Important Update News

The RRUFF Project has been migrated to RRUFF.net. Please update your bookmarks immediately, if you have not done so.

The data on this website is already three years out of date, and the entire website will be taken offline before the end of the year.

We are grateful to NASA for the funding of this effort.

Grunerite X050095

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 2 of 6  
Name: Grunerite
RRUFF ID: X050095
Ideal Chemistry: ◻Fe2+2Fe2+5Si8O22(OH)2
Locality: Mount Write, Mistassini, Quebec, Canada
Source: G.R. Rossman 1635
Owner: Caltech
Description:
Status: The identification of this mineral has been determined only by Raman spectroscopy
Mineral Group: [ amphibole (107) ]
Quick search: [ All Grunerite samples (6) ]
RAMAN SPECTRUM 
Sample Description: de-polarized laser oriented perpendicular to the (110) face
X Min:    X Max:    X Sort:
REFERENCES for Grunerite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Kenngott A (1853) VIII. Ordnung: Spathe. IX. Geschlecht: Augit-Spathe. 4. Grunerit, in Das Mohs'sche Mineralsystem Verlag und Druck Wien 62-77   [view file]

Winchell A N (1931) Further studies in the amphibole group, American Mineralogist, 16, 250-266   [view file]

Ross C S, Kerr P F (1932) The manganese minerals of a vein near Bald Knob, North Carolina, American Mineralogist, 17, 1-18   [view file]

Klein C (1964) Cummingtonite-grunerite series: A chemical, optical and x-ray study, American Mineralogist, 49, 963-982   [view file]

Finger L W (1969) The crystal structure and cation distribution of a grunerite, Mineralogical Society of America Special Paper, 2, 95-100   [view file]

Leake B E (1978) Nomenclature of amphiboles, American Mineralogist, 63, 1023-1052   [view file]

Steel E, Wylie A (1981) Mineralogical characteristics of asbestos, 1, in Geology of Asbestos Deposits Edwards Brothers, Inc. Ann Arbor, MI. 93-99

Goldman D S, Rossman G R (1982) The identification of Fe2+ in the M4 site of calcic amphiboles: reply, American Mineralogist, 67, 340-342   [view file]

Uchida E (1983) Grunerite from the Shinyama ore deposit, Kamaishi mine, Japan, The Canadian Mineralogist, 21, 517-528   [view file]

Hirschmann M, Evans B W, Yang H (1994) Composition and temperature dependence of Fe-Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction, American Mineralogist, 79, 862-877   [view file]

Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy, Journal of Raman Spectroscopy, 28, 803-809   [link]

Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names, The Canadian Mineralogist, 35, 219-246   [view file]

Huang E P (2002) Raman spectroscopic study of amphiboles, Doctoral Dissertation, 1, 1-138   [view file]

Boffa Ballaran T, Carpenter M A (2003) Line broadening and enthalpy: Some empirical calibrations of solid solution behaviour from IR spectra, Phase Transitions, 76, 137-154

Leake B E, Woolley A R, Birch W D, Burke E A J, Ferraris G, Grice J D, Hawthorne F C, Kisch H J, Krivovichev V G, Schumacher J C, Stephenson N C N, Whittaker E J W (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s 1997 recommendations, The Canadian Mineralogist, 41, 1355-1362   [view file]

Su S C (2003) A rapid and accurate procedure for the determination of refractive indices of regulated asbestos minerals, American Mineralogist, 88, 1979-1982   [view file]

Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos, Mineralogical Magazine, 68, 455-465   [view file]

Roth P (2007) Grunerite, in Minerals first discovered in Switzerland and minerals named after Swiss individuals Kristallografik Verlag Achberg Germany 182-183

Harper M, Lee E G, Doorn S S, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics, Journal of Occupational and Environmental Hygiene, 5, 761-770   [view file]

Su S C (2008) in How to use the d-spacing/interfacial angle tables to index zone-axis patterns of amphibole asbestos minerals obtained by selected area electron diffraction in transmission electron microscope Asbestos Analysis Consulting Newark, Delaware 1-160   [view file]

Apopei A I, Buzgar N (2010) The Raman study of amphiboles, Analele Stiintifice Ale Universitatii, Al. I. Cuza Iasi Geologie, 56, 57-83   [view file]

Gunter M E (2010) Defining asbestos: differences between the built and natural environments, Chimia, 64, 747-752

Yong T, Dera P, Zhang D (2019) Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph, Physics and Chemistry of Minerals, 46, 215-227

Germine M, Puffer J H (2020) Analytical transmission electron microscopy of amosite asbestos from South Africa, Archives of Environmental & Occupational Health, 75, 36-44

Tribaudino M, Hovis G L, Almer C, Leaman A (2022) Thermal expansion of minerals in the amphibole supergroup, American Mineralogist, 107, 1302-1312