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Abstract. Monoclinic tridymite from a fired silica brick was found to 
transform to a hexagonal structure at about 420° C on the basis of the 
measurements of cell dimensions and the integrated intensities as 
functions of temperature. This tridymite changes its structure on 
increasing temperature; below 100° C it is monoclinic; 100 to 160° C, 
orthorhombic II; 160 to 420° C, orthorhombic I, and above 420° Cit i 
in the hexagonal form. 

The structure of the hexagonal form, which was refined from 
Gibbs' structure with space group P 63/mmc by use of X-ray intensity 
data measured at 460° C, has 0.0620(4) for the z coordinate of the 
silicon atom. Thermal vibrations for the oxygen atoms were too large 
and strongly anisotropic; an alternative model, in which oxygen 
atoms are located on the circumferences of circles normal to Si - Si 
lines is also presented. This model gave mean bond lengths Si - 0 
= 1.607 and 0 - 0 = 2.63 A, and mean angles Si - 0 - Si = 149.2 
and O-Si-O = 109.5°. 

Introduction 

Monoclinic tridymite is known to occur in terrestrial rocks, lunar 
rocks, meteorites and synthetic materials. Tridymite from the 
Steinbach meteorite was found to be monoclinic at room temperature 
and to be transformed into an orthorhombic structure at about 180° C 
(Dollase and Buerger, 1966; Dollase, 1967). Recently it was found that 
monoclinic tridymite from fired silica brick is transformed into an 
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another orthorhombic structure at about 1050 C, before the ap­
pearence of the orthorhombic form at 1800 C (Kihara, 1977). In thi 
study, to distinguish the two orthorhombic phases, the lower­
tempe.rature form is termed orthorhombic II (abbreviated 0 II), and 
the hIgher-temperature form, orthorhombic I (0 I). Above room 
temperature, this tridymite from silica brick is transformed with 
increasing temperature succesively in the order: monoclinic, 0 II, 0 I 
and probably hexagonal form. Nukui et al. (1978) found in X-ray and 
optical studies on synthetic tridymite that the transition between th 
o I and hexagonal form occurs at 3800 C. 

. The general features of the hexagonal structure were given b) 
GIbbs (1927). At a temperature well above its transition point th 
structure has space group P 63/mmc with cell dimensions a = 5.03 and 
c = 8.22 A. Sato (1964) reported good agreement between powder­
diffraction intensities measured on natural and synthetic tridymite at 
5000 C and those calculated on the basis of the Gibbs' structure wher 
ZSi was 1/16. ' 

Dollase (1967) determined the structure of the 0 I form at 2200 c. 
which was termed orthorhombic high tridymite and was noted to 
continue to exist above 2500 C. In this structure in space group C 222 
six-membered rings of silica tetrahedra have nearly hexagonal shape

l

, 

but the tetrahedra are rotated around the two-fold axes parallel to a 
from their positions in the hexagonal structure. 

The monoclinic structure with space group Cc was independentl ' 
determined by Dollase and Baur (1976), and Kato and Nukui (1976 . 
The former authors pointed out that the six-membered rings are 
distorted into two different configurations; two thirds have a 
ditrigonal shape and one third have an oval shape in any tridymite 
layer, where ditrigonal rings may stack above ditrigonal rings or above 
oval rings and vice versa. 

The structure of the 0 II form has a 3 x 1 x 1 cell compared to that 
of the 0 I form. In this structure with space group P 212121 the six­
membered rings are distorted in a way similar to those of the 
monoclinic form and the same ring types stack on top of one another 
along the orthorhombic c axis (Kihara, 1977). The 0 II form does not 
~ppear in the Steinbach tridymite, which gives reflections correspond­
Ing to the 0 I form, accompanied by satellite reflections in the 
ps~udohexagonal a* direction between 107 and 1800 C. The sepa­
ratIon of the satellites varies continuously from that correspondin'g to 
about 105 A at 1070 C to about 65 A at 1800 C (Dollase, 1967). 
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In this paper the thermal-expansion behavior and the structure of 
e hexagonal form are discussed on the basis of X-ray data from 
ngle crystals. 

pecimens and equipment 

. -ray diffraction experiments were carried out by use of a Philips 
Wl l00 four-circle diffractometer, using MoKa radiation monochro­
ated by a flat graphite crystal, and the precession method; in both 
es, specimens were heated with the aid of an electric furnaces of 

herical shape having a diameter of about 10 mm. A thermocouple 
s fixed at a position above crystal; the separation was appro x­

'llately 0.5 mm. Temperatures given in this study are those of the 
ermocouple. 

