Important Update News
The RRUFF Project has been migrated to RRUFF.net. Please update your bookmarks immediately, if you have not done so.
The data on this website is already three years out of date, and the entire website will be taken offline before the end of the year.
We are grateful to NASA for the funding of this effort.
| A | This mineral is Anthropogenic. |
| G | This mineral is directly dated. |
| B | This mineral is reported as having this age. |
| Y | This mineral is using an age reported as an element mineralization period. |
| O | This mineral is using an age calculated from all data at the locality. |
| R | The age displayed for this mineral originates from a different, non-child locality. |
| P | The age displayed for this mineral is the range of ages for this mineral at all of this locality's children. |
| This mineral's age has not yet been recorded. |
| Mineral name | Structural Groups | IMA Formula | Max Age (Ma) | Min Age (Ma) | # of Sublocalities containing mineral | LOCALITY IDs, not mindat ids | # of localities containing mineral |
|---|---|---|---|---|---|---|---|
| Acanthite (*) | Acanthite | Ag2S | 561 | 4.528 | 0 | 2793 | |
| Albite (*) | Feldspar | Na(AlSi3O8) | 561 | 4.528 | 0 | 8803 | |
| Arrojadite-(KFe) (*) | Arrojadite | (KNa)Fe2+(CaNa2)Fe2+13Al(PO4)11(PO3OH)(OH)2 | 561 | 4.528 | 0 | 50 | |
| Arrojadite-(SrFe) (*) | Arrojadite | SrFe2+(CaNa2)Fe2+13Al(PO4)11(PO3OH)(OH)2 | 561 | 4.528 | 0 | 2 | |
| Arsenopyrite (*) | Arsenopyrite | FeAsS | 561 | 4.528 | 0 | 9052 | |
| Autunite (*) | Autunite | Ca(UO2)2(PO4)2·10-12H2O | 561 | 4.528 | 0 | 1272 | |
| Barbosalite (*) | Lazulite | Fe2+Fe3+2(PO4)2(OH)2 | 561 | 4.528 | 0 | 43 | |
| Bassetite (*) | None | Fe2+(UO2)2(PO4)2(H2O)10 | 561 | 4.528 | 0 | 51 | |
| Benyacarite (*) | Paulkerrite | (H2O)2Mn2Ti2Fe3+(PO4)4(OF)(H2O)10·4H2O | 561 | 4.528 | 0 | 8 | |
| Beraunite (*) | Beraunite | Fe3+6(PO4)4O(OH)4·6H2O | 561 | 4.528 | 0 | 136 | |
| Bermanite (*) | Arthurite | Mn2+Mn3+2(PO4)2(OH)2·4H2O | 561 | 4.528 | 0 | 55 | |
| Berthierine (*) | Clay Serpentine | (Fe2+,Fe3+,Al)3(Si,Al)2O5(OH)4 | 561 | 4.528 | 0 | 59 | |
| Beryl (*) | Beryl | Be3Al2Si6O18 | 561 | 4.528 | 0 | 4286 | |
| Bismite (*) | None | Bi2O3 | 561 | 4.528 | 0 | 214 | |
| Bismuth (*) | Arsenic | Bi | 561 | 4.528 | 0 | 1966 | |
| Bismuthinite (*) | Stibnite | Bi2S3 | 561 | 4.528 | 0 | 1935 | |
| Brazilianite (*) | Not in a structural group | NaAl3(PO4)2(OH)4 | 561 | 4.528 | 0 | 59 | |
| Brochantite (*) | Brochantite | Cu4(SO4)(OH)6 | 561 | 4.528 | 0 | 1633 | |
| Cacoxenite (*) | None | Fe3+24AlO6(PO4)17(OH)12·75H2O | 561 | 4.528 | 0 | 280 | |
| Calcioferrite (*) | Calcioferrite | Ca4MgFe3+4(PO4)6(OH)4·12H2O | 561 | 4.528 | 0 | 9 | |
| Calcite (*) | Calcite | Ca(CO3) | 561 | 4.528 | 0 | 27770 | |
| Caresite (*) | Hydrotalcite | Fe2+4Al2(OH)12(CO3)·3H2O | 561 | 4.528 | 0 | 3 | |
| Carlhintzeite (*) | None | Ca2AlF7·H2O | 561 | 4.528 | 0 | 8 | |
| Cassiterite (*) | Rutile | SnO2 | 561 | 4.528 | 0 | 5171 | |
| Chalcanthite (*) | Chalcanthite | Cu(SO4)·5H2O | 561 | 4.528 | 0 | 925 | |
