Cristobalite R060648

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 1001 of 4216  

Name: Cristobalite
RRUFF ID: R060648
Ideal Chemistry: SiO2
Locality: Idaho, USA
Source: Gemological Institute of America 29236 [view label]
Owner: RRUFF
Description: Blue cryptocrystalline massive, variety opal
Status: The identification of this mineral has been confirmed by X-ray diffraction and chemical analysis
Mineral Group: [ Cristobalite (11) ]
Quick search: [ All Cristobalite samples (7) ]
CHEMISTRY 
RRUFF ID: R060648.2
Sample Description: Microprobe Fragment
Measured Chemistry: Si1.00O2
Microprobe Data File: [ Download Excel File ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented sample, too fine-grained to orient
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R060648
Wavelength:
Sample Description: Unoriented sample, too fine-grained to orient
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
POWDER DIFFRACTION 
RRUFF ID: R060648.1
Sample Description: Powder
Cell Refinement Output: a: 4.9713(1)Å    b: 4.9713(1)Å    c: 6.9327(4)Å
alpha: 90°    beta: 90°    gamma: 90°   Volume: 171.33(1)Å3    Crystal System: tetragonal
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Cristobalite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

vom Rath G (1887) Ueber Cristobalit vom Cerro S. Cristóbal bei Pachuca (Mexico), Neues Jahrbuch für Mineralogie, Geologie und Palaontologie, 1887, 198-199   [view file]

Murdoch J (1942) Crystallographic notes: cristobalite, stephanite, natrolite, American Mineralogist, 27, 500-506   [view file]

Van Valkenburg A, Buie B F (1945) Octahedral cristobalite with quartz paramorphs from Ellora Caves, Hyderabad State, India, American Mineralogist, 30, 526-535   [view file]

Flörke V O W (1955) Strukturanomalien bei Tridymit und Cristobalit, Berichte der Deutschen Keramischen Gesellschaft., 32, 369-381

Flörke V O W (1957) Über die röntgen-mineralanalyse und die thermische ausdehnung von cristobalit and tridymit und über die zusammensetzung von silikamassen, Deutschen Keramischen Gesellschaft, 34, 343-390

Dollase W A (1965) Reinvestigation of the structure of low cristobalite, Zeitschrift für Kristallographie, 121, 369-377

Appleman D E, Nissen H U, Stewart D B, Clark J R, Dowty E, Huebner J S (1971) Studies of lunar plagioclases, tridymite, and cristobalite, Proceedings of the Second Lunar Science Conference, 1, 117-133   [view file]

Jones J B, Segnit E R (1972) Genesis of cristobalite and tridymite at low temperatures, Journal of the Geological Society of Australia, 18, 419-422

Mason B (1972) Lunar tridymite and cristobalite, American Mineralogist, 57, 1530-1535   [view file]

Leadbetter A J, Smith T W, Wright A F (1973) Structure of high cristobalite, Nature Physical Science, 244, 125-126

Peacor D P (1973) High-temperature single-crystal study of the cristobalite inversion, Zeitschrift für Kristallographie, 138, 274-298   [view file]

Peacor D R (1973) High-temperature single-crystal study of the cristobalite inversion, Zeitschrift für Kristallographie, 138, 274-298

Cohen L H, Klement W (1975) Differential thermal analysis investigation of the high-low cristobalite inversion under hydrostatic pressure to 7 kbar, Journal of the American Ceramic Society, 58, 206-208

Pluth J J, Smith J V, Faber J (1985) Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature, Journal of Applied Physics, 57, 1045-1049

de Jong B H W S, van Hoek J, Veeman W S, Manson D V (1987) X-ray diffraction and 29Si magic-angle-spinning NMR of opals: incoherent long- and short-range order in opal-CT, American Mineralogist, 72, 1195-1203   [view file]

Drees L R, Wilding L P, Smeck N E, Senkayi A L (1989) Silica in soils: quartz and disordered silica polymorphs, in Minerals in Soil Environments Editor S B Weed. Soil Science Society of America Madison Wisconsin, USA 913-974

Hatch D M, Ghose S (1991) The α-ß transition in cristobalite, SiO2, Physics and Chemistry of Minerals, 17, 554-562

Downs R T, Palmer D C (1994) The pressure behavior of α cristobalite, American Mineralogist, 79, 9-14   [view file]

Elzea J M, Odom I E, Miles W J (1994) Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction, Analytica Chimica Acta, 286, 107-116

Elzea J M, Odom I E, Miles W J (1994) Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by x-ray diffraction, Analytica Chimica Acta, 286, 107-116   [view file]