The crystal used were from refractory silica brick provided by 
.Iessrs. T. Ono and K. Sakai, of the Asahi Glass Research 
. boratory. In these experiments, three specimens A # 11, A # 12 
nd A # 13 were used; these crystals had nearly equal volume of less 
an 2 x 10- 3 mm3

. In the scanning electron-microscopic analysis 
mploying an energy-dispersion X-ray detector, there was no in­
I ation of impurity in some fragments of this tridymite. Crystals of 
onoclinic tridymite are usually twinned. For diffraction purposes an 

. 'pression for the twin relation is as follows: each component 1 may 
'ke one of six possible orientations rotated by 60° from each other 
round [103]m (Hoffmann, 1967). 

Through repeated heating experiments across the transition 
tween the monoclinic and 0 II forms, it was found that a monoclinic 

.ntwinned crystal can be transformed to an orthorhombic un twinned 
stal by a continuous rise of temperature but, when the temperature 

maintained or oscillated around the transition point and then raised 
the 0 II region, the crystal is easily twinned. In this case the twin 

lation for diffraction purposes is that each component takes one of 
ree orientations rotated by 120° from each other around the 

rthorhombic c direction. For the specimen from fired silica brick, 
' ihara (1977) observed that at this transition the new structure 

pears with the a and b directions rotated by 60° (or 120°) around 

1 In this study the monoclinic form is represented by a unit-cell with space group 
a, the cell constants of which are about a = 25.8, b = 5.0, c = 18.5 and f3 = 117.7°. 

n is is obtained from Hoffmann's setting by a transformation (001 /ofo/l00). 
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monoclinic c* from the positions of the corresponding monoclini 
axes. After that, the crystal was repeatedly heated and cooled acro 
the transition point. The relation held even then, but not when th 
temperature was oscillated in a small range (~1 0°) around th 
transition point. Precession photographs taken under such condition 
showed reciprocal-lattice patterns in which the 0 II form was found t 
be twinned by components in two orientations. Recently Nukui et al. 
(1978) showed that a single crystal of synthetic monoclinic tridymit 
was transformed into the 0 II form twinned by components in i 
(effectively three) orientations rotated by 60° from each other around 
c. These observations indicate that, at this transition the monoclini 
structure can go to the 0 II structure in one or more orientation . 

The unit-cell dimensions were measured mainly using crystal 
A # 11 and A # 13, which are both twinned. The crystal A # 11 wa 
twinned by components in two orientations rotated by 180° from each 
other. The volume ratio was estimated as 0.9 : 0.1 below the transition 
point (about 100° C). On the other hand, the twin ratio in A # 13 wa 
estimated above the transition point. In this case two of the thre 
orientations were predominant, the ratio being 0.64: 0.36. 

Thermal expansion 

Each reciprocal-lattice constant was determined by the diffracto­
meter, employing the centers of gravity of reflections along the 
corresponding rows through the origin in the range () = 3 - 20°. For 
example, the hOO, OkO and 001 rows and, in the case of the monoclinic 
form, in addition, the hOh row, were independently used for a*, b*, c* 
and fJ *. Crystal A # 11 was used for both the monoclinic and the 0 II 
form, and A # 13 for both the 0 I and the hexagonal form. 

A major error may be caused by use of overlapped reflections. 
From many X-ray experiments with tridymite it is believed, however 
that overlapping is nearly perfect for the twinning in the monoclinic 
form. Taking account of both this and the fact that one orientation 
was predominant in A # 11, reflections av;:tilable in the procedure 
were all used in the determination of the reciprocal-lattice constants of 
the monoclinic form. In the range of both orthorhombic forms 
measurements for OkO reflections gave relatively large errors, which 
probably originated from imperfect overlapping. In the precession 
photographs of the 0 II form, splitting of some reflections was 
observed when twinning had occurred. For the 0 I form, the error in 
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* became small with increasing temperature. Since the splitting 
'ould be an indication of distortion of the cell from the corresponding 
ne in the hexagonal structure, it is suggested from these observations 
hat the distortion is significant in the 0 II form and becomes small in 

higher-temperature region in the 0,1 form. Consequently under 
hese circumstances only the 020 and 020 reflections were used for b* 
f the orthorhombic forms. Except in the proximity of the transition 

ints most measurements were carried out at given temperatures in 
ne heating cycle. 

