄ (Zn), авгит USNM 122142 (Al, Mg). Расчет концентраций проводился по стандартной программе ZAF-коррекции. Контрольное определение K, Na и проверка на присутствие Li проводились из микронавески минерала, тщательно отобранной под бинокуляром с ультрафиолетовым осветителем методами атомной абсорбции на приборе FMD-4 фирмы Opton. Результаты атомно-абсорбционного анализа хорошо согласуются с данными, полученными локальным рентгеноспектральным анализом. Литий в минерале не обнаружен.

Усредненный состав проанализированных зерен пересчитывается при O=30 на эмпирическую формулу $K_{1.00}(Ca_{1.26}Mn_{0.04}Na_{0.39}Fe_{0.01})_{2.06}(K_{1.20}\square_{0.80})_{2.00}Zn_{3.01} \cdot (Si_{12.01}Al_{0.01})_{12.02}O_{30.00}$. Упрощенная формула минерала $K(Ca,Mn,Na)_2(K_{2-x}\square_x)_2 \cdot Zn_3Si_{12}O_{30}$. Индекс сходимости свойств (1-KP/KC) 0.018 соответствует его высшей степени.

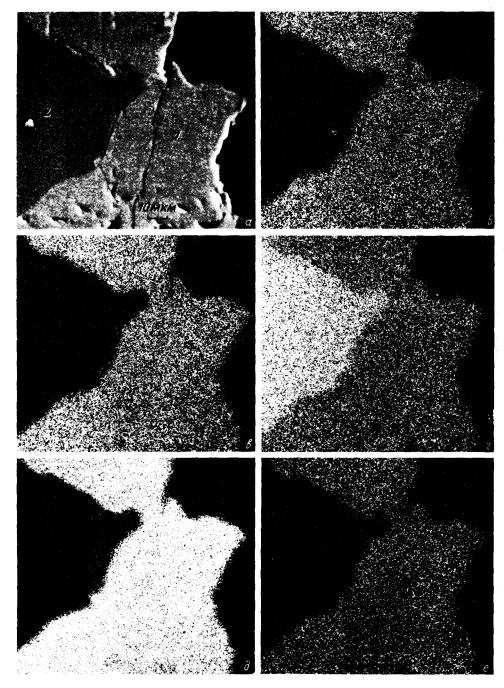


Рис. 2. Срастание шибковита (*I*) с кварцем (2). a — изображение в отраженных электронах, δ — в характеристическом излучении $\mathrm{Ca}_{\kappa_{\alpha}}$, δ — $\mathrm{K}_{\kappa_{\alpha}}$, δ — $\mathrm{Si}_{\kappa_{\alpha}}$, δ — $\mathrm{Zn}_{\kappa_{\alpha}}$, δ — $\mathrm{Na}_{\kappa_{\alpha}}$. Микрозонд JCXA-733.

Fig. 2. Intergrowth of shibkovite (1) with quartz (2).

Таблица 2 Химический состав (мас. %) шибковита Chemical composition of shibkovite (wt. %)

Компо- нент	1	2	3	4	Сред- нее	Компо- нент	1	2	3	4	Сред- нес
SiO ₂	61.75	61.15	61.01	61.40	61.33	Формульные коэффициенты (О = 30)					30)
Al_2O_3	0.06	0.04	0.04	-	0.04	Si	12.02	12.02	12.01	11.98	12.01
FeO	0.05	0.04	0.04	0.03	0.04	Al	0.01	0.01	0.01	<u> </u>	0.01
MnO	2.26	2.44	2.51	2.50	2.43	Fe ²⁺	0.01	0.01	0.01	0.01	0.01
ZnO	21.30	20.42	20.28	21.20	20.80	Mn	0.37	0.41	0.42	0.41	0.40
CaO	5.67	6.29	6.24	5.80	6.00	Zn	3.06	2.96	2.95	3.05	3.01
K ₂ O	8.84	8.80	8.88	8.80	8.83	Ca	1.18	1.32	1.32	1.21	1.26
Na ₂ O	1.12	0.78	0.84	1.40	1.03	K	2.20	2.21	2.23	2.19	2.21
Сумма	101.05	99.96	99.84	101.13	100.50	Na	0.42	0.30	0.32	0.53	0.39

Примсчание. 1—4 — микрозондовые анализы, аналитики Л. А. Паутов и А. А. Агаханов.

Сравнительная характеристика шибковита с дусматовитом и дарапиозитом приведена в табл. 3

Образцы с шибковитом переданы в музей Ильменского заповедника УрО РАН, в минералогический музей им. А. Е. Ферсмана РАН.

Благодарности. Авторы благодарят музей естественной истории Смитсониановского института (г. Вашингтон) и персонально доктора Е. Ярозевича за предоставленные стандарты для микрозондового анализа, а также П. В. Хворова, В. Ю. Карпенко за помощь в проведении полевых работ, В. А. Муфтахова, С. Н. Батурова за помощь при изучении нового минерала.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 97-05-659-232).