| Chalcocite (*) | None | Cu2S | 561 | 4.528 | 0 | 5707 | |
| Chalcophanite (*) | None | ZnMn4+3O7·3H2O | 561 | 4.528 | 0 | 197 | |
| Chalcopyrite (*) | Chalcopyrite | CuFeS2 | 561 | 4.528 | 0 | 27198 | |
| Chalcosiderite (*) | Turquoise | CuFe3+6(PO4)4(OH)8·4H2O | 561 | 4.528 | 0 | 77 | |
| Chamosite (*) | Chlorite Clay | (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8 | 561 | 4.528 | 0 | 577 | |
| Cheralite (*) | Monazite | CaTh(PO4)2 | 561 | 4.528 | 0 | 50 | |
| Chernikovite (*) | Natroautunite | (H3O)(UO2)(PO4)·3H2O | 561 | 4.528 | 0 | 21 | |
| Childrenite (*) | Childrenite | Fe2+Al(PO4)(OH)2·H2O | 561 | 4.528 | 0 | 93 | |
| Chrysocolla (*) | Allophane | (Cu2-xAlx)H2-xSi2O5(OH)4·nH2O | 561 | 4.528 | 0 | 3531 | |
| Columbite-(Fe) (*) | Columbite | Fe2+Nb2O6 | 561 | 4.528 | 0 | 518 | |
| Connellite (*) | Connellite | Cu36(SO4)(OH)62Cl8·6H2O | 561 | 4.528 | 0 | 295 | |
| Copper (*) | Copper | Cu | 561 | 4.528 | 0 | 3846 | |
| Covellite (*) | Covellite | CuS | 561 | 4.528 | 0 | 4165 | |
| Cryptomelane (*) | Coronadite | K(Mn4+7Mn3+)O16 | 561 | 4.528 | 0 | 599 | |
| Cubanite (*) | Cubanite Wurtzite | CuFe2S3 | 561 | 4.528 | 0 | 802 | |
| Cuprite (*) | Not in a structural group | Cu2O | 561 | 4.528 | 0 | 2970 | |
| Cuprobismutite (*) | None | Cu8AgBi13S24 | 561 | 4.528 | 0 | 43 | |
| Cyrilovite (*) | Wardite | NaFe3+3(PO4)2(OH)4·2H2O | 561 | 4.528 | 0 | 60 | |
| Devilline (*) | Devilline | CaCu4(SO4)2(OH)6·3H2O | 561 | 4.528 | 0 | 366 | |
| Digenite (*) | Digenite | Cu1.8S | 561 | 4.528 | 0 | 1027 | |
| Djurleite (*) | None | Cu31S16 | 561 | 4.528 | 0 | 300 | |
| Dufrénite (*) | Dufrénite | Ca0.5Fe2+Fe3+5(PO4)4(OH)6·2H2O | 561 | 4.528 | 0 | 139 | |
| Earlshannonite (*) | Arthurite | Mn2+Fe3+2(PO4)2(OH)2·4H2O | 561 | 4.528 | 0 | 12 | |
| Eleonorite (*) | Beraunite | Fe3+6(PO4)4O(OH)4·6H2O | 561 | 4.528 | 0 | 51 | |
| Emplectite (*) | Chalcostibite | CuBiS2 | 561 | 4.528 | 0 | 246 | |
| Eosphorite (*) | Childrenite | Mn2+Al(PO4)(OH)2·H2O | 561 | 4.528 | 0 | 128 | |
| Fairfieldite (*) | Fairfieldite | Ca2Mn2+(PO4)2·2H2O | 561 | 4.528 | 0 | 72 | |
| Ferrisicklerite (*) | Olivine | Li1-x(Fe3+,Mn2+)(PO4) | 561 | 4.528 | 0 | 108 | |
| Ferrorockbridgeite (*) | Rockbridgeite | (Fe2+,Mn2+)2Fe3+3(PO4)3(OH)4(H2O) | 561 | 4.528 | 0 | 1 | |
| Fluellite (*) | None | Al2(PO4)F2(OH)·7H2O | 561 | 4.528 | 0 | 40 | |
| Fluorapatite (*) | Apatite | Ca5(PO4)3F | 561 | 4.528 | 0 | 2740 | |
| Fluorite (*) | Fluorite | CaF2 | 561 | 4.528 | 0 | 9617 | |
| Flurlite (*) | Flurlite | Zn2+Zn2+3Fe3+(PO4)3(OH)2(H2O)7·2H2O | 561 | 4.528 | 0 | 1 | |
| Frondelite (*) | Rockbridgeite | (Mn2+0.5Fe3+0.5)2Fe3+3(PO4)3(OH)5 | 561 | 4.528 | 0 | 52 | |
| Galena (*) | Rocksalt | PbS | 561 | 4.528 | 0 | 24243 | |
| Goethite (*) | Diaspore | FeO(OH) | 561 | 4.528 | 0 | 7437 | |
| Goyazite (*) | Alunite | SrAl3(PO4)(PO3OH)(OH)6 | 561 | 4.528 | 0 | 173 | |
| Graftonite (*) | Graftonite | Fe2+Fe2+2(PO4)2 | 561 | 4.528 | 0 | 107 | |
| Graphite (*) | None | C | 561 | 4.528 | 0 | 2812 | |
