Mineral Evolution Database
Created and maintained by the Mineral Evolution Project in partnership with RRUFF and mindat.
Mineral locality data provided by mindat.org

Important Update News

The RRUFF Project has been migrated to RRUFF.net. Please update your bookmarks immediately, if you have not done so.

The data on this website is already three years out of date, and the entire website will be taken offline before the end of the year.

We are grateful to NASA for the funding of this effort.




The Mineral Evolution database is currently under development.

The goal of this page is to present localities at which the mineral is found, and estimates of the oldest possible geologic age of the minerals at these localities.


Locality Name:
Loire, Auvergne-Rhône-Alpes, France

Oldest recorded age at locality: 520
Youngest recorded age at locality: 15.97

mindat Locality ID: 23722
mindat URL: http://www.mindat.org/loc-23722.html

Tectonic Settings:

Total number of sublocalities beneath "Loire, Auvergne-Rhône-Alpes, France": 609
Total number of bottom-level sublocalities: 376

Number of Child Localities: 21
Child Localities:
Böen
Bourg-Argental
Châtelneuf
Feurs
Firminy
La Grand-Croix
La Pacaudière
Montbrison
Néronde
Pélussin
Rive-de-Gier
Saint-Chamond
Saint-Etienne
Saint-Galmier
Saint-Genest-Malifaux
Saint-Georges-en-Couzan
Saint-Germain-Laval
Saint-Haon-le-Châtel
Saint-Just-en-Chevalet
Saint-Just-Saint-Rambert
Saint-Symphorien-de-Lay

Latitude: 45°38'47"N
Longitude: 4°15'14"E
Decimal Degree (lat, lon): 45.646388888889,4.2538888888889

AThis mineral is Anthropogenic.
GThis mineral is directly dated.
BThis mineral is reported as having this age.
YThis mineral is using an age reported as an element mineralization period.
OThis mineral is using an age calculated from all data at the locality.
RThe age displayed for this mineral originates from a different, non-child locality.
PThe age displayed for this mineral is the range of ages for this mineral at all of this locality's children.
This mineral's age has not yet been recorded.

This Mineral list contains entries from this locality, including sub-localities. Minerals in bold are reported by mindat.org as occurring directly at this locality, and do not occur at any children (sublocalities) of this locality.

Elements at this locality, including sub-localities: Ag Al As Au B Ba Be Bi C Ca Cl Cu F Fe H K Mg Mn Mo N Na O P Pb S Sb Si Sn Te Th Ti U V W Zn Zr 

Elements from minerals reported directly at this locality: 

Structural Groups for minerals in this locality: 
AcanthiteAllargentumAllophaneAluniteAmorphousAmphiboleAndalusiteApatiteAragoniteArsenic
ArsenoliteArsenopyriteAutuniteBaryteBastnäsiteBerthieriteBerylBournoniteBrochantiteBrucite
CalciteCaledoniteCancrinite-sodaliteChabaziteChalcopyriteCheniteClayClinozoisiteConnelliteCopiapite
CopperCoronaditeCorundumCovelliteDevillineDiasporeEpidoteEttringiteFeldsparFluorite
GarnetGypsumHydrotalciteJohanniteKtenasiteLinariteMalachiteMarcasiteMelanteriteMica
MolybdeniteNatroliteNickelineNoneNot in a structural groupOlivineOrpimentOxalatePerovskitePharmacosiderite
PhosphuranylitePyritePyrochlorePyroxeneQuartzRocksaltRutileScheeliteSchoepiteSmectite-vermiculite
SodaliteSpangoliteSphaleriteSpinelStauroliteStibniteSulphurTetrahedriteTitaniteTourmaline
TridymiteVivianiteZircon