In Figure 1 the thermal expansions of A, B, C and AI3 B are shown 
functions of temperature [where A, Band C are normalized to the 

II of the monoclinic form as follows: A = am (= aOII = 3 aOI) , 

= bm (= bOIl = bOI) and C = d (OOl)m (= 2 COIl = 2 COl = 2 ch)]· 

\ 0 .abrupt changes correspond to the transitions between the 
onoclinic and the 0 II forms and between the 0 II and the 0 I forms , 
pectively. The transition points are seen to be shifted to lower 

mperatures than presented in Kihara (1977), in which the cry tal 
-ed was not twinned. In the 0 II form the structure is contracted in 
e Band C directions, although expanded in the A direction when 
mpared to the structure of the monoclinic form. As the result the 
lue of AI3 B of this structure is most deviated from V3 in the 
erved region. The value of A is nearly constant above the transition 

tween the 0 II and the 0 I form, while those of Band C continue to 
'1 rease with increasing temperature up to about 340 and 420° C, 

pectively. The expansion coefficient is seen to increase in C, though 
en to decrease in B with increasing temperature. A bend at about 

_0° C in C suggests that a transition occurs at this temperature, above 
hich no remarkable change is detected and the unit-cell dimensions 
re nearly constant. The ratio AI3 B gradually approachs to V3; the 
parture from this value is undetectable at 340° C. 

exagonal tridymite 

ymmetry and transition temperature 

n order to examine the Friedel symmetry for the structure in a higher­
mperature region, integrated intensities of observable reflections in 
hemisphere of e = 20° were measured at 380, 400, 420 and 460° C. 
rystals A # 12 and A # 13, which are both twinned, were used for 

hese measurements. As a result, both crytals showed intensity 
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Fig: 1. ~hermal expansion behavior in three orthogonal directions for three crysta 
white circles for A # 13, black circles for A # 11 and squares for A # 12. A , B and 
are respectively chosen to correspond to the a, b, and d (001 ) of the cell of l 

monoclinic form 

distributions having nearly hexagonal symmetry 6jmmm at th 
temperatures examined. At 3000 C some pairs of reflections wi 
relatively weak intensities were seen to violate orthorhombic s -
metry. Intensities of such pairs of reflections were measured a 
function of temperature; the result showed that intensity differenc 
o bserved in each pair gradually decreased and were almost undetectab 
at 3800 C (Fig. 2). 
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Fig. 2. Integrated intensities (arbitrary scale) of some reflections measured on A # 12 
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Fig.3. Changes of integrated intensities (arbitrary scale) with temperature of the 
reflections 621 (white circles) and621 (black circles) 

Through these intensity measurements, it was found that for some 
pairs of reflections the intensities decrease rapidly in the temperature 
range up to about 4200 C. Figure 3 shows the temperature dependence 
of the integrated intensities of reflections 621 and 621, which 
correspond respectively to 221 and 421 for the hexagonal structure. 
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From observations of the thermal expansion behavior, of 
intensity distribution, and of the intensity changes of some reflecti 
it may be concluded that the transition between the 0 I and 
hexagonal forms occurs at about 420° C. This transition rna) 
distinguished in its nature from those in lower-temperature regl 
which are both seen to be of first order. 

Refinement of the structure 

Integrated intensities in the range e = 3 - 25° were measured 
460° C, using the OJ - 2 e scanning method. The cell dimension 
a = 5.052(9) and c = 8.27(2) A. The intensities were corrected for 
factors, but not for absorption (J1R = 0.09 for A # 13 used fo r' 
measurements). Of all 93 reflections in an asymmetrical region. 
reflections whose I Fo I's are larger than corresponding 2 cr ( I Fo 
(where cr is standard deviation estimated from counting statistics) \\ 
used for least-squares refinement. This was carried out using 
program LINUS (Coppens and Hamilton, 1970). Scattering facto r 
half-ionized atoms obtained from International tables for X ­
crystallography (1974) were used in all the calculations. 

Reflections hhl with odd I have weak intensities as seen . 
example, in Figure 3. One of those observed has an I Fo I Whl 
approximates to the corresponding 3 cr. A few reflections \\ 
examined by t/J scanning to ascertain whether tho e were affected 
multiple scattering or not. This technique supplied only the conclu i 
that multiple scattering did not have a detectable effect on th 
reflections. For these reasons P 6322 also appeared to be a pos i 
space group. Under these circumstances a least-squares refinem 
was first tried for both space groups P 63 /mmc and P 6322, where e 
IFol was weighted by 1/cr 2 (IFoD. 