| Greenockite (*) | Wurtzite | CdS | 561 | 4.528 | 0 | 717 | |
| Gypsum (*) | Gypsum | Ca(SO4)·2H2O | 561 | 4.528 | 0 | 6890 | |
| Hagendorfite (*) | Alluaudite | Na2MnFe2+Fe3+(PO4)3 | 561 | 4.528 | 0 | 17 | |
| Hematite (*) | Corundum | Fe2O3 | 561 | 4.528 | 0 | 14640 | |
| Hemimorphite (*) | Not in a structural group | Zn4(Si2O7)(OH)2·H2O | 561 | 4.528 | 0 | 1689 | |
| Heterosite (*) | Olivine | Fe3+(PO4) | 561 | 4.528 | 0 | 204 | |
| Hopeite (*) | Hopeite | Zn3(PO4)2·4H2O | 561 | 4.528 | 0 | 29 | |
| Hureaulite (*) | Hureaulite | Mn2+5(PO3OH)2(PO4)2·4H2O | 561 | 4.528 | 0 | 125 | |
| Ilmenite (*) | Corundum | Fe2+Ti4+O3 | 561 | 4.528 | 0 | 5433 | |
| Jahnsite-(CaMnFe) (*) | Jahnsite | CaMn2+Fe2+2Fe3+2(PO4)4(OH)2·8H2O | 561 | 4.528 | 0 | 27 | |
| Jarosite (*) | Alunite | KFe3+3(SO4)2(OH)6 | 561 | 4.528 | 0 | 2228 | |
| Jungite (*) | Not in a structural group | Ca2Zn4Fe3+8(PO4)9(OH)9·16H2O | 561 | 4.528 | 0 | 2 | |
| Kaolinite (*) | Clay Kaolinite | Al2Si2O5(OH)4 | 561 | 4.528 | 0 | 5591 | |
| Kastningite (*) | Stewartite | Mn2+Al2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 8 | |
| Kayrobertsonite (*) | Nordgauite | MnAl2(PO4)2(OH)2·6H2O | 561 | 4.528 | 0 | 2 | |
| Keckite (*) | Jahnsite | CaMn(Fe3+,Mn)2Fe3+2(PO4)4(OH)3·7H2O | 561 | 4.528 | 0 | 10 | |
| Kingsmountite (*) | Calcioferrite | Ca3MnFe2+Al4(PO4)6(OH)4·12H2O | 561 | 4.528 | 0 | 12 | |
| Kryzhanovskite (*) | Reddingite | (Fe3+,Mn2+)3(PO4)2(OH,H2O)3 | 561 | 4.528 | 0 | 34 | |
| Kummerite (*) | Laueite | Mn2+Fe3+Al(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 1 | |
| Landesite (*) | Reddingite | Mn2+9Fe3+3(PO4)8(OH)3·9H2O | 561 | 4.528 | 0 | 14 | |
| Langite (*) | None | Cu4(SO4)(OH)6·2H2O | 561 | 4.528 | 0 | 593 | |
| Laueite (*) | Laueite | Mn2+Fe3+2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 70 | |
| Lehnerite (*) | None | Mn2+(UO2)2(PO4)2·8H2O | 561 | 4.528 | 0 | 1 | |
| Lepidocrocite (*) | Lepidocrocite | Fe3+O(OH) | 561 | 4.528 | 0 | 581 | |
| Leucophosphite (*) | Leucophosphite | KFe3+2(PO4)2(OH)·2H2O | 561 | 4.528 | 0 | 110 | |
| Libethenite (*) | Andalusite | Cu2(PO4)(OH) | 561 | 4.528 | 0 | 234 | |
| Lipscombite (*) | Lipscombite | Fe2+Fe3+2(PO4)2(OH)2 | 561 | 4.528 | 0 | 47 | |
| Ludlamite (*) | None | Fe2+3(PO4)2·4H2O | 561 | 4.528 | 0 | 66 | |
| Mackinawite (*) | None | (Fe,Ni)1+xS (x = 0-0.07) | 561 | 4.528 | 0 | 451 | |
| Magnetite (*) | Spinel | Fe2+Fe3+2O4 | 561 | 4.528 | 0 | 14899 | |
| Malachite (*) | Malachite | Cu2(CO3)(OH)2 | 561 | 4.528 | 0 | 12537 | |
| Manganflurlite (*) | Flurlite | ZnMn2+3Fe3+(PO4)3(OH)2(H2O)7·2H2O | 561 | 4.528 | 0 | 1 | |
| Mangangordonite (*) | Laueite | Mn2+Al2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 6 | |
| Marcasite (*) | Marcasite | FeS2 | 561 | 4.528 | 0 | 5674 | |
| Matildite (*) | None | AgBiS2 | 561 | 4.528 | 0 | 252 | |
| Matulaite (*) | None | Fe3+Al7(PO4)4(PO3OH)2(OH)8(H2O)8·8H2O | 561 | 4.528 | 0 | 10 | |
| Messelite (*) | Fairfieldite | Ca2Fe2+(PO4)2·2H2O | 561 | 4.528 | 0 | 43 | |
| Meta-autunite (*) | Meta-autunite | Ca(UO2)2(PO4)2·6H2O | 561 | 4.528 | 0 | 388 | |