153 IMA Minerals at location:
Acanthite  (*)Actinolite  (*)Albite  (*)Almandine  (*)Anatase  (*)
Andalusite  (*)Anglesite  (*)Anhydrite  (*)Ankerite  (*)Anorthite  (*)
Antlerite  (*)Aragonite  (*)Arsenic  (*)Arsenolite  (*)Arsenopyrite  (*)
Augite  (*)Aurichalcite  (*)Autunite  (*)Azurite  (*)Baryte  (*)
Becquerelite  (*)Berthierite  (*)Beryl  (*)Billietite  (*)Bismuth  (*)
Bismuthinite  (*)Bonazziite  (*)Bornite  (*)Boulangerite  (*)Bournonite  (*)
Brochantite  (*)Calcite  (*)Caledonite  (*)Cassiterite  (*)Cerussite  (*)
Chabazite-Na  (*)Chalcocite  (*)Chalcopyrite  (*)Chenite  (*)Chrysocolla  (*)
Claudetite  (*)Coffinite  (*)Connellite  (*)Copiapite  (*)Copper  (*)
Cordierite  (*)Coronadite  (*)Corundum  (*)Covellite  (*)Cuprite  (*)
Devilline  (*)Dewindtite  (*)Diaboleite  (*)Diopside  (*)Dolomite  (*)
Dyscrasite  (*)Elyite  (*)Epidote  (*)Ettringite  (*)Fluorapatite  (*)
Fluorite  (*)Forsterite  (*)Fougèrite  (*)Galena  (*)Goethite  (*)
Gold  (*)Gypsum  (*)Haüyne  (*)Hematite  (*)Hemimorphite  (*)
Hydrocerussite  (*)Ianthinite  (*)Ilmenite  (*)Johannite  (*)Kasolite  (*)
Kermesite  (*)Kyanite  (*)Lanarkite  (*)Langite  (*)Lead  (*)
Leadhillite  (*)Linarite  (*)Litharge  (*)Magnetite  (*)Malachite  (*)
Marcasite  (*)Massicot  (*)Mazzite-Mg  (*)Melanterite  (*)Microcline  (*)
Mimetite  (*)Mogánite  (*)Molybdenite  (*)Montmorillonite  (*)Muscovite  (*)
Natrolite  (*)Nepheline  (*)Nontronite  (*)Offretite  (*)Opal  (*)
Orpiment  (*)Orthoclase  (*)Uranophane-β  (*)Parsonsite  (*)Perovskite  (*)
Pharmacosiderite  (*)Phosphuranylite  (*)Plumbojarosite  (*)Portlandite  (*)Pseudoboleite  (*)
Pyrite  (*)Pyrolusite  (*)Pyromorphite  (*)Pyrrhotite  (*)Quartz  (*)
Realgar  (*)Rutile  (*)Salammoniac  (*)Schoepite  (*)Schorl  (*)
Schulenbergite  (*)Serpierite  (*)Siderite  (*)Sillimanite  (*)Silver  (*)
Spangolite  (*)Spertiniite  (*)Spessartine  (*)Sphalerite  (*)Spinel  (*)
Staurolite  (*)Stibiconite  (*)Stibnite  (*)Stolzite  (*)Sulphur  (*)
Susannite  (*)Tellurite  (*)Tennantite-(Fe)  (*)Tetrahedrite-(Zn)  (*)Thorbastnäsite  (*)
Titanite  (*)Torbernite  (*)Tyuyamunite  (*)Uraninite  (*)Uranophane-α  (*)
Uranopilite  (*)Valentinite  (*)Vanadinite  (*)Vandendriesscheite  (*)Vivianite  (*)
Whewellite  (*)Wyartite  (*)Zircon  (*)
Mineral nameStructural GroupsIMA FormulaMax Age (Ma)Min Age (Ma)# of Sublocalities containing mineralLOCALITY IDs, not mindat ids# of localities containing mineral
Acanthite  (*)AcanthiteAg2S1514502793
Actinolite  (*)Amphibole   Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)21515003419
Albite  (*)FeldsparNa(AlSi3O8)851418,51444,51473,51484,51508,51513,51551,515548803
Almandine  (*)GarnetFe2+3Al2(SiO4)3351418,51444,515542353
Anatase  (*)Not in a structural groupTiO2451428,51466,51531,515492162
Andalusite  (*)AndalusiteAl2SiO5651444,51459,51482,51484,51492,515511310
Anglesite  (*)BarytePb(SO4)351450,51451,515372734
Anhydrite  (*)Not in a structural groupCa(SO4)52015.971515451588
Ankerite  (*)NoneCa(Fe2+,Mg)(CO3)21514943092
Anorthite  (*)FeldsparCa(Al2Si2O8)1514651036
Antlerite  (*)Not in a structural groupCu2+3(SO4)(OH)4151451246
Aragonite  (*)AragoniteCa(CO3)1514513250
Arsenic  (*)ArsenicAs351478,51486,51488379
