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Abstract The strength of a bond, defined as p=s/r, where
s is the Pauling bond strength and r is the row number of
an M cation bonded to an oxide anion, is related to a
build-up of electron density along the MO bonds in a rel-
atively large number of oxide and hydroxyacid molecules,
three oxide minerals and three molecular crystals. As p in-
creases, the value of the electron density is observed to in-
crease at the bond critical points with the lengths of the
bonds shortening and the electronegativities of the M cat-
ions bonded to the oxide anion increasing. The assertion
that the covalency of a bond is intrinsically connected
to its bond strength is supported by the electron density
distribution and its bond critical point properties. A con-
nection also exists between the properties of the electron
density distributions and the connectivity of the bond
strength network formed by the bonded atoms of a struc-
ture.

Introduction

The single most characteristic property of a chemical
bond is its length, the shorter a particular bond, the greater
its strength (Pauling 1940). A number of expressions have
been proposed relating bond length, R, and bond strength,
s (See Brown and Shannon 1973=B&S). One of the sim-
plest has the form of the power law equation s=(Ro/R)�N

v.u.. The constants (Ro, N) in this equation were derived
by B&S for the observed bond lengths in a wide variety
of oxide crystals under the constraint that the sum of

the strengths of the bonds reaching each cation in a struc-
ture is equal to its valence. Constants were not only de-
rived by B&S for individual power law equations for
�25 different cations, but they were also derived for three
universal power law equations for first, second and third
row cations (see also, Brown 1981). The sum of the
strengths of the bonds reaching each atom in the oxides,
when calculated with these equations, agree to within
�0.05 valence units with the valence of the atom, regard-
less of whether the bond type is a closed shell or a shared
interaction (Bader 1990). The B&S bond strength model
has since found widespread use in assessing the probable
ªcorrectnessº of a crystal structure and the factors that
govern the coordination numbers of its cations (Brown
1988). It has also been used to identify atoms in structures
that are difficult to distinguish by X-ray diffraction meth-
ods as well as to identify the valence states of atoms in
mixed-valence compounds (Brown 1981, 1992) and as
an aid in the determination of crystal structures (Garrett
et al. 1982).

The results of a relatively large number of molecular
orbital calculations, completed for a variety of oxide and
hydroxyacid molecules containing first and second row
cations (Gibbs et al. 1987), have also been used to derive
a set of theoretical constants that are in fairly good agree-
ment with those derived by B&S for oxide crystals. With
the definition of bond strength as p=s/r v.u., where s is the
strength of an electrostatic bond and r is the row number
of the cation, it was discovered that R, the average MO
bond length, for both main group and closed shell transi-
tion cations for all six rows of the periodic table, can be
modeled with the power law equation R=1.39�p�0.22 such
that �95% of the variation in ln (R) can be explained in
terms of a linear dependence on ln (p) (Gibbs et al. 1987).

The following year, Boisen et al. (1988) forged a
graph-theoretic algorithm for calculating the resonance
bond numbers, n, for the bonds of a representative frag-
ment of a silicate and found that more than 95% of the
bond length variations recorded for ten silicate crystals
can be modeled with the expression R=1.39�(n/r)�0.22.
The fact that the same expression with s replaced by n
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models bond length variations equally well indicates that
both n and s measure related properties of an MO bonded
interaction. In effect, the valence electrons of a metal at-
om are pictured as resonating among alternative bonded
positions of the coordinated polyhedra of a crystal, result-
ing in a partitioning of the electrons among the bonded
network such that the bond numer of the bond tends to
be numerically equal to the Pauling bond strength. This
corresponds with Pauling's (1947) definition of bond
number for a bond in a metal or an intermetallic com-
pound as n=z/n v.u., where z is the number of single bonds
that resonate among a central atom and its n coordinated
atoms. In the graph-theoretic model, it is assumed that the
bonding is covalent with the sum of valence electrons in
the bonds associated with each atom conferring a neutral
configuration on each oxyen atom. One might conclude
from this result that the bonding in silicates is largely co-
valent in character, but this would clearly be unjustified
just as it would be unjustified to conclude that the bond-
ing is largley ionic simply because Pauling's (1929) elec-
trostatic valence rule is satisfied exactly for minerals like
quartz, garnet and olivine.