| Metaswitzerite (*) | None | Mn2+3(PO4)2·4H2O | 561 | 4.528 | 0 | 22 | |
| Metatorbernite (*) | None | Cu(UO2)2(PO4)2·8H2O | 561 | 4.528 | 0 | 443 | |
| Meurigite-K (*) | Phosphofibrite | KFe3+8(PO4)6(OH)7·6.5H2O | 561 | 4.528 | 0 | 21 | |
| Microcline (*) | Feldspar | K(AlSi3O8) | 561 | 4.528 | 0 | 4924 | |
| Mitridatite (*) | Arseniosiderite | Ca2Fe3+3O2(PO4)3·3H2O | 561 | 4.528 | 0 | 129 | |
| Molybdenite (*) | Molybdenite | MoS2 | 561 | 4.528 | 0 | 5800 | |
| Morinite (*) | None | NaCa2Al2(PO4)2(OH)F4·2H2O | 561 | 4.528 | 0 | 22 | |
| Muscovite (*) | Mica Clay | KAl2(Si3Al)O10(OH)2 | 561 | 4.528 | 0 | 17380 | |
| Nontronite (*) | Clay Smectite-vermiculite | Na0.3Fe3+2(Si,Al)4O10(OH)2·nH2O | 561 | 4.528 | 0 | 471 | |
| Nordgauite (*) | Nordgauite | MnAl2(PO4)2(F,OH)2·5.5H2O | 561 | 4.528 | 0 | 4 | |
| Orthoclase (*) | Feldspar | K(AlSi3O8) | 561 | 4.528 | 0 | 2349 | |
| Pachnolite (*) | None | NaCaAlF6·H2O | 561 | 4.528 | 0 | 18 | |
| Parahopeite (*) | Parahopeite | Zn3(PO4)2·4H2O | 561 | 4.528 | 0 | 11 | |
| Parascholzite (*) | None | CaZn2(PO4)2·2H2O | 561 | 4.528 | 0 | 12 | |
| Paravauxite (*) | Laueite | Fe2+Al2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 19 | |
| Pavonite (*) | Pavonite | AgBi3S5 | 561 | 4.528 | 0 | 72 | |
| Perloffite (*) | Bjarebyite | BaMn2+2Fe3+2(PO4)3(OH)3 | 561 | 4.528 | 0 | 7 | |
| Petscheckite (*) | None | U4+Fe2+Nb2O8 | 561 | 4.528 | 0 | 4 | |
| Phosphoferrite (*) | Reddingite | Fe2+3(PO4)2·3H2O | 561 | 4.528 | 0 | 31 | |
| Phosphophyllite (*) | Phosphophyllite | Zn2Fe2+(PO4)2·4H2O | 561 | 4.528 | 0 | 29 | |
| Phosphosiderite (*) | Phosphosiderite | Fe3+(PO4)·2H2O | 561 | 4.528 | 0 | 182 | |
| Posnjakite (*) | None | Cu4(SO4)(OH)6·H2O | 561 | 4.528 | 0 | 309 | |
| Pseudolaueite (*) | Stewartite | Mn2+Fe3+2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 10 | |
| Pseudomalachite (*) | None | Cu5(PO4)2(OH)4 | 561 | 4.528 | 0 | 369 | |
| Purpurite (*) | Olivine | Mn3+(PO4) | 561 | 4.528 | 0 | 80 | |
| Pyrite (*) | Pyrite | FeS2 | 561 | 4.528 | 0 | 39462 | |
| Pyrolusite (*) | Rutile | MnO2 | 561 | 4.528 | 0 | 3106 | |
| Pyrosmalite-(Fe) (*) | Pyrosmalite Clay | Fe2+8Si6O15(OH)10 | 561 | 4.528 | 0 | 38 | |
| Pyrrhotite (*) | Nickeline | Fe7S8 | 561 | 4.528 | 0 | 9056 | |
| Quartz (*) | Quartz | SiO2 | 561 | 4.528 | 0 | 61156 | |
| Reddingite (*) | Reddingite | Mn2+3(PO4)2·3H2O | 561 | 4.528 | 0 | 24 | |
| Rhodochrosite (*) | Calcite | Mn(CO3) | 561 | 4.528 | 0 | 1711 | |
| Rittmannite (*) | Jahnsite | (Mn2+,Ca)Mn2+(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)4(OH)2·8H2O | 561 | 4.528 | 0 | 10 | |
| Robertsite (*) | Arseniosiderite | Ca2Mn3+3O2(PO4)3·3H2O | 561 | 4.528 | 0 | 36 | |
| Rockbridgeite (*) | Rockbridgeite | (Fe2+0.5Fe3+0.5)2Fe3+3(PO4)3(OH)5 | 561 | 4.528 | 0 | 206 | |
| Rosasite (*) | Malachite | CuZn(CO3)(OH)2 | 561 | 4.528 | 0 | 454 | |
| Rozenite (*) | Starkeyite | Fe2+(SO4)·4H2O | 561 | 4.528 | 0 | 293 | |
| Samarskite-(Y) (*) | Columbite | YFe3+Nb2O8 | 561 | 4.528 | 0 | 353 | |