A hexagonal unit-cell containes four silicon and eight ox g 
atoms, which were initially assigned to three sets of special position 
the two space groups. Four silicon atoms were assigned to equipoi r 
4f, two oxygen atoms to 2 c and six oxygen atoms to 6 g. This structu 
corresponds to that given by Gibbs (1927) and tentatively term 
model I. 

Refinement based on P 63 /mmc with variable parameters ~ 
anisotropic temperature parameters, and an isotropic extincti 
parameter, gave an R value of 0.067 and a weighted R = (l'OJ I L1 F ­
l'OJ 1 Fo 12)t of 0.061 for the 71 reflections. Refinement based on P 63 _:' 
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able 1. Positional parameters (a) and temperature parameters (b), as refined on 
l10del I in P 6J /mmc. Estimated standard deviations are given in parentheses 

x y z B 

Si 0.33333 0.66667 0.0620(4) 3.4A2 
0(1) 0.33333 0.66667 0.25 8.2A2 
0(2) 0.5 0.0 0.0 9.6A2 

/311 /322 /333 /312 /313 /323 

0.048( 3) 0.048 0.0117(6) 0.024 0.0 0.0 
(1) 0.138(15) 0.138 0.014 (2) 0.069 0.0 0.0 
(2) 0.147( 9) 0.064(7) 0.042 (2) 0.032 0.013 0.026(4) 

The form of the temperature factors is exp _(fJ11h2 + fJ22k2 + fJ3312 + 2fJ12hk 
- 2/313hl + 2/323kl) 

able 2. Interatomic distances and angles obtained from the refinement based on 
model I. Estimated standard deviations are given in parentheses 

istance 

-0(1) 
-0(2) 

(1)-0(2) 
(2)-0(2) 

1.555(5) A 
1.546(3) A 
2.530(4)A 
2.526(4) A 

Angle 

0(1)-Si-O(2) 
0(2) - Si - 0(2) 

109.4(2t 
109.6(2t 

was next tried in the same way as for P 63 /mmc with the additional 
ariable XO(2)' All variables converged to essentially the same values as 

the corresponding ones obtained in the case of P 63 /mmc, with R 
= 0.066 and weighted R = 0.060. The relaxed oxygen x parameter 
onverged to 0.526(20), which largely correlates with /311 and thus 
oth parameters are erroneously determined. In any event these points 

~uggest that P 63 /mmc is not rejected. The positional and temperature 
parameters are given in Table 1 for the final refinement based on 
P 63/mmc. The interatomic distances and angles are given in Table 2; 
root mean squared amplitudes and the relation of the principal axes of 
the thermal ellipsoids to the crystallographic axes are shown in 
Table 3. 
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Table 3. Root mean squared amplitudes along the principal axes of the th 
ellipsoids obtained from the refinement for model 1. The orientations of the ellip 
are given with respect to the [210], band c directions 

Root mean [210] b c 
squared 
amplitude 

Si 1 0.21 A 90. 
3 0.20 O. 

0(1) 1 0.36 90. 
3 0.22 0.0 

0(2) 1 0.41 30.0° 120.0° 90. 
2 0.20 62.9 37.8 11 4._ 
3 0.40 78.2 69.2 24._ 

The thermal motion as refined here is only slightly larg r 
magnitude than in the 0 I form of the Steinbach tridymite (Doll 
1967): using a quantity <u2) defined as t «uf) + <u~) + <u~ ) 
convenience' sake, the mean values are 0.042 and 0.040 A 2 for iIi 
and 0.117 and 0.106 A 2 for oxygen in the hexagonal and the 0 I ~ 
respectively. On the other hand, the values for these structural t 
are apparently larger than those in the lower-temperature forr. 
<u(Si)2) = 0.010 and <U(0)2) = 0.025A2 for the monoclinic C 
(calculated from Kato and Nukui, 1976) and 0.030 and 0.067 A­
the 0 II form (Kihara, 1977). Although an allowance should be m 
for the different sources of the specimens used in these studies it 
be concluded that the thermal motions of atoms in the 0 I struct 
and in this hexagonal structure refined on the model I are not so m 
different from each other. 

The silicon ellipsoid is nearly spherical, but the oxygen ellip 
have oblate spheroidal shapes; the shortest axis is in the Si - Si I 
and the other two are normal to it. The ellipsoid of the 0(2) atorr. 
apparently larger and more anisotropic than that of the 0(1) atom 
should be noted that the oxygen ellipsoids are circular in t 

hexagonal form, but not so in the 0 I form of the Steinbach tridymi' 
around the Si - Si lines; the magnitude along the shortest axe 
apparently smaller in the hexagonal form. 