Arsenolite  (*)ArsenoliteAs2O3251478,51488231
Arsenopyrite  (*)ArsenopyriteFeAsS52015.97751440,51447,51471,51480,51524,51545,515559052
Augite  (*)Pyroxene(Ca,Mg,Fe)2Si2O6451431,51463,51466,515492060
Aurichalcite  (*)None(Zn,Cu)5(CO3)2(OH)6151450919
Autunite  (*)AutuniteCa(UO2)2(PO4)2·10-12H2O30515.97551453,51541,51543,51544,515451272
Azurite  (*)Not in a structural groupCu3(CO3)2(OH)2951450,51451,51453,51499,51517,51535,51536,51547,515555509
Baryte  (*)BaryteBa(SO4)2751422,51425,51427,51429,51441,51442,51445,51450,51453,51478,51494,51499,51500,51516,51517,51519,51520,51522,51527,51531,51533,51536,51537,51539,51552,51557,5156111547
Becquerelite  (*)NoneCa(UO2)6O4(OH)6·8H2O30515.97251541,5154592
Berthierite  (*)BerthieriteFeSb2S4251480,51503343
Beryl  (*)BerylBe3Al2Si6O181515124286
Billietite  (*)NoneBa(UO2)6O4(OH)6·8H2O30515.9715154538
Bismuth  (*)ArsenicBi1515371966
Bismuthinite  (*)StibniteBi2S352015.97251488,515451935
Bonazziite  (*)NoneAs4S41514885
Bornite  (*)NoneCu5FeS4351450,51547,515555516
Boulangerite  (*)NonePb5Sb4S11151559843
Bournonite  (*)BournoniteCuPbSbS31515371089
Brochantite  (*)BrochantiteCu4(SO4)(OH)6251450,514511633
Calcite  (*)CalciteCa(CO3)1951431,51443,51450,51451,51453,51463,51465,51469,51471,51480,51500,51530,51535,51537,51547,51554,51556,51559,5156027770
Caledonite  (*)CaledoniteCu2Pb5(SO4)3(CO3)(OH)6251450,51451359
Cassiterite  (*)RutileSnO21515375171
Cerussite  (*)AragonitePb(CO3)1051427,51445,51450,51451,51517,51535,51536,51537,51539,515474979
Chabazite-Na  (*)Chabazite(Na3K)[Al4Si8O24]·11H2O251431,5146366
Chalcocite  (*)NoneCu2S52015.97551450,51516,51520,51545,515475707
Chalcopyrite  (*)ChalcopyriteCuFeS252015.972451425,51427,51436,51440,51441,51445,51450,51453,51499,51516,51517,51520,51524,51533,51535,51536,51537,51539,51541,51543,51545,51547,51555,5155627198
Chenite  (*)CheniteCuPb4(SO4)2(OH)615145140
Chrysocolla  (*)Allophane(Cu2-xAlx)H2-xSi2O5(OH)4·nH2O52015.97251450,515453531
Claudetite  (*)NoneAs2O315148835
Coffinite  (*)ZirconU(SiO4)·nH2O30515.97251541,51545566
Connellite  (*)ConnelliteCu36(SO4)(OH)62Cl8·6H2O151451295
Copiapite  (*)CopiapiteFe2+Fe3+4(SO4)6(OH)2·20H2O151488382
Copper  (*)CopperCu251450,514513846
Cordierite  (*)BerylMg2Al4Si5O181515511008
Coronadite  (*)CoronaditePb(Mn4+6Mn3+2)O16151450227
Corundum  (*)CorundumAl2O3451418,51466,51531,515491797
Covellite  (*)CovelliteCuS52015.97451440,51517,51537,515454165
Cuprite  (*)Not in a structural groupCu2O251450,514512970
Devilline  (*)DevillineCaCu4(SO4)2(OH)6·3H2O251450,51451366
Dewindtite  (*)PhosphuranyliteH2Pb3(UO2)6O4(PO4)4·12H2O30515.97351541,51543,5154582
Diaboleite  (*)PerovskiteCuPb2Cl2(OH)415145157
Diopside  (*)PyroxeneCaMgSi2O61514504135
Dolomite  (*)NoneCaMg(CO3)2251471,515599895
Dyscrasite  (*)AllargentumAg3+xSb1-x (x ≈ 0.2)151450180
Elyite  (*)NoneCuPb4(SO4)O2(OH)4·H2O15145185
Epidote  (*)Epidote ClinozoisiteCa2(Al2Fe3+)[Si2O7][SiO4]O(OH)451450,51500,51531,515548173
Ettringite  (*)EttringiteCa6Al2(SO4)3(OH)12·27H2O15145193
Fluorapatite  (*)ApatiteCa5(PO4)3F351444,51509,515122740
Fluorite  (*)FluoriteCaF252015.972251426,51428,51440,51444,51445,51453,51499,51500,51516,51520,51522,51527,51528,51530,51531,51533,51535,51536,51537,51539,51545,515569617