| Sarcopside (*) | None | Fe2+3(PO4)2 | 561 | 4.528 | 0 | 58 | |
| Schmidite (*) | Calcioferrite | Zn(Fe3+0.5Mn2+0.5)2ZnFe3+(PO4)3(OH)3(H2O)8 | 561 | 4.528 | 0 | 1 | |
| Scholzite (*) | None | CaZn2(PO4)2·2H2O | 561 | 4.528 | 0 | 20 | |
| Schoonerite (*) | Calcioferrite | ZnMn2+Fe2+2Fe3+(PO4)3(OH)2(H2O)7·2H2O | 561 | 4.528 | 0 | 13 | |
| Scorzalite (*) | Lazulite | Fe2+Al2(PO4)2(OH)2 | 561 | 4.528 | 0 | 60 | |
| Siderite (*) | Calcite | Fe(CO3) | 561 | 4.528 | 0 | 6417 | |
| Arrojadite-(BaFe) (*) | Arrojadite | BaFe2+(CaNa2)Fe2+13Al(PO4)11(PO3OH)(OH)2 | 561 | 4.528 | 0 | 7 | |
| Silver (*) | Copper | Ag | 561 | 4.528 | 0 | 5186 | |
| Sphalerite (*) | Sphalerite | ZnS | 561 | 4.528 | 0 | 21482 | |
| Stannite (*) | Stannite Sphalerite | Cu2FeSnS4 | 561 | 4.528 | 0 | 668 | |
| Steinmetzite (*) | None | Zn2Fe3+(PO4)2(OH)·3H2O | 561 | 4.528 | 0 | 2 | |
| Sternbergite (*) | Cubanite | AgFe2S3 | 561 | 4.528 | 0 | 62 | |
| Stewartite (*) | Stewartite | Mn2+Fe3+2(PO4)2(OH)2·8H2O | 561 | 4.528 | 0 | 48 | |
| Stilpnomelane (*) | Stilpnomelane Clay | (K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36·nH2O | 561 | 4.528 | 0 | 456 | |
| Strengite (*) | None | Fe3+(PO4)·2H2O | 561 | 4.528 | 0 | 263 | |
| Stromeyerite (*) | None | CuAgS | 561 | 4.528 | 0 | 332 | |
| Strunzite (*) | Strunzite | Mn2+Fe3+2(PO4)2(OH)2·6H2O | 561 | 4.528 | 0 | 98 | |
| Sulphur (*) | Sulphur | S | 561 | 4.528 | 0 | 2045 | |
| Switzerite (*) | None | Mn2+3(PO4)2·7H2O | 561 | 4.528 | 0 | 21 | |
| Tainiolite (*) | Mica | KLiMg2Si4O10F2 | 561 | 4.528 | 0 | 40 | |
| Tavorite (*) | None | LiFe3+(PO4)(OH) | 561 | 4.528 | 0 | 35 | |
| Torbernite (*) | None | Cu(UO2)2(PO4)2·12H2O | 561 | 4.528 | 0 | 1059 | |
| Triphylite (*) | Olivine | LiFe2+(PO4) | 561 | 4.528 | 0 | 313 | |
| Triplite (*) | Triplite | Mn2+2(PO4)F | 561 | 4.528 | 0 | 233 | |
| Turquoise (*) | Turquoise | CuAl6(PO4)4(OH)8·4H2O | 561 | 4.528 | 0 | 484 | |
| Tvrdýite (*) | Beraunite | Fe2+Fe3+2Al3(PO4)4(OH)5(H2O)4·2H2O | 561 | 4.528 | 0 | 2 | |
| Uraninite (*) | Fluorite | UO2 | 561 | 4.528 | 0 | 2718 | |
| Uranophane-α (*) | None | Ca(UO2)2(SiO3OH)2·5H2O | 561 | 4.528 | 0 | 890 | |
| Uranosphaerite (*) | None | Bi(UO2)O2(OH) | 561 | 4.528 | 0 | 18 | |
| Variscite (*) | None | Al(PO4)·2H2O | 561 | 4.528 | 0 | 301 | |
| Vivianite (*) | Vivianite | Fe2+3(PO4)2·8H2O | 561 | 4.528 | 0 | 636 | |
| Wavellite (*) | Wavellite | Al3(PO4)2(OH)3·5H2O | 561 | 4.528 | 0 | 374 | |
| Whiteite-(CaMnMn) (*) | Jahnsite | CaMn2+Mn2+2Al2(PO4)4(OH)2·8H2O | 561 | 4.528 | 0 | 2 | |
| Whitmoreite (*) | Arthurite | Fe2+Fe3+2(PO4)2(OH)2·4H2O | 561 | 4.528 | 0 | 36 | |
| Wildenauerite (*) | Calcioferrite | Zn(Fe3+0.5Mn2+0.5)2Mn2+Fe3+(PO4)3(OH)3(H2O)8 | 561 | 4.528 | 0 | 1 | |
| Wilhelmgümbelite (*) | Calcioferrite | [ZnFe2+Fe3+3(PO4)3(OH)4(H2O)5]·2H2O | 561 | 4.528 | 0 | 1 | |
| Wilhelmvierlingite (*) | Overite | CaMn2+Fe3+(PO4)2(OH)·2H2O | 561 | 4.528 | 0 | 2 | |
| Wittichenite (*) | None | Cu3BiS3 | 561 | 4.528 | 0 | 297 | |
| Wolfeite (*) | Wagnerite | Fe2+2(PO4)(OH) | 561 | 4.528 | 0 | 43 | |