In this paper, bond strength will be examined in terms
of Bader's (1990) bond critical point properties of theoret-
ical and experimental electron density distributions for
the bonds reported for a relatively large number of mole-
cules, three minerals and three molecular crystals. It will
be shown that it correlates linearly with the average value
of the electron density distribution, ár(rc)ñ, evaluated at
the (3,�1) critical points, rc, along the bonds of the indi-
vidual coordinated polyhedra and that ár(rc)ñ is related to
bond length by a power law expression in the same way
that s, p and n are each related to bond length. A connec-
tion will be made between the strength of a bond and the
electronegativity of the M atom comprising the bond.

Power law relationships

In a recent study of the bond critical point properties cal-
culated for a large number of oxide and hydroxyacid mol-
ecules containing first and second row cations, Hill et al.
(1997) optimized the geometries of the molecules at the
Hartree-Fock/6-311++G** level. The average bond
lengths, R, obtained for each molecule in these calcula-
tions are plotted against p in Fig. 1 as is the average
BeO bond length observed for bromellite (BeO) (Downs
1991), the average CaO, BO and SiO bond lengths
observed for danburite (CaB2Si2O8) (Downs and Swope
1992), the average SiO bond lengths observed for coesite
(SiO2) (Downs 1995), the average CO bond lengths
observed for crystalline L-alanine (C3H7NO2) (Gatti et al.
1992), citrinin (C13H14O5) (Roversi et al. 1996) and the
average LiO and NO bond lenghs observed for Li
bis(tetramethylammonium) hexanitrocobaltate (III)
(Li[N(CH3)4]2[C0(NO2)6]) (Bianchi et al. 1996). As ex-
pected, the agreement between the two data sets in
Fig. 1 is fairly good with the average bond lengths for
the three minerals and the three molecular crystals falling

fairly close to the line defining the power curve fit to the
data for the molecules (Gibbs et al. 1987). The resulting
power equation (R=1.39�p�0.23) calculated for the oxide
and hydroxyacid molecular data and graphed in Fig. 1 is
statistically identical with that obtained earlier by Gibbs
et al. (1987) for oxide molecules and crystals.

In a bond critical point analysis of the molecules using
the strategies outlined by Bader (1990), the values of the
electron density, r(rc), were calculated for each MO bond
(Hill et al. 1997). The average value of the electron den-
sity, ár(rc)ñ, determined at the critical points of the coor-
dinated polyhedra for each molecule, decreases nonlinear-
ly with increasing R (Fig. 2) as defined by the power
equation R=1.60�ár(rc)ñ�0.22. This relationship is similar
to the empirical bond strength-bond length curves derived
by B&S for the oxides, particularly for the second row
cations where R=1.620�s�0.23. It is striking that the expo-
nent of this equation matches that obtained for the univer-
sal power law expression that relates R to ár(rc)ñ, p and
n/r, respectively. The same exponent and similar univer-
sal power law expressions also obtain between R and p
for nitride, sulfide and fluoride molecules and crystals
(Buterakos et al. 1992; Bartelmehs et al. 1989; Nicoll
et al. 1994). Hence, it is apparent that a similar connection
may exist between p, ár(rc)ñ and R for these materials as
well.

The average values of the electron density distribution
measured at the critical points for the bonds in the coor-
dinated polyhedra of bromellite, danburite, coesite and
crystalline L-alanine, citrinin and Li bis(tetramethylam-
monium) hexanitocobaltate (III) are also plotted in