In the refinements of high cristobalite (Peacor, 1973; Leadbetter 
aI., 1973), the oxygen atoms were refined to six positions being equ 
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. 4. Difference-Fourier section a t z = * of the hexagonal structure. The mean 
ition of 0 (1) is at the center of circles. Contour interval is 0.2 e; thick lines indicate 

ro contours : dotted lines indicate nega tive contours and dashed lines indicate 
-itive contours of value 0.5 e 

ced around a circle perpendicular to the Si - Si lines and both kinds 
. a toms have B factors which are not much different from each other 

magnitude: B (Si) ~ 3.5 and B (0) ~ 3.9 A 2 at 3000 C. 
The root mean squared amplitudes of the oxygen atoms refined in 
del I (Table 3) are seen to be too large for those to result from 
rma~ vibration alone. In a difference-Fourier map (Fig. 4) based on 
tropIC temperature parameters listed in Table 1 b , all atom centers 
d their neighborhoods show negative distributions and are sur­
unded by positive and circular distribution normal to the Si - Si 

!1es. From this difference map, it may be suggested that oxygen atoms 
located around the circumferences of the circles and localized to 

me positions, probably six for respective Si - Si lines. It is thus 
'pected that the strongly anisotropic and large ellipsoids of oxygen 
. ms m~y be interpreted by taking models, for example, like the high­

."1 tobahte structure with respect to oxygen positions. Structure 
dels in which each of the mean oxygen positions is split into three 

n the respective circumferences may be rejected because it seems that 
h models require unreasonably large distortion of the silica 

trahedra. 
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Table 4. Final positional and isotropic temperature parameters refined on th 
model II structure. Estimated standard deviation are given in parentheses 

x y z B 

Si 0.3333 0.6667 0.0624(4) 3.4(1) A2 
0(1) 0.258(5) 0.587(6) 0.25 3.7(4) 
0(2) 0.563(5) 0.037(4) 0.040(2) 3.0(4) 
0(3) 0.592(8) 0.0 0.0 4.3(9) 

Refinements were then tried for models having split oxyg 
positions with equal occupancies of i and /2' Least-squares refin -
ments for the cases of occupancy of /2 were unsuccessful because 
difficulties arising from high parameter correlations. Two models witt' 
occupancy of i were tried in P 63/mmc: the first model (model II) ha 
oxygen atoms assigned to three sets of equipoints, 12j, 241 and l_ 
and the second model (model III) has four sets of oxygen atoms, 61 
6 h, 12 k and 241. Modell! may be useful in explaining the differen 
map and in the other model the oxygen atoms were located i 
positions rotated by about 30° from those in model II. Agreemen 
between 1 Fo I's and 1 Fe I's better than R = 0.21 was not given by th 
latter. On the contrary, refinement based on model II gave R = 0.0 -: 
and weighted R = 0.051, where a scale factor, four B factors , 
isotropic extinction parameter and seven positional parameters w r 
refined. Modell! was next refined in P 6322, but a significan 
improvement of the R value was not given and the estimated standar 
deviation of each parameter is as large or equal of the correspondi n;:: 
parameter in P 63/mmc. The positional and temperature paramet r 
are given for the case of P 63 /mmc in Table 4 and the observed an 
calculated structure factors are listed in Table 5. The interatomJ 
distances and angles are shown in Table 6. An attempt to refine th 
f3i/S indicated that 1333's of 0(2) and 0(3) largely correlate with ea 
other and with ZO(2)' Additional cycles were separately carried out 
the f3ij's and on the positional parameters. The improvement of 
value was not seen to be significant. 

In all the refinements described above it was found that th 
reflections with conditions h-k = 3 n and 1= 2 n + 1 have obser 
structure factors larger than the calculated ones, although th 
intensities are so weak that most 1 Fo I's are not greater than cor­
responding a's. This kind of systematic difference between IFol's an 
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Table 5. Observed and calculated 

HK L Fa Fe HK 

0 0 41.7 - 39.2 4 

2 1.9 1.9 3 

3 22.8 23.1 2 

4 3.6 - 4.3 1 

5 2.1 - 2.6 2 2 

4 1 0 8.3 8.6 3 2 

3 11.2 -11.4 4 0 

2 16.9 -16.9 3 

1 30.7 30.0 2 

2 2 0 21.5 22.4 1 

3 4.5 4.7 2 

5 0 3.1 2.4 3 

4 4.7 - 4.3 4 

3 2.9 1.0 3 2 

2 15.2 14.9 0 0 
23.4 -22.8 

2 10.4 -11.2 2 

3 5.1 5.4 4 

3 2 3.4 - 3.0 2 1 

0 0 2 50.3 53.0 2 2 

1 16.4 -16.4 3 

2 8.4 8.5 4 0 

3 12.5 12.5 2 

4 2.7 - 2.5 

1 Fe I's is more clearly seen in 
by Dollase (1967) , but nl 
monoclinic forms. Althoug' 
effects, e.g., anharmonic n 
bution to the inten itie 
regarding these effect i n 

Taking account of the 
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P 63 /mmc does not nece 
structure is not P 63 /mmc. 