| Xanthoxenite (*) | None | Ca4Fe3+2(PO4)4(OH)2·3H2O | 561 | 4.528 | 0 | 29 | |
| Xenotime-(Y) (*) | Zircon | Y(PO4) | 561 | 4.528 | 0 | 939 | |
| Zincoberaunite (*) | Beraunite | ZnFe3+5(PO4)4(OH)5·6H2O | 561 | 4.528 | 0 | 1 | |
| Zincostrunzite (*) | Strunzite | ZnFe3+2(PO4)2(OH)2·6.5H2O | 561 | 4.528 | 0 | 2 | |
| Zircon (*) | Zircon | Zr(SiO4) | 561 | 4.528 | 0 | 5251 | |
| Zwieselite (*) | Triplite | Fe2+2(PO4)F | 561 | 4.528 | 0 | 47 |
| Age ID | Locality Notes |
|---|---|
| Giersdorf_00000876 | The study area lies in the NE Bavarian crystalline basement close to the Czech-German border and covers part of the Moldanubian Zone at the western edge of the Bohemian Massif. Precambrian paragneisses were deformed during the Variscan orogeny and subsequently intruded by acidic igneous rocks of late Carboniferous age. Following these granitic intrusions, acidic differentiates, including aplites and pegmatites very different in their mineral compositions, evolved. Some are significantly enriched in Nb oxides and Li-Mn phosphates. After the Variscan orogeny, the NE Bavarian Basement was subjected to a strong uplift. In the basement proper, clastic sediments and relics of the Cenozoic regolith were locally preserved on a low-relief landscape. These relict landforms date back to the late Mesozoican and the early Cenozoic when subtropical climates occurred in what is today called the "Oberpfaelzer Wald." By the end of the glacial period, present-day fluvial drainage systems cut into the basement rocks and transported the debris of the older regolith and of lithoclasts eroded during the glacial period. |
| Giersdorf_00000877 | The study area lies in the NE Bavarian crystalline basement close to the Czech-German border and covers part of the Moldanubian Zone at the western edge of the Bohemian Massif. Precambrian paragneisses were deformed during the Variscan orogeny and subsequently intruded by acidic igneous rocks of late Carboniferous age. Following these granitic intrusions, acidic differentiates, including aplites and pegmatites very different in their mineral compositions, evolved. Some are significantly enriched in Nb oxides and Li-Mn phosphates. After the Variscan orogeny, the NE Bavarian Basement was subjected to a strong uplift. In the basement proper, clastic sediments and relics of the Cenozoic regolith were locally preserved on a low-relief landscape. These relict landforms date back to the late Mesozoican and the early Cenozoic when subtropical climates occurred in what is today called the "Oberpfaelzer Wald." By the end of the glacial period, present-day fluvial drainage systems cut into the basement rocks and transported the debris of the older regolith and of lithoclasts eroded during the glacial period. |