Forsterite  (*)OlivineMg2(SiO4)1515311188
Fougèrite  (*)HydrotalciteFe2+4Fe3+2(OH)12(CO3)·3H2O15145120
Galena  (*)RocksaltPbS52015.972851425,51427,51429,51431,51440,51441,51445,51450,51453,51471,51480,51488,51494,51516,51517,51519,51520,51522,51527,51533,51535,51536,51537,51539,51545,51547,51557,5155924243
Goethite  (*)DiasporeFeO(OH)451450,51451,51500,515437437
Gold  (*)CopperAu351480,51482,5149230554
Gypsum  (*)GypsumCa(SO4)·2H2O52015.97651440,51450,51451,51478,51516,515456890
Haüyne  (*)Sodalite Cancrinite-sodaliteNa3Ca(Si3Al3)O12(SO4)151421158
Hematite  (*)CorundumFe2O352015.971051441,51445,51450,51466,51482,51492,51531,51543,51545,5154914640
Hemimorphite  (*)Not in a structural groupZn4(Si2O7)(OH)2·H2O1514501689
Hydrocerussite  (*)NonePb3(CO3)2(OH)2151517201
Ianthinite  (*)NoneU4+2(UO2)4O6(OH)4·9H2O30515.97251541,5154531
Ilmenite  (*)CorundumFe2+Ti4+O3551466,51482,51492,51531,515495433
Johannite  (*)JohanniteCu(UO2)2(SO4)2(OH)2·8H2O30515.9715154569
Kasolite  (*)NonePb(UO2)(SiO4)·H2O30515.97351541,51543,51545198
Kermesite  (*)NoneSb2OS2251469,51559230
Kyanite  (*)Not in a structural groupAl2OSiO4551444,51482,51484,51492,514931507
Lanarkite  (*)NonePb2O(SO4)15145197
Langite  (*)NoneCu4(SO4)(OH)6·2H2O151451593
Lead  (*)CopperPb151451192
Leadhillite  (*)NonePb4(SO4)(CO3)2(OH)2151451265
Linarite  (*)LinariteCuPb(SO4)(OH)2251450,51451987
Litharge  (*)NonePbO151451139
Magnetite  (*)SpinelFe2+Fe3+2O4751450,51466,51482,51492,51531,51547,5154914899
Malachite  (*)MalachiteCu2(CO3)(OH)252015.971651450,51451,51453,51499,51516,51517,51519,51533,51535,51536,51537,51539,51545,51547,51555,5155612537
Marcasite  (*)MarcasiteFeS2351428,51447,515035674
Massicot  (*)NonePbO151451202
Mazzite-Mg  (*)NoneMg5(Si26Al10)O72·30H2O1514311
Melanterite  (*)MelanteriteFe(SO4)·7H2O151488915
Microcline  (*)FeldsparK(AlSi3O8)751438,51444,51456,51458,51459,51512,515514924
Mimetite  (*)ApatitePb5(AsO4)3Cl251450,514531107
Mogánite  (*)NoneSiO2·nH2O15149643
Molybdenite  (*)MolybdeniteMoS21514615800
Montmorillonite  (*)Clay Smectite-vermiculite(Na,Ca)0.3(Al,Mg)2Si4O10(OH)2·nH2O1514311508
Muscovite  (*)Mica ClayKAl2(Si3Al)O10(OH)21151438,51444,51458,51459,51485,51493,51502,51508,51509,51512,5151317380
Natrolite  (*)NatroliteNa2(Si3Al2)O10·2H2O1514651236
Nepheline  (*)TridymiteNa3K(Al4Si4O16)151421884
Nontronite  (*)Clay Smectite-vermiculiteNa0.3Fe3+2(Si,Al)4O10(OH)2·nH2O251434,51500471
Offretite  (*)Not in a structural groupKCaMg(Si13Al5)O36·15H2O151431146
Opal  (*)AmorphousSiO2·nH2O351431,51496,515272994
Orpiment  (*)OrpimentAs2S3351478,51486,51488511
Orthoclase  (*)FeldsparK(AlSi3O8)251513,515512349
Uranophane-β  (*)NoneCa(UO2)2(SiO3OH)2·5H2O30515.97251541,51545144
Parsonsite  (*)NonePb2(UO2)(PO4)230515.97351541,51543,5154563
Perovskite  (*)PerovskiteCaTiO3151421495
Pharmacosiderite  (*)PharmacosideriteKFe3+4(AsO4)3(OH)4·6-7H2O151488428
Phosphuranylite  (*)PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4·8H2O30515.97251541,51545182
Plumbojarosite  (*)AlunitePb0.5Fe3+3(SO4)2(OH)6151451477
Portlandite  (*)BruciteCa(OH)215145151
Pseudoboleite  (*)NonePb31Cu24Cl62(OH)4815145133