Fig. 1 A scatter diagram of the average geometry optimized bond
lengths, R (�) plotted as open circles against the bond strength, p,
(v.u.) for hydroxide and oxide molecules (data taken from Table 1,
Hill et al. 1997). The average bond length data for the BeO bond in
bromellite, the average bond length data for the CaO and BO bonds
in danburite, the average SiO bond length in coesite and danburite
and the average CO bond lengths in L-alanine, citrinin and Li
bis(tetramethylammonium) hexanitrocobaltate (III) (Downs 1991,
1995; Downs and Swope 1992; Gatti et al. 1992; Roversi et al.
1996; Bianchi et al. 1996) are plotted against the value of p as open
squares
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Fig. 2 against R where it is seen that the data for the crys-
tals plot within the confines of the scatter of the theoret-
ical data calculated for the molecules. As both p and
ár(rc)ñ are related to R by a power law equation with the
same exponent, p can obviously be expected to be linearly
correlated with ár(rc)ñ as displayed in Fig. 3 where nearly
90% of the variation in ár(rc)ñ can be explained in terms
of a linear dependence on p. Again the data for the min-
erals and the molecular crystals fall within the confines of
the theoretical data calculated for the molecules. Indeed, a

regression analysis of the individual r(rc) values and the
individual CO bond lengths measured in a charge density
study of crystalline citrinin (Roversi et al. 1996) yields a
power law expression (R=1.65�r(rc)�0.28) that is statisti-
cally identical with the one graphed in Fig. 2 and the
one calculated by Hill et al. (1997). The agreement be-
tween the ár(rc)ñ values observed for the crystals and
the theoretical values calculated for the molecules is fairly
good given that the Hartree-Fock formalism utterly ig-
nores electron correlation. Typically, the agreement is
poor in regions where the electron density is small and
may explain why the ár(rc)ñ value calculated for the
LiO bond departs significantly from that observed for
the bond in Li bis(tetramethylammonium) hexanitroco-
baltate (III) (Li[N(CH3)4]2[C0(NO2)6]) (Bianchi et al.
1996).

A bond critical point model for electronegativity

Pauling (1940) originally assumed in the construction of
his atomic electronegativity scale that each atom has a
unique electronegativity value, c, regardless of its envi-
ronment. He found that not only does the value of c for
the atoms within a given row of the periodic table in-
crease from left to right, but that it also decreases from
top to bottom within a given column. Allen (1989) has ar-
gued that electronegativity is the third dimension of the
periodic table, playing a key role in systematizing the
properties of a vast array of known materials and in char-
acterizing the forces that bind atoms in molecules and
crystals. More recently, with the elucidation of the effects
of charge and hybridization, electronegativity has evolved
from a single valued quantity to a range of values that de-
pend on the environment of an atom in a molecule or a
crystal (Hinze et al. 1963; Mullay 1987; Bergmann and
Hinze 1996). For example, the electronegativity of hy-
bridized orbitals on C has been found to decrease in the
series sp>sp2>sp3 as the s-character of the bonded inter-
action decreases (simply because s electrons have a lower
energy than p electrons), the multiple bond character de-
creases and the coordination number of C increases (Allen
1989).

Despite the observation that a number of chemical phe-
nomena can be explained in terms of the electron density
distribution and electronegativity, only recently has an at-
tempt been made to relate the bcp properties of the elec-
tron density distribution of a molecule to the electroneg-
ativities of its atoms (Boyd and Edgecombe 1988). In this
study, an electronegativity factor is defined to be

FM � rb�X�=�NM� r�rc��R�MX�� �1�

for 21 diatomic hybride molecules where rb(X) is the
bonded radius of X atom (X=H in this case), NM is the
number of valence electrons that atom M contributes to
the molecule, r(rc) is the value of the electron density
at rc and R(M X) is the minimum energy MH bond length.
Assuming that the electronegativity of an atom M can be

Fig. 2 A scatter diagram of the average value of the electron density
at the bond critical points, ár(rc)ñ (e/�3), calculated for hydroxyacid
and oxide molecules plotted against the average geometry optimized
bond length R (�). The data observed for bromellite, danburite, coe-
site, L-alanine, citrinin, Li bis(tetramethylammonium) hexanitroco-
baltate (III) are plotted as open squares whereas the data for the
molecules are plotted as open circles (see the legend of Fig. 1 four
sources of data)