| Giersdorf_00000878 | The study area lies in the NE Bavarian crystalline basement close to the Czech-German border and covers part of the Moldanubian Zone at the western edge of the Bohemian Massif. Precambrian paragneisses were deformed during the Variscan orogeny and subsequently intruded by acidic igneous rocks of late Carboniferous age. Following these granitic intrusions, acidic differentiates, including aplites and pegmatites very different in their mineral compositions, evolved. Some are significantly enriched in Nb oxides and Li-Mn phosphates. After the Variscan orogeny, the NE Bavarian Basement was subjected to a strong uplift. In the basement proper, clastic sediments and relics of the Cenozoic regolith were locally preserved on a low-relief landscape. These relict landforms date back to the late Mesozoican and the early Cenozoic when subtropical climates occurred in what is today called the "Oberpfaelzer Wald." By the end of the glacial period, present-day fluvial drainage systems cut into the basement rocks and transported the debris of the older regolith and of lithoclasts eroded during the glacial period. |
| Giersdorf_00000879 | The study area lies in the NE Bavarian crystalline basement close to the Czech-German border and covers part of the Moldanubian Zone at the western edge of the Bohemian Massif. Precambrian paragneisses were deformed during the Variscan orogeny and subsequently intruded by acidic igneous rocks of late Carboniferous age. Following these granitic intrusions, acidic differentiates, including aplites and pegmatites very different in their mineral compositions, evolved. Some are significantly enriched in Nb oxides and Li-Mn phosphates. After the Variscan orogeny, the NE Bavarian Basement was subjected to a strong uplift. In the basement proper, clastic sediments and relics of the Cenozoic regolith were locally preserved on a low-relief landscape. These relict landforms date back to the late Mesozoican and the early Cenozoic when subtropical climates occurred in what is today called the "Oberpfaelzer Wald." By the end of the glacial period, present-day fluvial drainage systems cut into the basement rocks and transported the debris of the older regolith and of lithoclasts eroded during the glacial period. |
| Giersdorf_00000880 | The study area lies in the NE Bavarian crystalline basement close to the Czech-German border and covers part of the Moldanubian Zone at the western edge of the Bohemian Massif. Precambrian paragneisses were deformed during the Variscan orogeny and subsequently intruded by acidic igneous rocks of late Carboniferous age. Following these granitic intrusions, acidic differentiates, including aplites and pegmatites very different in their mineral compositions, evolved. Some are significantly enriched in Nb oxides and Li-Mn phosphates. After the Variscan orogeny, the NE Bavarian Basement was subjected to a strong uplift. In the basement proper, clastic sediments and relics of the Cenozoic regolith were locally preserved on a low-relief landscape. These relict landforms date back to the late Mesozoican and the early Cenozoic when subtropical climates occurred in what is today called the "Oberpfaelzer Wald." By the end of the glacial period, present-day fluvial drainage systems cut into the basement rocks and transported the debris of the older regolith and of lithoclasts eroded during the glacial period. |