Pyrite  (*)PyriteFeS252015.973451418,51425,51428,51429,51440,51441,51442,51447,51450,51469,51471,51480,51486,51494,51500,51503,51517,51524,51527,51530,51531,51535,51536,51537,51541,51543,51545,51547,51554,51555,51556,51557,51559,5156039462
Pyrolusite  (*)RutileMnO21515003106
Pyromorphite  (*)ApatitePb5(PO4)3Cl52015.97751453,51520,51533,51536,51537,51539,515451725
Pyrrhotite  (*)NickelineFe7S81514449056
Quartz  (*)QuartzSiO252015.977051418,51419,51422,51425,51427,51428,51429,51431,51436,51438,51440,51441,51444,51445,51446,51447,51450,51453,51456,51457,51458,51459,51461,51466,51469,51471,51473,51475,51480,51482,51484,51492,51493,51496,51499,51500,51503,51508,51509,51512,51513,51516,51517,51519,51520,51522,51524,51527,51528,51530,51531,51533,51535,51536,51537,51539,51541,51543,51545,51547,51549,51551,51552,51554,51555,51556,51557,51559,51560,5156161156
Realgar  (*)NoneAsS451478,51486,51488,51490712
Rutile  (*)RutileTiO2451466,51482,51492,515315614
Salammoniac  (*)None(NH4)Cl351478,51486,51488105
Schoepite  (*)Schoepite(UO2)4O(OH)6(H2O)630515.97251541,5154594
Schorl  (*)TourmalineNaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)1351419,51438,51444,51456,51459,51473,51475,51482,51492,51502,51512,51513,515512705
Schulenbergite  (*)Ktenasite(Cu,Zn)7(SO4)2(OH)10·3H2O151451142
Serpierite  (*)DevillineCa(Cu,Zn)4(SO4)2(OH)6·3H2O251450,51451292
Siderite  (*)CalciteFe(CO3)451427,51431,51494,515596417
Sillimanite  (*)Not in a structural groupAl2SiO5351418,51482,514921516
Silver  (*)CopperAg1514505186
Spangolite  (*)SpangoliteCu6Al(SO4)(OH)12Cl·3H2O151451105
Spertiniite  (*)NoneCu(OH)215145117
Spessartine  (*)GarnetMn2+3Al2(SiO4)31515131214
Sphalerite  (*)SphaleriteZnS1851425,51427,51429,51440,51441,51445,51450,51480,51494,51516,51517,51519,51520,51536,51537,51539,51547,5155921482
Spinel  (*)SpinelMgAl2O4251418,514311934
Staurolite  (*)StauroliteFe2+2Al9Si4O23(OH)551444,51482,51483,51492,51502978
Stibiconite  (*)PyrochloreSb3+Sb5+2O6(OH)251469,51559446
Stibnite  (*)StibniteSb2S3551447,51469,51480,51503,515593418
Stolzite  (*)ScheelitePb(WO4)151450156
Sulphur  (*)SulphurS451478,51486,51488,515032045
Susannite  (*)NonePb4(SO4)(CO3)2(OH)215145199
Tellurite  (*)NoneTeO215148852
Tennantite-(Fe)  (*)TetrahedriteCu6(Cu4Fe2)As4S131514531803
Tetrahedrite-(Zn)  (*)TetrahedriteCu6(Cu4Zn2)Sb4S13451453,51533,51536,515375317
Thorbastnäsite  (*)BastnäsiteThCa(CO3)2F2·3H2O15142814
Titanite  (*)TitaniteCaTi(SiO4)O451466,51482,51492,515494899
Torbernite  (*)NoneCu(UO2)2(PO4)2·12H2O30515.97451453,51541,51543,515451059
Tyuyamunite  (*)NoneCa(UO2)2(VO4)2·5-8H2O151542628
Uraninite  (*)FluoriteUO2305305451541,51542,51543,515452718
Uranophane-α  (*)NoneCa(UO2)2(SiO3OH)2·5H2O30515.97351541,51543,51545890
Uranopilite  (*)None(UO2)6(SO4)O2(OH)6·14H2O30515.9715154594
Valentinite  (*)NoneSb2O3151559369
Vanadinite  (*)ApatitePb5(VO4)3Cl151450605
Vandendriesscheite  (*)NonePb1.6(UO2)10O6(OH)11·11H2O30515.97251541,5154552
Vivianite  (*)VivianiteFe2+3(PO4)2·8H2O251451,51488636
Whewellite  (*)OxalateCa(C2O4)·H2O52015.97351540,51541,5154566
Wyartite  (*)NoneCaU5+(UO2)2(CO3)O4(OH)·7H2O30515.97251541,515453
Zircon  (*)ZirconZr(SiO4)551418,51466,51531,51549,515545251



