|
|
Name: Grunerite RRUFF ID: R070186 Ideal Chemistry: ◻Fe2+2Fe2+5Si8O22(OH)2 Locality: Homestake mine, 3800' level, Lead, Lawrence County, South Dakota, USA Source: California Institute of Technology CIT-6816 [view label] Owner: RRUFF Description: Parallel aggregate of brown acicular to fibrous crystals Status: The identification of this mineral is confirmed by single-crystal X-ray diffraction and chemical analysis. |
Mineral Group: [ amphibole (107) ] | ||
Quick search: [ All Grunerite samples (6) ] |
CHEMISTRY | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
RAMAN SPECTRUM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
BROAD SCAN WITH SPECTRAL ARTIFACTS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
POWDER DIFFRACTION | |||||||
---|---|---|---|---|---|---|---|
RRUFF ID: | R070186.9 | ||||||
Sample Description: | Single crystal, powder profile is calculated | ||||||
Cell Refinement Output: |
a: 9.533(4)Å b: 18.242(7)Å c: 5.333(1)Å alpha: 90° beta: 101.91(2)° gamma: 90° Volume: 907.5(6)Å3 Crystal System: monoclinic |
||||||
|
|
REFERENCES for Grunerite | |
---|---|
American Mineralogist Crystal Structure Database Record: [view record] |
|
Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file] |
|
Kenngott A (1853) VIII. Ordnung: Spathe. IX. Geschlecht: Augit-Spathe. 4. Grunerit, in Das Mohs'sche Mineralsystem Verlag und Druck Wien 62-77 [view file] |
|
Winchell A N (1931) Further studies in the amphibole group, American Mineralogist, 16, 250-266 [view file] |
|
Ross C S, Kerr P F (1932) The manganese minerals of a vein near Bald Knob, North Carolina, American Mineralogist, 17, 1-18 [view file] |
|
Klein C (1964) Cummingtonite-grunerite series: A chemical, optical and x-ray study, American Mineralogist, 49, 963-982 [view file] |
|
Finger L W (1969) The crystal structure and cation distribution of a grunerite, Mineralogical Society of America Special Paper, 2, 95-100 [view file] |
|
Leake B E (1978) Nomenclature of amphiboles, American Mineralogist, 63, 1023-1052 [view file] |
|
Steel E, Wylie A (1981) Mineralogical characteristics of asbestos, 1, in Geology of Asbestos Deposits Edwards Brothers, Inc. Ann Arbor, MI. 93-99 |
|
Goldman D S, Rossman G R (1982) The identification of Fe2+ in the M4 site of calcic amphiboles: reply, American Mineralogist, 67, 340-342 [view file] |
|
Uchida E (1983) Grunerite from the Shinyama ore deposit, Kamaishi mine, Japan, The Canadian Mineralogist, 21, 517-528 [view file] |
|
Hirschmann M, Evans B W, Yang H (1994) Composition and temperature dependence of Fe-Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction, American Mineralogist, 79, 862-877 [view file] |
|
Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy, Journal of Raman Spectroscopy, 28, 803-809 [link] |
|
Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names, The Canadian Mineralogist, 35, 219-246 [view file] |
|
Huang E P (2002) Raman spectroscopic study of amphiboles, Doctoral Dissertation, 1, 1-138 [view file] |
|
Boffa Ballaran T, Carpenter M A (2003) Line broadening and enthalpy: Some empirical calibrations of solid solution behaviour from IR spectra, Phase Transitions, 76, 137-154 |
|
Leake B E, Woolley A R, Birch W D, Burke E A J, Ferraris G, Grice J D, Hawthorne F C, Kisch H J, Krivovichev V G, Schumacher J C, Stephenson N C N, Whittaker E J W (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associations 1997 recommendations, The Canadian Mineralogist, 41, 1355-1362 [view file] |
|
Su S C (2003) A rapid and accurate procedure for the determination of refractive indices of regulated asbestos minerals, American Mineralogist, 88, 1979-1982 [view file] |
|
Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos, Mineralogical Magazine, 68, 455-465 [view file] |
|
Roth P (2007) Grunerite, in Minerals first discovered in Switzerland and minerals named after Swiss individuals Kristallografik Verlag Achberg Germany 182-183 |
|
Harper M, Lee E G, Doorn S S, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics, Journal of Occupational and Environmental Hygiene, 5, 761-770 [view file] |
|
Su S C (2008) in How to use the d-spacing/interfacial angle tables to index zone-axis patterns of amphibole asbestos minerals obtained by selected area electron diffraction in transmission electron microscope Asbestos Analysis Consulting Newark, Delaware 1-160 [view file] |
|
Apopei A I, Buzgar N (2010) The Raman study of amphiboles, Analele Stiintifice Ale Universitatii, Al. I. Cuza Iasi Geologie, 56, 57-83 [view file] |
|
Gunter M E (2010) Defining asbestos: differences between the built and natural environments, Chimia, 64, 747-752 |
|
Yong T, Dera P, Zhang D (2019) Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph, Physics and Chemistry of Minerals, 46, 215-227 |
|
Germine M, Puffer J H (2020) Analytical transmission electron microscopy of amosite asbestos from South Africa, Archives of Environmental & Occupational Health, 75, 36-44 |
|
Tribaudino M, Hovis G L, Almer C, Leaman A (2022) Thermal expansion of minerals in the amphibole supergroup, American Mineralogist, 107, 1302-1312 |
|
|