Description of the model /1 

In the model II structure 
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Table 5. Observed and calculated structure factors 

H K L Fo 

3 
-+ 

o 0 

-+ 1 0 

_ 2 0 

- 0 
.f 

.., 2 
o 2 

41.7 -39.2 
1.9 1.9 

22.8 23.1 
3.6 - 4.3 
2.1 - 2.6 
8.3 8.6 

11.2 -11.4 
16.9 -16.9 
30.7 30.0 
21.5 22.4 
4.5 - 4.7 
3.1 2.4 
4.7 - 4.3 
2.9 1.0 

15.2 14.9 
23.4 -22.8 
10.4 -11.2 

5.1 5.4 
3.4 - 3.0 

50.3 53.0 
16.4 -16.4 

8.4 8.5 
12.5 12.5 
2.7 - 2.5 

H K L Fo 

4 2 
3 
2 
1 
222 
322 
4 0 3 
3 
2 
1 
213 
3 
4 
3 2 3 
004 
1 
2 
4 
2 4 
224 
3 
405 
2 

5.9 5.8 
7.7 - 7.4 
9.2 - 9.3 
6.0 6.3 

13.4 14.0 
2.8 - 3.0 
8.8 - 8.3 
2.8 1.9 

16.1 16.4 
16.0 -15.8 
15.7 -16.0 
9.5 9.8 
2.1 - 0.9 
6.2 - 6.3 

25.1 24.7 
7.2 - 7.2 
5.9 5.7 
1.9 0.8 
3.4 - 2.2 
2.4 2.3 
2.0 0.5 
6.5 - 6.3 

17.2 17.1 
20.8 -20.5 

H K L Fo 

115 
2 
3 
325 
006 
1 
2 
3 
3 1 6 
2 
1 
226 
3 0 7 
2 
2 7 
3 
008 
1 
2 
3 
2 8 
1 
209 

1.9 0.0 
14.2 -14.9 

8.3 7.8 
4.1 - 4.4 

13.9 -13.6 
7.1 7.2 
8.1 8.1 
8.1 7.6 
2.1 2.5 
4.6 4.6 

14.9 -14.9 
6.4 6.4 
2.6 1.2 
3.6 2.7 
3.7 3.5 
2.6 1.6 

10.1 9.8 
4.9 4.8 
3.0 3.3 
5.6 5.4 
3.4 3.6 
9.0 8.3 
2.1 1.5 
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Fe I's is more clearly seen in the result for the orthorhombic form given 
y Dollase (1967), but not clearly in the cases of the 0 II and 

monoclinic forms. Although it may be suggested that some additional 
ffects, e.g., anharmonic motion of atoms, make important contri­
ution to the intensities of these reflections, a further account 

regarding these effects is not given in this study. 
Taking account of the systematically larger IFol's of the reflections 

noted above, the presence of the reflections apparently violating 
P 63 /mmc does not necessarily imply that the space group of this 
tructure is not P 63/mmc. 

Description of the model II structure 

In the model II structure there are 24 oxygen pOSItIons for each 
tetrahedron. They are located on a circle for 0(1) atoms and three 



250 K. Kihara: Thermal change in unit-cell dimensions of tridymn 

Table 6. The Si - 0 and 0 - 0 distances and the 0 - Si - 0 and Si - 0 - Si angles fo r 
tetrahedron (Fig. 5) in model II 