Locality Notes from all Ages at Locality:
Age IDLocality Notes
Giersdorf_00000690The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000691The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000692The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000693The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000694The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000695The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000696The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000698The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.
Giersdorf_00000700The genesis of the Bois Noirs-Limouzat uranium deposit involves a very complex history. The Bols Noirs granite resulted from the anatexis of uranium-rich sediments near granulite facies conditions. The temperature is estimated to have been at least 800 degrees Celsius accompanied by a low H20 partial pressure (possibly resulting from the presence of carbon dioxide). This magma was syntectonically emplaced along the east-west structures in a nonmetamorphic environment. Progressive crystallization and differentiation proceeded inward from the margins toward the core of the intrusion. A fluid phase formed after a large part of the magma had crystallized. This fluid migrated toward the core and altered the primary magmatic minerals, quartz, orthoclase, oligoclase, and biotite, to quartz, microcline , albite, and chlorite. The alteration of the primary accessory minerals, sphene, zircon, monazite, and xenotime, resulted in the partial liberation of their uranium content. When all the magma had crystallized, the fluid phase migrated outward to precipitate uraninite, with an associated quartz-muscovite alteration. This critical step produced an easily leachable uranium source in the granite in the form of uraninite.


10 Ages assigned to this locality:

Excel IDMax Age (Ma)Min Age (Ma)Age as listed in referenceDating MethodAge InterpretPrioritized?Sample SourceSample NumRun NumAge from other LocalityDated MineralMinerals explicitely stated as having this ageAge applies to these ElementsMinDat Locality IDDated Locality (Max Age)Location as listed in referenceReferenceReference DOIReference IDAge Notes
Giersdorf_00000842270270270  coffinite   Coffinite U1732Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois NoirsCarrat & Kosztolanyi (1987) CRSAS305_89 
Giersdorf_00000690520520520  biotite     12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Age is given for the biotite granite of the first intrusion of the subject area
Giersdorf_00000691312298312-298  whole rock     12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Age of metamorphism affecting the granite in the Bois Noirs
Giersdorf_00000692343327335±8whole rock       12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Age of metamorphic event of the Bois Nors altering the Visean schist of the Ferrieres Basin
Giersdorf_00000693315310315-310  biotite     12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Age of the intrusion of the Mayet-de-Montagne monzogranite
Giersdorf_00000694309303306±3  muscovite   MuscoviteMuscovite 12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567The age given is for the closing of the mica lattice, not the intrusion or emplacement of the granite
Giersdorf_00000695280264272±8 One of a series of minor intrusions during the Permian      12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Intrusion age
Giersdorf_00000696295245270±25 One of a series of minor intrusions during the Permian      12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Intrusion Age
Giersdorf_00000698305305305 Maximum age for the uraninite of the mine    UraniniteU12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567uraninite is found in the fractures of the microgranite of the mine, thereby constraining the maximum age of the uraninite mineralization
Giersdorf_0000070033.915.97Oligocene-Lower Miocene       U12814Le Limouzat Mine (incl. Le Limouzat Quarry; BN3; BN5; BN6), Les Bois-Noirs Mining Claim, Saint-Priest-la-Prugne, Saint-Just-en-Chevalet, Loire, Auvergne-Rhône-Alpes, FranceBois Noirs-Limouzat Uranium VeinCuney (1978)10.2113/gsecongeo.73.8.1567EG73_1567Age of mobilization of secondary uranium minerals, described in the literature as Oligocene-Lower Miocene


SampleSource LocalityReference URL


All locality data graciously provided by mindat.org

All age data...

Other copyright data...