Fig. 3 A scatter diagram of the average value of the electron densi-
ty, ár(rc)ñ (e/�3), calculated at bond critical points for oxide and hy-
droxyacid molecules and plotted against the bond strength, p. The
data for three minerals and the two molecular crystals are plotted
as open squares and that for the molecules are plotted as open cir-
cles (see the legend of Fig. 1 for sources of data)
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expressed by the power law expression, cM=a�F b
M, and

selecting the constants a=1.938 and b=�0.2502 to yield
an electronegativity of 1.0 for Li and 4.0 for F, they found
that the cM values calculated for the molecules matching
Pauling's (1940) c-values to within 0.1, on average, with
a linear coefficient of determination of r2=0.98. As
R(MH) is highly correlated with rb(H), Hill et al. (1997)
redefined Eq. 1 to read

FM � rb�X�=�NM� r�rc�� �2�
and recalculated a=1.31 and b=�0.23 for the c-values of
1.0 and 4.0 for Li and F (the constants a and b were de-
rived for bcp properties calculated in �-units). A recalcu-
lation of the cM values with the expression

cM � 1:31�Fÿ0:23
M �3�

using the FM values given by Eq. 2 for the diatomic hy-
dride molecules yields values that match Pauling's values
with the same agreement as obtained with the FM values
generated with Eqs. 1 and 3. The question that comes to
mind is ªWhy does Eq. 3 work?º The answer is not
clear-cut. However, we know that as electronegativity in-
creases from left to right within a given row of the peri-
odic table that (1) rb(H) decreases nonlinearly; (2) r(rc)
increases nonlinearly; (3) that Z-effective increase linear-
ly as NM increases from left to right. Hence, the electro-
negativity of an atom is expected to increase with de-
creasing rb(H) and increasing r(rc) and NM. However,
contrary to the assumption made by Boyd and Edgecombe
(1988), R(MH) actually decreases rather than increases
within a row from left to right in the periodic table as
electronegativity increases.

When Hill et al. (1997) applied Eqs. 2 and 3 to the bcp
properties calculated for more than 50 oxide and hydroxy-
acid molecules, they found that several of the critical
point properties vary linearly with cM. As R(MO) decreas-
es and r(rc) increases, the orthogonal curvatures (|l1| and
|l2|) of r(rc) measured perpendicular to the bond path and
the curvature measured along the path, l3, for a given
bond each increase linearly with cM. Also, with the excep-
tion of the NO bond data, the Laplacian of r(rc), Ñ2 r(rc),
increases linearly with cM. In other words, as R(MO) de-
creases and r(rc) increases in value, the electron density
can be pictured as being concentrated radially toward
the bond path and away from the interatomic surface to-
ward the basins of the bonded atoms. Also, for the more
electronegative atoms, the local energy density, H(rc)
(Cremer and Kraka 1984), was found to decrease linearly
with cM, indicating that the build-up of electron density at
rc has a stabilizing effect on the molecules with the bond
becoming progressively more covalent as cM increases.
Similar trends are observed for the MN and MS bonds
in a comparable number of nitride and sulfide molecules
(Feth et al. in press; G.V. Gibbs et al., in preparation).

Gibbs et al. (accepted) have since found evidence in a
comparative study of the bcp properties for SiO and GeO
bonds in a variety of silicate and germanate molecules
that Ge has a slightly larger electronegativity than Si in

contrast to Pauling (1940) who found them to have iden-
tical electronegativities (1.8). To learn how the electro-
negativities of Si and Ge vary with bond length and coor-
dination number, calculations were completed for mole-
cules with 4-, 6- and 8-coordinated Si and Ge. As expect-
ed, the minimum energy bond lengths calculated for the
molecules were found to increase with increasing coordi-
nation number. Also, the cM values for Si and Ge calcu-
lated with Eqs. 2 and 3 decrease in a regular way with in-
creasing coordination number (denoted by a Roman nu-
meral):

c IVSi c IVGe c VISi c VIGe c VIIISi c VIIIGe

1.81 1.83 1.70 1.75 1.46 1.55.

In each case, the electronegativity of Ge, rather than being
equal to that of Si, is indicated to be �0.05 larger. Not on-
ly does this indicate that the electronegativity of Ge is
larger than that of Si as observed by Allred and Rochow
(1958) and Allen (1989), but it also indicates that the GeO
bond is slightly more covalent than the SiO bond, all other
thing being equal.

