Goethite R050142

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 945 of 2398  


Name: Goethite
RRUFF ID: R050142
Ideal Chemistry: FeO(OH)
Locality: Park County, Colorado, USA
Source: Dave Bunk Minerals
Owner: RRUFF
Description: Radiating spray of black to brown platy crystals
Status: The identification of this mineral has been confirmed by X-ray diffraction and chemical analysis
Mineral Group: [ Diaspore (11) ]
Quick search: [ All Goethite samples (4) ]
CHEMISTRY 
RRUFF ID: R050142.2
Sample Description: Microprobe Fragment
Measured Chemistry: FeO(OH)
Reference File: [ View PDF ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Sample is oriented, mounted onto a pin and polished
Pin ID: M00090
Orientation: Laser parallel to  b*  (0 1 0).     Fiducial mark perpendicular to laser is parallel to  -c   [0 0 -1].
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R050142
Wavelength:
Sample Description: Unoriented sample
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
INFRARED SPECTRUM (Attenuated Total Reflectance) 
RRUFF ID: R050142.1
Sample Description: Powder
Instrument settings: SensIR Durascope on a Nicolet Magna 860 FTIR
Resolution:
X Min:    X Max:    X Sort:
RRUFF ID: R050142.1
Sample Description: Powder
Instrument settings: PIKE GladiATR - Far-IR on a Nicolet Magna 860 FTIR
Resolution:
X Min:    X Max:    X Sort:
POWDER DIFFRACTION 
RRUFF ID: R050142.1
Sample Description: Powder
Cell Refinement Output: a: 9.9613(2)Å    b: 3.0226(2)Å    c: 4.6017(3)Å
alpha: 90.°    beta: 90.°    gamma: 90.°   Volume: 138.555(9)Å3    Crystal System: orthorhombic
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Goethite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Lenz J G (1806) Göthit, in Tabellen über das gesammte Mineralreich Göpferdts Jena 46-46

Posnjak E, Merwin H E (1919) The hydrated ferric oxides, American Journal of Science, 47, 311-348   [view file]

Spencer L J (1919) Mineralogical characters of turite (=turgite) and some other iron-ores from Nova Scotia, Mineralogical Magazine, 18, 339-348   [view file]

Hoppe W (1940) Über die kristallstruktur von α-AlOOH (diaspor) und α-FeOOH (nadeleisenerz), Zeitschrift für Kristallographie, 103, 73-89   [view file]

Bernal J D, Dasgupta D R, Mackay A L (1959) The oxides and hydroxides of iron and their structural inter-relationships, Clay Minerals Bulletin, 4, 15-30

Gorton A T, Bitsianes G, Joseph T L (1965) Thermal expansion coefficients for iron and its oxides from X-ray diffraction measurements at elevated temperatures, Transactions of the Metallurgical Society of AIME, 233, 1519-1525

Szytula A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W (1968) Neutron Diffraction Studies of α-FeOOH, Physica Status Solidi, 26, 429-434

Cech F, Johan Z (1969) Identité de l´allcharite et de la goethite, Bulletin de la Société Française de Minéralogie et de Cristallographie, 92, 99-100   [view file]

International Mineralogical Association (1980) International Mineralogical Association: Commission on new minerals and mineral names, Mineralogical Magazine, 43, 1053-1055   [view file]

Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite, Clays and Clay Minerals, 31, 277-284   [view file]

Wolska E, Schwertmann U (1989) Nonstoichiometric structures during dehydroxylation of goethite, Zeitschrift für Kristallographie, 189, 223-237   [view file]

Cornell R M, Giovanoli R (1991) Transformation of akaganéite into goethite and hematite in the presence of Mn, Clays and Clay Minerals, 39, 144-150   [view file]

de Faria D L A, Silva S V, de Oliveira M T (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides, Journal of Raman Spectroscopy, 28, 873-878   [link]

Oh S J, Cook D C, Townsend H E (1998) Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interactions, 112, 59-65   [link]

Gualtieri A F, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction, American Mineralogist, 84, 895-904   [view file]

Shannon R D, Shannon R C, Medenbach O, Fischer R X (2002) Refractive index and dispersion of fluorides and oxides, Journal of Physical and Chemical Reference Data, 31, 931-970   [view file]

Frankel R B, Bazylinski D A (2003) Biologically induced mineralization by bacteria, Reviews in Mineralogy and Geochemistry, 54, 95-114

Hamilton V E, McSween H Y, Hapke B (2005) Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols, Journal of Geophysical Research, 110, E12006   [link]

Yang H, Lu R, Downs R T, Costin G (2006) Goethite, α–FeO(OH), from single–crystal data, Acta Crystallographica, E62, i250-i252   [view file]

Faria D L A, Lopes F N (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them?, Vibrational Spectroscopy, 45, 117-121

Alvarez M, Sileo E E, Rueda E H (2008) Structure and reactivity of synthetic Co-substituted goethites, American Mineralogist, 93, 584-590   [view file]

Kučerová G, Majzlan J, Lalinská-Voleková B, Radková A, Bačík P, Michňová J, Šottník P, Jurkovič L, Klimko T, Steininger R, Göttlicher J (2014) Mineralogy of neutral mine drainage in the tailings of siderite-Cu ores in eastern Slovakia, The Canadian Mineralogist, 52, 779-798

Sobron P, Bishop J L, Blake D F, Chen B, Rull F (2014) Natural Fe-bearing oxides and sulfates from the Rio Tinto Mars analog site: Critical assessment of VNIR reflectance spectroscopy, laser Raman spectroscopy, and XRD as mineral identification tools, American Mineralogist, 99, 1199-1205

Wang M, Chou I, Lu W, de Vivo B (2015) Effects of CH4 and CO2 on the sulfidization of goethite and magnetite: an in situ Raman spectroscopic study in high-pressure capillary optical cells at room temperature, European Journal of Mineralogy, 27, 193-201

Kreissl S, Bolanz R, Göttlicher J, Steininger R, Tarassov, Markl G (2016) Structural incorporation of W6+ into hematite and goethite: A combined study of natural and synthetic iron oxides developed from precursor ferrihydrite and the preservation of ancient fluid compositions in hematite, American Mineralogist, 101, 2701-2715

Negrão L B A, Da Costa M L, Pöllmann H, Horn A (2018) An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon, Mineralogical Magazine, 82, 413-431

Voelz J L, Arnold W A, Penn R L (2018) Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles, American Mineralogist, 103, 1021-1029

Markl G, Keim M F, Bayerl R (2019) Unusual mineral diversity in hydrothermal vein-type deposit: The Clara mine, SW Germany, as a type example, The Canadian Mineralogist, 57, 427-456

Heaney P J, Oxman M J, Chen S A (2020) A structural study of size-dependent lattice variation: In situ X-ray diffraction of the growth of goethite nanoparticles from 2-line ferrihydrite, American Mineralogist, 105, 652-663