Таблица 3

Сравнительная характеристика шибковита с близкими минералами грппы миларита

Сотрагаtive characteristics of shibkovite and the similar minerals of the milarite group

Характеристика минерала	Шибковит	Дусматовит (Паутов и др., 1996)	Дарапиозит (Семенов и др., 1975)		
Химическая формула	K(Ca,Mn,Na) ₂ ·	K(K,Na)Mn ₂	KNa ₂ Zr Li(Mn,Zn) ₂		
	$(K_{1-x} \square_x)_2 Z n_3 S i_{12} O_{30}$	$(Zn, Li)_3Si_{12}O_{30}$	Si ₁₂ O ₃₀]		
Сингония, пространст-	Гексагональная,	Гексагональная,	Гексагональная,		
венная группа	P6/mcc	P6/mcc	P6/mcc		
a, Å	1 0.505	10.196	10.32		
c, A	14.185	14.284	14.39		
Наиболее сильные ли-	7.11(35)	7.13(3)	7.09(6)		
нии порошкограмы	3.83(100)	4.15(5)	4.43(4)		
-	3.34(60)	3.75(5)	4.13(5)		
	3.30(40)	3.25(10)	3.75(4)		
	2.94(50)	2.92(4)	3.26(10)		
	2.80(85)	2.78(3)	2.93(7)		
	2.63(35)	2.55(5)	2.76(5)		
	2.11(20)	2.40(2)	2.56(6)		
	2.06(20)	2.02(2)	2.02(3)		
Осность, оптический знак	Одноосный, слабодвуосный (+)	Одноосный (-)	Одноосный (-)		
n_0	1.561	1.590	1.580		
n _e	1.563	1.586	1.575		
Плотность, г/см3	2.89	2.96	2.92		

Список литературы

Дусматов В. Д. К минералогии одного из массивов щелочных пород // Щелочные породы Киргизии и Казахстана. Фрунзе, 1968. С. 134—135.

Паутов Л. А., Агаханов А. А., Соколова Е. В., Игнатенко К. И. Дусматовит — новый минерал группы миларита // Вестн. МГУ. Сер. 4. Геология. 1996. № 2. С. 54—60.

Семенов Е. И., Дусматов В. Д., Хомяков А. П., Воронков А. А., Казакова М. Е. Дарапиозит — новый минерал группы миларита // ЗВМО. 1975. Вып. 5. С. 583—585.

Семенов Е. И., Дусматов В. Д. К минералогии щелочного массива Дара-и-Пиоз (Центральный Таджикистан) // Докл. АН ТаджССР. 1975. Т. 18. № 11. С. 39—41.

Belakovskiy D. I. Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans // Lapis. 1991. Bd 16(12), S. 42—48.

Grew E. S., Belakovskiy D. I., Fleet M. E., Yates M. G., McGee J. J., Marquez N. Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan # Eur. J. Miner. 1993. Vol. 5. P. 971—984

Поступила в редакцию 22 декабря 1997 г.

УДК 549.6

3BMO, № 4, 1998 г. Proc. RMS, N 4, 1998

© Д. чл. А. П. ХОМЯКОВ,* Дж. ФЕРРАРИС,** Е. БЕЛЛУЗО,** С. Н. БРИТВИН,***
д. чл. Г. Н. НЕЧЕЛЮСТОВ,**** д. чл. С. В. СОБОЛЕВА****

СЕЙДИТ-(Ce) Na₄SrCeTiSi₈O₂₂F · 5H₂O — НОВЫЙ МИНЕРАЛ С ЦЕОЛИТНЫМИ СВОЙСТВАМИ¹

A. P. KHOMYAKOV, G. FERRARIS, E. BELLUSO, S. N. BRITVIN, G. N. NECHELYUSTOV, S. V. SOBOLEVA. SEIDITE-(Ce), Na₄SrCeTiSi₈O₂₂F · 5H₂O, A NEW MINERAL WITH ZEOLITIC PROPERTIES

* Институт минералогии, геохимии и кристаллохимии редких элементов, 121357, Москва, ул. Вересаева, 15
** Туринский университет, 1-10125, Турин
*** Минералы Лапландии ЛТД, 184200, Апатиты, ул. Ферсмана, 14
**** Всероссийский институт минерального сырья, 109017, Москва, Старомонетный пер., 31
***** Институт геологии рудных месторождений, петрографии, минералогии и геохимии, 109017, Москва, Старомонетный пер., 35

The mineral has been found in ultraagpaitic pegmatites of Lovozersky alkaline massif (Kola peninsula). It forms radially fibrous aggregates up to 0.5—1.0 cm in diameter. Hardness 3—4; density 2.76 g/cm³. Optically biaxial negative, $n_p = 1.542$, $n_m = 1.569$, $n_e = 1.571$, $2V = 28^\circ$. Monoclinic, C2/c. Unite cell parameters: a = 24.74(1), b = 7.186(3), c = 14.47(2)A, $\beta = 95.25(10)^\circ$, Z = 4. The composition (by microprobe analysis) closely corresponds to the idealized formula: Na₄SrCeTiSi₈O₂₂F·5H₂O. The mineral readily exchanges cations with solutions of various salts. The strongest lines on the X-ray powder diffraction pattern: 12.32(100), 3.220(8), 3.104(24), 3.081(16), 3.058(12), 2.705(10). A structural model explaining the zeolitic and other properties of the mineral is presented in the paper also.

Описываемый ниже натрий-стронций-редкоземельный титаносиликат обнаружен А. П. Хомяковым и С. Н. Бритвиным в пегматитовой жиле Юбилейной на горе Карнасурт Ловозерского щелочного массива (Кольский полуостров, Россия) и назван сейдитом-(Се) (seidite-Ce) по расположенному в центре массива Сейдозеру. В более ранних публикациях (Хомяков, 1990; Khomyakov, 1995) этот минерал условно обозначен как М31. В первой из цитируемых работ на основании результатов мокрого химического анализа минералу была приписана формула Na_3 CeTiSi $_6O_{17} \cdot 5H_2O$. В результате всесторонних исследований авторами установлена способность сейдита легко обмениваться

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества 13 мая 1993 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 5 ноября 1997 г.