It is important to note that Hill et al. (1997) and Gibbs
et al. (accepted) were unable to obtain in their studies, the
electronegativity, cO, for the oxide anion (no more than
we were able in this study to obtain the electronegativity
of the oxide ions in the six crystals). This complicates the
situation because as cM changes for each M cation, so then
should cO change. Inasmuch as the character of the bond
is believed to be related to the electronegativity differ-
ences, |cM�cO| (Pauling 1940), it then follows that our as-
sumption that the covalency of an MO bond increases
with increasing cM may not be valid. Nonetheless, as
the trends reported here and by Hill et al. (1997), Feth
et al. (in press) and Gibbs et al. (accepted) between cM,
bond character and the bcp properties seem to conform
with chemical intuition, we believe that they are qualita-
tively correct and meaningful.

Boyd and Edgecombe (1988) concluded in their study
of electronegativities that their bcp model can not only be
used to obtain the electronegativities of substituents, but it
also can be extended to evaluate electronegativities for
theoretical and experimental electron density distribu-
tions. Figure 4 shows that cM increases nonlinearly with
increasing p for theoretical and experimental electron
density distributions for molecules and crystals. A similar
trend has been presented by Brown and Skowron (1990)
between electronegativity and Lewis acid strength. As ar-
gued by B&S (see also, Brown 1988), Fig. 4 also shows
that the Pauling bond strength, s, relates to the electron-
egativitiy of the coordinated M atom, the greater the value
of s, the greater electronegativity of the M cation and the
greater the covalency of the MO bond. The data obtained
for the minerals and the molecular crystals, as observed in
the earlier plots, scatter within the confines of the data for
the molecules. This indicates that the critical point prop-
erties of the electron density distributions for the mole-
cules, the molecular crystals and the minerals are similar.
Indeed, the bond critical point properties of the SiO(br)
bonds recently calculated for several hydroxyacid disilicic
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acid molecules (H6Si2O7) and the hydroxyacid pentasilic-
ic acid molecule, (H12Si5O16), agree with those observed,
on average, for coesite and danburite to within �5%
(G.V. Gibbs et al., accepted). Collectively, these results
show, as expected, that the geometry and electron density
distributions of a silicate and a representative molecule
are strikingly similar despite the crystal's much larger
size (Gibbs 1982; Gibbs and Boisen in press). They also
support the argument that the local force field and the
electron density distribution of a silicate SiO4 tetrahedral
oxyanion plays a determinantal role in governing the
structure and properties of the tetrahedral frame of a sili-
cate (Gibbs 1982).

Discussion

The correlations between bond strength, electronegativity
and the value of the electron density at critical points
along the bonds establish an important connection be-
tween the strength of a bond and its electron density dis-
tribution. As the strength of a particular bond depends on
its bond length, it follows that the shorter the bond, the
greater the electronegativity of the cation, the greater
the build-up of electron density along the bond and the
greater the enhancement of electron density toward the
bond path. These correlations establish a basis for the
connection proposed by B&S between the covalent char-
acter of a bond and its bond strength ± the greater the
bond strength, the more covalent the bond. It likewise
conforms with the well-developed correlation between
bond strength and Mulliken bond overlap populations es-
tablished by Gibbs (1982) ± the greater the overlap popu-
lation, the greater the bond strength and the shorter the
bonds. The discovery by Brown (1981; 1987; see also

Garrett et al. 1982) that an inverted map of the bond
strength network of a crystal closely approximates an ex-
perimental valence density distribution is a natural result
of the close connection that exists between bond strength
and the electron density distribution of a bonded interac-
tion. Likewise, it is evident that an intrinsic connection
exists between the bond strength network of the B&S
model and the topological properties of the electron den-
sity distributions, a connection that was suggested to exist
nearly 20 years ago by Bader et al. (1980). Finally, the
universal power law R=R0p�N begs a physical interpreta-
tion. While we are unable to offer such an interpretation,
it does provide grist for the theoretician's mill.
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