Distance Angle 

Si-O(l) 1.600( 6) A Si-0(2)-Si 149(2) 
0(2) 1.648(14) 0(2) 149(2) 
0(3) 1.615(12) 0(3) 147(2) 
0(2) 1.564(16) 0(1) 152(2) 

mean 1.607 mean 149.2 

0(1)-0(2) 2.63(3) 0(1) - Si - 0(2) 110(1 ) 
0(1)-0(2) 2.59(2) 0(2) - Si - 0(3) 107(2) 
0(1)-0(3) 2.66(3) 0(1)-Si-0(2) 108(1) 
0(2)-0(3) 2.58(5) 0(2) - Si - 0(3) 108(2) 
0(3)-0(2) 2.62(6) 0(2) - Si - 0(2) 112(2) 
0(2)-0(2) 2.67(3) 0(1)- Si -0(3) 112(2) 

mean 2.63 mean 109.5 

slightly prolate circles for 0(2) and 0(3) atoms normal to the Si - Si 
lines. The 0(1), 0(2) and 0(3) atoms are shifted by 0.39, 0.43 and 
0.46 A respectively from the Si - Si lines. The smallest circle, on which 
the 0(1) atoms are located, leads to a c dimension slightly longer than 
that expected by assuming the regular tetrahedron located on the 
mean positions (model I); the value of cia is 1.637 for the observation 
above 430 0 C and 1.633 for the calculation. 

Probable combinations for the tetrahedron were chosen based on 
the distances and angles calculated for all atom pairs in a tetrahedron. 
A combination is shown in Figure 5. The tetrahedron has two 0 - 0 
distances of 2.66 and 2.67 A and four in the range 2.58 - 2.63 A which 
give two 0 - Si - 0 angles of 1120 and four in the range 107 -110 . 
Hence the mode of distortion of the tetrahedron is very similar to that 
in the high-cristobalite structure (Peacor, 1973). The Si - 0 distance 
are in the range 1.564 -1.648 A with a mean value of 1.607 A, and the 
Si-O- Si angles are in the range of 147 -1520 with a mean value of 
1490

• All the' values noted here are close to those in the monoclinic 
structure, and they fall in a range similar to that in the monoclinic 
form. The isotropic B factors are 3.4 A 2 for silicon and in the range of 
3.0-4.3 A2 for oxygen atoms. 
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Fig. 5. The hexagonal tructure of modI 
circle indicate the position of ox gen : 

Discussion 
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- Sj - 0 and Si - 0 - Si angle 

Angle 

Si-0(2)-Si 149 _ 
0(2) 149(_ 
0(3) 147 _ 
0(1) 152(_ 

mean 149._ 

0(1) - Si - 0(2) 110 1 
0(2) - Si - 0(3) 107{_ 
0(1)-Si-0(2) 10 (1 
0(2) - Si - 0(3) 108(_ ) 
0(2) - Si - 0(2) 112(_ ) 
0(1) - Si-0(3) 112(_ 

mean 109. 
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ig.5. The hexagonal structure of model II, projected on (0001). White and black 
ircIes indicate the positions of oxygen atoms 

Discussion 

The refinement based on model II gIves bond lengths and angles 
onsistent with those established for other silica structures. 

Comparing the refinements based on both model I and II, it is 
uggested that the improvement of the R value given by the latter 
ould be significant. On the other hand, in a difference-Fourier map 

alculated for model I with anisotropic temperature coefficients 
Table 1), the centers and the neighborhood of oxygen atoms are 

negative and surrounded by positive circular density as in the case for 
. he isotropic temperature factors. On the contrary, in the case of 
'TIode1 II, the positive distribution disappears and the negative height 
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is reduced to about one-third of the corresponding density in 
anisotropic case of the model I structure. The high anisotrop 
large root mean squared amplitudes derived from model I may thu 
understood by assuming that oxygen atoms are located around 
circumferences of the circles normal to Si - Si lines. 

Ambiguity, however, remains for oxygen positions, that 
potential minima exist or not on the circumferences of the circle 
can be shown that, in difference maps, structures with such split-at 
positions as model II do not give any marked indication for 
positions and give only trivial changes as shown in Figure 4, becau 
close separation between them. From evidence described here, we 
not confidently determine whether oxygen atoms are located on fi . 
positions or not. As considered for high cristobalite by Leadbett r 
al. (1973), random distribution of oxygen atoms on the circumferen 
would be improbable also in this hexagonal tridymite because it m 
result in larger distortions of the tetrahedra. Furthermore, the ox ' .... 
positions in model III also seemed to give large distortion of t 

tetrahedra, but not so in the model II structure. From these c 
siderations it may be deduced that in this hexagonal structu 
potential minima exist on the respective circumferences of the cir I 
and their positions are probably those of model II. The fully expan 
state, that is, the Gibbs' structure, may be realized in a high 
temperature region. 