Palmer D C, Finger L W (1994) Pressure-induced phase transition in cristobalite: An X-ray powder diffraction study to 4.4 GPa, American Mineralogist, 79, 1-8   [view file]

Swamy V, Saxena S K, Sundman B, Zhang J (1994) A thermodynamic assessment of silica phase diagram, Journal of Geophysical Research, 99, 11787-11794

Elzea J M, Rice S B (1996) TEM and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal, Clays and Clay Minerals, 44, 492-500

Dove M T, Craig M S, Keen D A, Marshall W G, Redfern S A T, Trachenko K O, Tucker M G (2000) Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2, Mineralogical Magazine, 64, 569-576   [view file]

Monger H C, Kelly E F (2002) Silica minerals, in Soil Mineralogy with Environmental Applications Soil Science Society of America Madison Wisconsin, USA 611-636

Huang L, Durandurdu M, Kieffer J (2006) Transformation pathways of silica under high pressure, Nature Materials, 5, 977-981

Garg N, Sharma S M (2007) Classical molecular dynamical simulations of high pressure behavior of alpha cristobalite (SiO2), Journal of Physics: Condensed Matter, 19, 456201

Liang Y, Miranda C R, Scandolo S (2007) Tuning oxygen packing in silica by nonhydrostatic pressure, Physical Review Letters, 99, 215504-4

Donadio D, Martonak R, Raiteri P, Parrinello M (2008) Influence of temperature and anisotropic pressure on the phase transitions in α-cristobalite, Physical Review Letters, 100, 165502-4

Dera P, Lazarz J D, Prakapenka V B, Barkley M, Downs R T (2011) New insights into the high-pressure polymorphism of SiO2 cristobalite, Physics and Chemistry of Minerals, 38, 517-529

Jackson J C, Horton Jr. J W, Chou I, Belkin H E (2011) Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure, American Mineralogist, 96, 81-88

Poswal H K, Garg N, Somayazulu M, Sharma S M (2013) Pressure-induced structural transformations in the low-cristobalite form of AlPO4, American Mineralogist, 98, 285-291

Matsui M, Sato T, Funamori N (2014) Crystal structures and stabilities of cristobalite-helium phases at high pressures, American Mineralogist, 99, 184-189

Seddio A M, Korotev R L, Jolliff B L, Wang A (2015) Silica polymorphs in lunar granite: implications for granite petrogenesis on the Moon, American Mineralogist, 100, 1533-1543

Nattrass C, Horwell C J , Damby D E , Brown D, Stone V (2017) The effect of aluminium and sodium impurities on the in vitro toxicity and pro-inflammatory potential of cristobalite, Environmental Research, 159, 164-175

Arasuna A, Kigawa M, Fujii S, Endo T, Takahashi K, Okuno M (2018) Structural characterization of the body frame and spicules of a glass sponge, Minerals, 8, 88   [view file]

Nesbitt H W, Bancroft G M, Henderson G S (2018) Temperature dependence of Raman shifts and line widths for Q0 and Q2 crystals of silicates, phosphates, and sulphates, American Mineralogist, 103, 966-976

Novembre D, Pace C, Gimeno D (2018) Synthesis and characterization of wollastonite-2M by using a diatomite precursor, Mineralogical Magazine, 82, 95-110

Sirotkina E A, Bindi L, Bobrov A V, Tamarova A, Pushcharovsky D Y, Irifune T (2018) X-ray single-crystal structural characterization of Na2MgSiO4 with cristobalite-type structure syntheised at 22 GPa and 1800 °C, European Journal of Mineralogy, 30, 485-489

Takada A, Glaser K J, Bell R G, Catlow C R A (2018) Molecular dynamics study of tridymite, IUCrJ, 5, 325-334

Lee S, Xu H (2019) Using powder XRD and pair distribution function to determine anisotropic atomic displacement parameters of orthorhombic tridymite and tetragonal cristobalite, Acta Crystallographica, B75, S2052520619000933

Schipper C I, Rickard W D A, Reddy S M, Saxey D W, Castro J M, Fougerouse D, Quadir Z, Conway C, Prior D J, Lilly K (2020) Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition, American Mineralogist, 105, 510-524

Di Benedetto F, Giaccherini A, Romanelli M, Montegrossi G, Belluso E, Capella S, Zoleo A, Arcangeli G, Marinaccio A, Gottardo O, Capacci F (2021) A study of radicals in industrial raw cristobalite powders, Physics and Chemistry of Minerals, 48, 9

Cavosie A J, Rickard W D A, Evans N J, Rankenburg K, Roberts M, Macris C A, Koeberl C (2022) Origin of β-cristobalite in Libyan Desert glass: The hottest naturally occurring silica polymorph?, American Mineralogist, 107, 1325-1340