Graphite R090047

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 286 of 472  


Name: Graphite
RRUFF ID: R090047
Ideal Chemistry: C
Locality: Merelani, Tanzania
Source: Wendell Wilson
Owner: RRUFF
Description: Silver gray platelets associated with diopside, R090046
Status: The identification of this mineral has been confirmed by single-crystal X-ray diffraction.
Quick search: [ All Graphite samples (3) ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented Sample. To view the entire high resolution spectra, one needs to change the max range to 1800, then click "refresh".
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R090047
Wavelength:
Sample Description: Unoriented Sample. To view the entire high resolution spectra, one needs to change the max range to 1800, then click "refresh".
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
POWDER DIFFRACTION 
RRUFF ID: R090047.9
Sample Description: Single crystal, powder profile is calculated
Cell Refinement Output: a: 2.460(5)Å    b: 4.262(7)Å    c: 6.67(2)Å
alpha: 90°    beta: 90°    gamma: 90°   Volume: 69.96(7)Å3    Crystal System: orthorhombic
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Graphite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Werner A G (1789) Mineralsystem des Herrn Inspektor Werners mit dessen Erlaubnis herausgegeben von C.A.S. Hoffmann, Bergmannisches Journal, 1, 369-386   [view file]

Lipson H, Stokes A R (1942) The structure of graphite, Proceedings of the Royal Society of London, A181, 101-105

Lynch R W, Drickamer H G (1966) Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride, Journal of Chemical Physics, 44, 181-184

Campbell S J, Kelly D C, Peacock T E (1989) Graphite: the ultimate large aromatic molecule, Australian Journal of Chemistry, 42, 479-488

Fayos J (1999) Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition, Journal of Solid State Chemistry, 148, 278-285

Nasdala L, Brenker F E, Glinnemann J, Hofmeister W, Gasparik T, Harris J W, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds, European Journal of Mineralogy, 15, issue 6 931-935

Reich S, Thomsen C (2004) Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London: Mathematical, Physical and Engineering Sciences, A362, 2271-2288

Hazen R M, Morrison S M (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga), American Mineralogist, 105, 627-651   [view file]

Song H, Chi G, Wang K, Li Z, Bethune K M, Potter E G, Liu Y (2022) The role of graphite in the formation of unconformity-related uranium deposits of the Athabasca Basin, Canada: A case study of Raman spectroscopy of graphite from the world-class Phoenix uranium deposit, American Mineralogist, 107, 2128-2142