In the 0 I structure the normals to the basal planes, nearly in (0 
of the tetrahedra formed by the mean oxygen positions are inclined 
the c direction. The c dimension is estimated by using this angle, 1>. 
the basis of a relation c = 4 h cos 1>, where h is the correspondi 
height of the tetrahedron. Furthermore, since the departure of th 
coordinates of the mean oxygen positions from those in the hexagon 
structure is very small, b is also expressed as b ~ 2 d cos 1>, where d 
the edge length of the tetrahedron close to the b direction. If the sha 
of the tetrahedron formed by the mean oxygen positions and the ra t) 
among the apparent root mean squared amplitudes of oxygen atom ar 
kept unaltered in the region of the 0 I form, both relations must gi 
approximately equal expansion coefficients in both direction 
Accordingly, inconsistent expansion behavior in these direction 
(Fig. 1) would be explained by considering their changes. 

The thermal ellipsoid of the silicon atom refined for this hexagon 
structure is nearly spherical and large, i.e., B (Si) = 3.4 A 2 . It ) 
suggested from the difference map that distribution around the silic 
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position is not spherical: the cen 
lower positive peaks are tetrahe( 
other sides of the Si - 0 bone 
assuming that the silicon atom 
sites to reduce distortion of tet 
anharmonic vibrations of the s: 
noncen trosymmetrical field surf< 
atoms. In any event these effe, 
parently large thermal motion. 

Acknowledgement. Helpful discu sion 
gratefully acknowledged. The author 
encouragement of Prof. S. Sugiura . Th 
preparing the illustrations. The compute 
center of Kanazawa Univer ity. 

References 

P. Coppens and W. C. Hamilton (197( 
Zachariazen approximation. Acta I 

W. A. Dollase (1967), The crystal truct 
from the Steinbach meteorite. Act, 

W. A. Dollase and W. H. Baur (1976) 1 
solved by computer simulation . AT 

W. A. Dollase and M. J. Buerger (1 
tridymites. Geol. Soc. Amer. Progl 

R. E. Gibbs (1927) , The polymorphi: 
tridymite. Proc. Roy. Soc. A 113, ~ 

W. Hoffmann (1967), Gitterkon tanter 
Naturwiss. 54, 114 

J. A. Ibers and W. C. Hamilton (1974), II 
Vol. IV, Kynoch Press, Birminghal 

K. Kato and A. Nukui (1976), Die Kri : 
Acta Crystallogr. B 32, 2486 - 249: 

K. Kihara (1977), An orthorhombic 
about 105 and 180° C. Z. Kri tall o, 

A. J. Leadbetter, T. W. Smith, and A. F. 
Nature Phys. Sci. 244, 125 - 126 

A. Nukui, H. Nakazawa, and M. Ak 
tridymite. In press in Amer. Minel 

D. R. Peacor (1973), High temperat 
inversion. Z. Kristallogr. 138, 274 

M. Sato (1964), X-ray study oftridymite 
J. 4, 115 - 130 



-cell dimensions of tridymit 

:ponding density in th 
he high anisotropy an 
~om model I may thus 
are located around th 

Si lines. 
gen positions, that i 
erences of the circles. I 
lres with such split-atorr 
rked indication for th 
III in Figure 4, because 
;e described here, we car 
oms are located on fixe 
:obalite by Leadbetter 
ns on the circumferenc 
ridymite because it mu 
~urthermore, the oxyger. 
large distortion of th 

.cture. From these con­
lis hexagonal structur 
lmferences of the circl 
el II. The fully expande 
Ie realized in a higher-

11 planes, nearly in (001 . 
positions are inclined t 
,y using this angle, cP, on 
h is the correspondin ... 

e the departure of the .\ 
n those in the hexagonal 
J ~ 2dcoscP, where d i 
b direction. If the shap 
lpo~tionsandtherati 
ldes of oxygen atoms ar 
)oth relations must gi 
cs in both direction . 
Lor in these direction 
leir changes. 
fined for this hexagonal 
, B(Si) = 3.4A2. It i 
ution around the silicon 

K. Kihara: Thermal change in unit-cell dimensions of tridymite 253 

position is not spherical: the center and its vicinity are negative, but 
lower positive peaks are tetrahedrally distributed on positions in the 
other sides of the Si - 0 bonds. One interpretation is based on 
assuming that the silicon atoms are relaxed from the correct lattice 
ites to reduce distortion of tetrahedra. The other is by assuming 

anharmonic vibrations of the silicon atoms, each of which is in a 
noncentrosymmetrical field surrounded tetrahedrally by four oxygen 
atoms. In any event these effects probably contribute to the ap­
parently large thermal motion. 
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