| Excel ID | Max Age (Ma) | Min Age (Ma) | Age as listed in reference | Dating Method | Age Interpret | Prioritized? | Sample Source | Sample Num | Run Num | Age from other Locality | Dated Mineral | Minerals explicitely stated as having this age | Age applies to these Elements | MinDat Locality ID | Dated Locality (Max Age) | Location as listed in reference | Reference | Reference DOI | Reference ID | Age Notes | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Giersdorf_00000876 | 4.572 | 4.528 | 4.55±0.022 | corresponds to Miocene-Pliocene weathering and geomorphological processes in the study area | torbernite | Yes | Torbernite | U | 108622 | Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | Hagendorf | Dill et al. (2007) | 10.1180/minmag.2007.071.4.371 | MM71_371 | Age of samples from the Hagendorf pegmatite district | ||||||
| Giersdorf_00000877 | 561 | 537 | 549±12 | thermal event at the Precambrian-Cambrian boundary | torbernite | Yes | Torbernite | U | 108622 | Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | Hagendorf | Dill et al. (2007) | 10.1180/minmag.2007.071.4.371 | MM71_371 | these old ages, measured in the limoniticc ore of torbernite, may be correlated with a thermal event near the Precambrian-Cambrian boundary | ||||||
| Giersdorf_00000878 | 301.5 | 297.7 | 299.6±1.9 | ferrocolumbite | Yes | 108622 | Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | Hagendorf | Dill et al. (2007) | 10.1180/minmag.2007.071.4.371 | MM71_371 | Age of samples from the Hagendorf pegmatite district | |||||||||
| Giersdorf_00000879 | 390 | 362 | 376±14 | ferrocolumbite | Yes | 108622 | Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | Hagendorf | Dill et al. (2007) | 10.1180/minmag.2007.071.4.371 | MM71_371 | Age of samples from the Hagendorf pegmatite district | |||||||||
| Giersdorf_00000880 | 305.4 | 298.8 | 302.1±3.3 | ferrocolumbite | Yes | 108622 | Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | Hagendorf | Dill et al. (2007) | 10.1180/minmag.2007.071.4.371 | MM71_371 | Age of samples from the Hagendorf pegmatite district |
| Sample | Source Locality | Reference URL |
|---|---|---|
| R130692 | Hagendorf South Pegmatite (Cornelia Shaft; Hagendorf South Open Cut), Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | https://rruff.info/R130692 |
| R060310 | Hagendorf South Pegmatite (Cornelia Shaft; Hagendorf South Open Cut), Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | https://rruff.info/R060310 |
| R050366 | Hagendorf South Pegmatite (Cornelia Shaft; Hagendorf South Open Cut), Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | https://rruff.info/R050366 |
| R050279 | Hagendorf South Pegmatite (Cornelia Shaft; Hagendorf South Open Cut), Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany | https://rruff.info/R050279 |
All locality data graciously provided by mindat.org
All age data...
Other copyright data...